Biological Role of Fibrinolysis

Total Page:16

File Type:pdf, Size:1020Kb

Biological Role of Fibrinolysis J Clin Pathol: first published as 10.1136/jcp.33.Suppl_14.1 on 1 January 1980. Downloaded from J Clin Pathol, 33, Suppl (Roy Coll Path), 14, 1-4 Scientific basis Biological role of fibrinolysis JF DAVIDSON AND ISOBEL D WALKER From the Thrombosis Research Group, Department of Haematology, Glasgow Royal Infirmary, Glasgow Fibrinolysis is a basic defence mechanism of the blood. The intrinsic activators are, in the main, organism designed to control the deposition of components of the factor XII activation system fibrin in the vascular system and elsewhere. When produced by activation of the intrinsic coagulation thrombin is generated by the coagulation system it mechanism. The activity of these activators is acts on fibrinogen and 'precipitates' it out of regulated by inhibitors, but our knowledge of the solution as a polymer-fibrin. This polymer anti-activators is less clear than our knowledge of deposition is regulated by the fibrinolytic system the anti-plasmins. The activity of vascular activator which acts on the insoluble protein fibrin and, by is also regulated by its high affinity for fibrin. splitting a limited number of peptide bonds, renders it soluble. This solubilisation mechanism which Role of fibrin liquifies the fibrin clot is the fibrinolytic system. Fibrinolysis was first described in a rudimentary Fibrin is central to the whole mechanism of fibrino- form over a century ago. Nowadays the term lysis because the fibrin surface provides a special copyright. fibrinolysis is generally restricted to the 'fibrinoly- milieu with optimum conditions for the reactions of sing' action of the plasminogen-plasmin system, but the plasminogen-plasmin system. Plasminogen and fibrin is of course removed by other means such as plasminogen activator bind selectively to fibrin and phagocytosis and proteolysis by other enzymes. on the fibrin surface plasmin is formed which immediately interacts with the fibrin. This interaction Plasminogen-plasmin occupies the active sites of the plasmin and renders them unavailable for interaction and neutralisation The key component of the fibrinolytic (plasminogen- by the anti-plasmin in the surrounding plasma. plasmin) system is the single-chain glycoprotein Plasmin formed away from the fibrin surface http://jcp.bmj.com/ plasminogen, which is present in plasma and in immediately interacts with the fast anti-plasmin most tissues. From this polypeptide proenzyme the a2-plasmin inhibitor (a2-PI) and is inhibited. This highly proteolytic serine protease plasmin is formed inhibition reaction is somewhat unique in its by limited proteolysis. Plasmin has broad substrate speed of action, being the fastest protein- specificity but in vivo it is rendered relatively selective protein interaction known. This remarkable speed for fibrin by the nature of the molecular biology of of reaction gives an indication of the biological the fibrin, plasminogen, plasmin, and anti-plasmin importance of controlling plasmin activity. In this on September 29, 2021 by guest. Protected interactions. way plasmin-mediated proteolysis is made highly specific for fibrin and is contained within the im- Activators mediate environment of the clot. Like several parts of the coagulation mechanism it is a surface-linked The conversion of plasminogen to plasmin is phenomenon. brought about by plasminogen activators which are Only when excessive amounts of plasmin are in two categories, firstly, extrinsic plasminogen formed or the a2-PI concentration in the plasma is activators which are extrinsic to the plasma and, deficient can the fibrinolytic process extend out secondly, intrinsic plasminogen activators which are into the general circulation and generalised fibrino- intrinsic to the plasma. lysis ensue. The extrinsic activators are the tissue activators, which are firmly fixed in tissues, and the endothelial Fibrinolysis interactions cell activator-vascular activator-which is found in the vascular endothelium and released into the Fibrinolysis is indeed a complex co-operative 1 J Clin Pathol: first published as 10.1136/jcp.33.Suppl_14.1 on 1 January 1980. Downloaded from 2 Davidson and Walker reaction at the fibrin surface of activator, plasmin- suprarenals, thyroid, and ovaries and in lowest ogen, plasmin, and a2-PI which, should it spill over concentration in liver, testes, and spleen. into the surrounding plasma, will be met by a Activator is also found in human milk, tears, massive potential of anti-plasmin activity primarily saliva, cerebrospinal fluid, and bile. A trigger that in the form of a2-PI and secondarily as a2-macro- can initiate fibrinolysis is therefore available globulin (a2-M).' These molecular interactions have throughout most body tissues and body fluids. recently been elucidated for fibrinolysis in blood and The activation of this trigger appears to be the it is assumed that fibrinolysis in tissues and non- result of fibrin deposition, ischaemia, hypoxia, or a vascular spaces follows a similar pattern. combination of these, but our knowledge of this is very scanty. Biological principles of fibrinolysis The extrinsic activation mechanism of fibrinolysis seems to play an important role in keeping body The biological principles which operate the fibrin- cavities and channels free from unwanted fibrin. olytic system are basically the same as those for Thus the urinary tract activator urokinase helps to the coagulation system. An initiating or trigger keep the urinary tract free of fibrin. Various duct mechanism is required to 'turn on' the system and systems like the lacrymal ducts and bile ducts have thereafter serine proteases are generated to achieve plasminogen activator activity which helps to keep the system's biological function. While proteases them patent. Fibrinolysis also plays an important can generate biological functions they can also role in reproduction. It contributes to maintaining destroy them, because proteolysis is an irreversible the patency of reproductive channels and plays a process and proteases are not endowed with repair role in fertilisation. It is also an important component functions. A 'switch off' mechanism or an inhibition in the mechanism of menstrual bleeding. mechanism is, therefore, essential to limit proteolysis. The trigger mechanism for activating fibrinolysis This on-and-off mechanism is controlled by in blood is more complicated. Blood contains some different switches. The on switch is the release, or extrinsic activator in the form of vascular endothelial perhaps activation, of plasminogen activators. The activator which is synthetised in the endothelial copyright. off switch is largely the containment of the reaction cells of the small veins, stored there, and released on by the inhibitor a2-PI supplemented, if necessary, demand. The concentration ofthis activator in blood by a2-M. It is aided by the constraints of a surface has a pronounced diurnal variation, being lowest in mediated reaction, and the run down of available the morning. Its release can be greatly enhanced by surface for the fibrinolytic reaction as fibrin is vascular stasis, ischaemia, and exercise. digested. The on switch of activation is also regulated Blood also contains two types ofintrinsic activators by anti-activators. Unlike the a2-PI mechanism, -one which is associated with activation of factor the mechanism of these anti-activator reactions is XII (the factor XII dependent pathway) and the poorly understood and is still the subject of some other which is independent of factor XII (the factor http://jcp.bmj.com/ controversy. XII independent pathway). It now seems quite In addition to the switch on, switch off mech- clear that when intrinsic coagulation is activated anisms, the fibrinolytic system has an inbuilt fibrinolysis is activated at the same time. There is self-acceleration process. When plasminogen acti- much still to be learned about the various plasmin- vator meets plasminogen, if the conditions are ogen activators and how they become activated. right, plasmin is formed. This plasmin, in addition to attacking fibrin, feeds back into the system and The dynamic hypothesis on September 29, 2021 by guest. Protected greatly accelerates the conversion of plasminogen to plasmin. Many years ago it was proposed that there was a dynamic balance between coagulation and fibrin- Fibrinolysis activation olysis in the vascular system. Thus it was sug- gested that fibrin was being continuously laid down Our knowledge of the trigger mechanism is very from low grade activation of the coagulation system limited, although we know there are several types and continuously cleared by low grade activation of plasminogen activators.2 The tissue type of of the fibrinolytic system. Present evidence to plasminogen activator is firmly fixed in tissues and support this concept is scanty and it must now be can be extracted and studied. It is a stable protein accepted that systemic intravascular fibrin deposition which is probably very closely related to vascular, is normally extremely limited. This, however, does or endothelial, activator and to the urine activator not exclude the possibility of localised fibrin urokinase. It is found in most body tissues and in deposition as an everyday occurrence and as an greatest concentration in tissues such as the uterus, expression of normal 'wear and tear'. J Clin Pathol: first published as 10.1136/jcp.33.Suppl_14.1 on 1 January 1980. Downloaded from Biological role offibrinolysis 3 Clinical problems arise not only from excessive important biological role of a2-PI in
Recommended publications
  • Clinical Protocol
    CLINICAL PROTOCOL Subject: Page Protocol # EMERGENT TREATMENT OF PATIENTS WITH BLEEDING AND 1 of 4 NMH CCP 07.0024 CLOTTING EMERGENCIES WHO ARE TAKING NOVEL ORAL ANTICOAGULANTS Version: 1.0 Title: Revision of: Effective Date: EMERGENT TREATMENT OF PATIENTS WITH BLEEDING AND NEW 04/29/2013 CLOTTING EMERGENCIES WHO ARE TAKING NOVEL ORAL Removal Date: ANTICOAGULANT APIXABAN (ELIQUIS) I. PURPOSE: To standardize management of patients with bleeding and clotting emergencies who are taking novel oral anticoagulants (NOACs). This protocol covers emergent reversal and ischemic stroke in patients on apixaban (Eliquis) therapy. II. CLINICAL PROTOCOL: A. The NOAC apixaban (Eliquis) is FDA approved for stroke prevention in patients with atrial fibrillation. This agent presents clinicians with several challenges because there are no specific antidotes, and no readily available quantitative assay to determine the degree of anticoagulation in a patient on this therapy. B. Patients taking this agent are likely to present to the hospital with; 1. life-threatening bleeding (e.g., intracerebral hemorrhage or GI bleeding), or a need for an emergent invasive procedure (surgery, cardiac Catherization) 2. acute ischemic stroke. The administration of tissue plasminogen activator (IV tPA) in the setting of NOAC use is potentially dangerous. C. There are no accepted evidence-based guidelines for managing these situations. This protocol is a consensus of clinicians from stroke, neurology, neurosurgery, hematology, neurocritical care, laboratory medicine, cardiology, and pharmacy. III. REVERSAL PROTOCOL FOR PATIENTS WITH SEVERE/LIFE-THREATENING BLEEDING TAKING APIXABAN (ELIQUIS) A. Inclusion criteria: 1. Patient has taken any dose of apixaban within last 48 hours. a. If time of last dose is unknown, but patient is suspected of having taken apixaban in last 48 hours, and PT is abnormal and 2.
    [Show full text]
  • The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’S Perspective
    International Journal of Molecular Sciences Review The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’s Perspective Hau C. Kwaan 1,* and Paul F. Lindholm 2 1 Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA 2 Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; [email protected] * Correspondence: [email protected] Abstract: The novel coronavirus disease (COVID-19) has many characteristics common to those in two other coronavirus acute respiratory diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). They are all highly contagious and have severe pulmonary complications. Clinically, patients with COVID-19 run a rapidly progressive course of an acute respiratory tract infection with fever, sore throat, cough, headache and fatigue, complicated by severe pneumonia often leading to acute respiratory distress syndrome (ARDS). The infection also involves other organs throughout the body. In all three viral illnesses, the fibrinolytic system plays an active role in each phase of the pathogenesis. During transmission, the renin-aldosterone- angiotensin-system (RAAS) is involved with the spike protein of SARS-CoV-2, attaching to its natural receptor angiotensin-converting enzyme 2 (ACE 2) in host cells. Both tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1) are closely linked to the RAAS. In lesions in the lung, kidney and other organs, the two plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA), along with their inhibitor, plasminogen activator 1 (PAI-1), are involved. The altered fibrinolytic balance enables the development of a hypercoagulable Citation: Kwaan, H.C.; Lindholm, state.
    [Show full text]
  • ACTIVASE (Alteplase) for Injection, for Intravenous Use Initial U.S
    Application 103172 This document contains: Label for ACTIVASE [Supplement 5203, Action Date 02/13/2015] Also available: Label for CATHFLO ACTIVASE [Supplement 5071, Action Date 01/04/2005] HIGHLIGHTS OF PRESCRIBING INFORMATION Acute Ischemic Stroke These highlights do not include all the information needed to use • Current intracranial hemorrhage. (4.1) ACTIVASE safely and effectively. See full prescribing information for • Subarachnoid hemorrhage. (4.1) ACTIVASE. Acute Myocardial Infarction or Pulmonary Embolism • History of recent stroke. (4.2) ACTIVASE (alteplase) for injection, for intravenous use Initial U.S. Approval: 1987 -----------------------WARNINGS AND PRECAUTIONS-----------------------­ • Increases the risk of bleeding. Avoid intramuscular injections. Monitor for ---------------------------INDICATIONS AND USAGE--------------------------­ bleeding. If serious bleeding occurs, discontinue Activase. (5.1) Activase is a tissue plasminogen activator (tPA) indicated for the treatment of • Monitor patients during and for several hours after infusion for orolingual • Acute Ischemic Stroke (AIS). (1.1) angioedema. If angioedema develops, discontinue Activase. (5.2) • Acute Myocardial Infarction (AMI) to reduce mortality and incidence of • Cholesterol embolism has been reported rarely in patients treated with heart failure. (1.2) thrombolytic agents. (5.3) Limitation of Use in AMI: the risk of stroke may be greater than the benefit • Consider the risk of reembolization from the lysis of underlying deep in patients at low risk of death
    [Show full text]
  • A First in Class Treatment for Thrombosis Prevention. a Phase I
    Journal of Cardiology and Vascular Medicine Research Open Access A First in Class Treatment for Thrombosis Prevention. A Phase I study with CS1, a New Controlled Release Formulation of Sodium Valproate 1,2* 2 3 2 1,2 Niklas Bergh , Jan-Peter Idström , Henri Hansson , Jonas Faijerson-Säljö , Björn Dahlöf 1Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden 2 Cereno Scientific AB, Gothenburg, Sweden 3 Galenica AB, Malmö, Sweden *Corresponding author: Niklas Bergh, The Wallenberg Laboratory for Cardiovascular Research Sahlgrenska University Hospi- tal Bruna Stråket 16, 413 45 Göteborg, Tel: +46 31 3421000; E-Mail: [email protected] Received Date: June 11, 2019 Accepted Date: July 25, 2019 Published Date: July 27, 2019 Citation: Niklas Bergh (2019) A First in Class Treatment for Thrombosis Prevention? A Phase I Study With Cs1, a New Con- trolled Release Formulation of Sodium Valproate. J Cardio Vasc Med 5: 1-12. Abstract Several lines of evidence indicate that improving fibrinolysis by valproic acid may be a fruitful strategy for throm- bosis prevention. This study investigated the safety, pharmacokinetics, and effect on biomarkers for thrombosis of CS1, a new advanced controlled release formulation of sodium valproate designed to produce optimum valproic acid concen- trations during the early morning hours, when concentrations of plasminogen activator inhibitor (PAI)-1 and the risk of thrombotic events is highest. Healthy volunteers (n=17) aged 40-65 years were randomized to receive single doses of one of three formulations of CS1 (FI, FII, and FIII). The CS1 FII formulation showed the most favorable pharmacokinetics and was chosen for multiple dosing.
    [Show full text]
  • Original Article Endogenous Risk Factors for Deep-Vein Thrombosis in Patients with Acute Spinal Cord Injuries
    Spinal Cord (2007) 45, 627–631 & 2007 International Spinal Cord Society All rights reserved 1362-4393/07 $30.00 www.nature.com/sc Original Article Endogenous risk factors for deep-vein thrombosis in patients with acute spinal cord injuries S Aito*,1, R Abbate2, R Marcucci2 and E Cominelli1 1Spinal Unit, Careggi University Hospital, Florence, Italy; 2Medical division, coagulation disease, Careggi University Hospital, Florence, Italy Study design: Case–control study. Aim of the study: Investigate the presence of additional endogenous risk factors of deep-vein thrombosis (DVT). Setting: Regional Spinal Unit of Florence, Italy. Methods: A total of 43 patients with spinal lesion and a history of DVT during the acute stage of their neurological impairment (Group A) were comprehensively evaluated and the blood concentrations of the following risk factors, that are presumably associated with DVT, were determined: antithrombin III (ATIII), protein C (PC), protein S (PS), factor V Leiden, gene 200210A polymorphism, homocysteine (Hcy), inhibitor of plasminogen activator-1 (PAI-1) and lipoprotein A (LpA). The control group (Group B) consisted of 46 patients matched to Group A for sex, age, neurological status and prophylactic treatment during the acute stage, with no history of DVT. Statistical analysis was performed using the Mann–Whitney and Fisher’s exact tests. Results: Of the individuals in GroupA, 14% had no risk factor and 86% had at least one; however, in GroupB 54% had no endogenous risk factors and 46% had at least one. None of the individuals in either grouphad a deficit in their coagulation inhibitors (ATIII, PC and PS), and the LpA level was equivalent in the two groups.
    [Show full text]
  • Therapeutic Fibrinolysis How Efficacy and Safety Can Be Improved
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY VOL.68,NO.19,2016 ª 2016 PUBLISHED BY ELSEVIER ON BEHALF OF THE ISSN 0735-1097/$36.00 AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION http://dx.doi.org/10.1016/j.jacc.2016.07.780 THE PRESENT AND FUTURE REVIEW TOPIC OF THE WEEK Therapeutic Fibrinolysis How Efficacy and Safety Can Be Improved Victor Gurewich, MD ABSTRACT Therapeutic fibrinolysis has been dominated by the experience with tissue-type plasminogen activator (t-PA), which proved little better than streptokinase in acute myocardial infarction. In contrast, endogenous fibrinolysis, using one-thousandth of the t-PA concentration, is regularly lysing fibrin and induced Thrombolysis In Myocardial Infarction flow grade 3 patency in 15% of patients with acute myocardial infarction. This efficacy is due to the effects of t-PA and urokinase plasminogen activator (uPA). They are complementary in fibrinolysis so that in combination, their effect is synergistic. Lysis of intact fibrin is initiated by t-PA, and uPA activates the remaining plasminogens. Knockout of the uPA gene, but not the t-PA gene, inhibited fibrinolysis. In the clinic, a minibolus of t-PA followed by an infusion of uPA was administered to 101 patients with acute myocardial infarction; superior infarct artery patency, no reocclusions, and 1% mortality resulted. Endogenous fibrinolysis may provide a paradigm that is relevant for therapeutic fibrinolysis. (J Am Coll Cardiol 2016;68:2099–106) © 2016 Published by Elsevier on behalf of the American College of Cardiology Foundation. n occlusive intravascular thrombus triggers fibrinolysis, as shown by it frequently not being A the cardiovascular diseases that are the lead- identified specifically in publications on clinical ing causes of death and disability worldwide.
    [Show full text]
  • University of Groningen Association Between Statin Use And
    University of Groningen Association Between Statin Use and Cardiovascular Mortality at the Population Level Bijlsma, Maarten J.; Janssen, Fanny; Bos, Jens; Kamphuisen, Pieter W.; Vansteelandt, Stijn; Hak, Eelko Published in: Epidemiology DOI: 10.1097/EDE.0000000000000370 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2015 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Bijlsma, M. J., Janssen, F., Bos, J., Kamphuisen, P. W., Vansteelandt, S., & Hak, E. (2015). Association Between Statin Use and Cardiovascular Mortality at the Population Level: An Ecologic Study. Epidemiology, 26(6), 802-805. https://doi.org/10.1097/EDE.0000000000000370 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 24-09-2021 BRIEF REPORT Association Between Statin Use and Cardiovascular Mortality at the Population Level An Ecologic Study Maarten J.
    [Show full text]
  • Tenecteplase - Drugbank
    10/30/2018 Tenecteplase - DrugBank Tenecteplase Targets (11) Biointeractions (1) IDENTIFICATION Name Tenecteplase Accession Number DB00031 (BTD00019, BIOD00019) Type Biotech Groups Approved Biologic Classification Protein Based Therapies Thrombolytic agents Description Tissue plasminogen activator (tPA). Tenecteplase is a 527 amino acid glycoprotein developed by introducing the following modifications to the complementary DNA (cDNA) for natural human tPA: a substitution of threonine 103 with asparagine, and a substitution of asparagine 117 with glutamine, both within the kringle 1 domain, and a tetra-alanine substitution at amino acids 296- 299 in the protease domain. Protein structure https://www.drugbank.ca/drugs/DB00031 1/23 10/30/2018 Tenecteplase - DrugBank Protein chemical formula C2561H3919N747O781S40 Protein average weight 58951.2 Da Sequences >DB00031 sequence SYQVICRDEKTQMIYQQHQSWLRPVLRSNRVEYCWCNSGRAQCHSVPVKSCSEPRCFNGG TCQQALYFSDFVCQCPEGFAGKCCEIDTRATCYEDQGISYRGNWSTAESGAECTNWQSSA LAQKPYSGRRPDAIRLGLGNHNYCRNPDRDSKPWCYVFKAGKYSSEFCSTPACSEGNSDC YFGNGSAYRGTHSLTESGASCLPWNSMILIGKVYTAQNPSAQALGLGKHNYCRNPDGDAK PWCHVLKNRRLTWEYCDVPSCSTCGLRQYSQPQFRIKGGLFADIASHPWQAAIFAAAAAS PGERFLCGGILISSCWILSAAHCFQERFPPHHLTVILGRTYRVVPGEEEQKFEVEKYIVH KEFDDDTYDNDIALLQLKSDSSRCAQESSVVRTVCLPPADLQLPDWTECELSGYGKHEAL SPFYSERLKEAHVRLYPSSRCTSQHLLNRTVTDNMLCAGDTRSGGPQANLHDACQGDSGG PLVCLNDGRMTLVGIISWGLGCGQKDVPGVYTKVTNYLDWIRDNMRP Download FASTA Format Synonyms TNK-tPA Prescription Products Search MARKETING MARKETING NAME ↑↓ DOSAGE ↑↓ STRENGTH ↑↓ ROUTE ↑↓ LABELLER ↑↓ START
    [Show full text]
  • Protocols for Anticoagulant and Thrombolytic Therapy Mar 2020
    PROTOCOLS FOR ANTICOAGULANT AND THROMBOLYTIC THERAPY Written by Drs. Evan Shereck and John Wu, Division of Hematology/Oncology/BMT and Alison MacDonald, pharmacist References: • Antithrombotic Therapy. In: The 2009 Formulary of the Hospital for Sick Children, 11th edition. Toronto 2008. rd • Monagle P et al (eds). Andrew’s Pediatric Thromboembolism and Stroke 3 ed. 2006; BC Decker Inc. Hamilton. • Monagle P et al. Antithrombotic therapy in neonates and children: ACCP evidence-based clinical practice guidelines (8th edition). Chest 2008; 133: 887S-968S • Malowwany JI, Monagle P, Wu J et al. Enoxaparin for neonatal thrombosis: A call for a higher dose for neonates. Thrombosis Research 2008; 122: 826-30. Contents: Protocol for heparin therapy………………………….……………………….page 2 Protocol for warfarin therapy………..……………………………..………….page 3 Protocol for enoxaparin therapy………………………….……………..…….page 4 Protocol for systemic thrombolytic therapy………………………………….page 6 Heparin Information Sheet ………………………….…………….………….page 7 Warfarin Information Sheet………………………….………………….…….page 8 Enoxaparin Information Sheet……………………………………………..….page 10 Information sheet for thrombolytic therapy………….……………………….page 12 Protocols for Anticoagulant and Thrombolytic Therapy 1 PROTOCOL FOR HEPARIN THERAPY (for patients > 1 month of age) • Always obtain baseline PT/INR, APTT, CBC and fibrinogen before starting therapy • Once APTT is in the therapeutic range, repeat APTT daily; CBC and platelets are to be checked twice weekly LOADING DOSE: 75 units/kg (maximum: 5000 units/dose) -infuse IV over 10 minutes by syringe pump INITIAL MAINTENANCE DOSE: < 1 year of age: 28 units/kg/hr > 1 year of age: 20 units/kg/hr Adolescents and adults 18 units/kg/hr (maximum 1000 units/hr) Obtain APTT 4 hours after loading dose and adjust dose according to nomogram.
    [Show full text]
  • Bivalirudin During Thrombolysis with Catheter-Directed Tpa in a Heparin Refractory 2 Patient: a Case Report
    1 Bivalirudin during thrombolysis with catheter-directed tPA in a heparin refractory 2 patient: A case report. 3 Katherine Regling DO1, Michael U. Callaghan MD1, Madhvi Rajpurkar MD1 4 1Carmen and Ann Adams Department of Pediatrics, Division of Hematology Oncology, 5 Children’s Hospital of Michigan/Wayne State University, Detroit, MI 6 Corresponding Author: 7 Katherine Regling, DO 8 Carman and Ann Adams Department of Pediatrics, Division of Pediatric 9 Hematology/Oncology 10 Children’s Hospital of Michigan/Wayne State University 11 3901 Beaubien St, Detroit, Michigan 48201, USA. 12 Tel.: 313.745.5515 Fax: 313.745.5237 13 E-mail: [email protected] 14 Short running title: Bivalirudin use during catheter-directed tPA 15 Keywords: Coagulation, thrombolytic, anticoagulation therapy, intensive care, thrombosis 16 Abstract word count: 100 17 Text word count: 747 18 Tables: 1 Abbreviation Full Term VTE Venous thromboembolism UFH Unfractionated heparin HIT Heparin induced thrombocytopenia DTI Direct thrombin inhibitor tPA Tissue plasminogen activator ECHO Echocardiogram aPTT Activated partial thromboplastin time IVC Inferior vena cava PF4 Platelet factor 4 PE Pulmonary embolism 19 20 Abstract 21 Venous thromboembolism (VTE) has increasing significance in hospitalized pediatric 22 patients. Patients that have life or limb threatening thrombotic events require thrombolysis in 23 addition to anticoagulation (AC). In patients who show signs of heparin resistance or heparin 24 induced thrombocytopenia (HIT) it is imperative to identify alternative therapeutic options. We This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
    [Show full text]
  • Inclusions and Exclusions for IV
    Inclusion and Exclusion Criteria for IV Alteplase (tissue plasminogen activator, IV-tPA) Treatment of Ischemic Stroke For consideration of eligibility within 0-4.5 hours of Time Last Known Well INCLUSION CRITERIA – Patients who should receive IV alteplase □ Symptoms suggestive of ischemic stroke that are deemed to be disabling, regardless of improvement (See Reference Table at end of document) □ Able to initiate treatment within 4.5 hours of Time Last Known Well (document clock time) □ Age 18 years or older EXCLUSION CRITERIA – If patient has any of these, do not initiate IV alteplase □ CT scan demonstrating intracranial hemorrhage □ CT exhibits extensive regions (> 1/3 MCA Territory on CT) of clear hypoattenuation □ Unable to maintain BP <185/110 despite aggressive antihypertensive treatment □ Blood glucose <50 mg/dL (however should treat if stroke symptoms persist after glucose normalized) □ Laboratory (results not required before treatment unless patient is on anticoagulant therapy or there is another reason to suspect the patient may have an abnormality): o INR >1.7 o Platelet count <100,000 o PT >15 sec o aPTT >40 sec □ Medications: o **Full dose low molecular weight heparin (LMWH) within last 24 hours (patients on prophylactic dose of LMWH should NOT be excluded) o Received novel oral anticoagulant (NOAC) within last 48 hours (assuming normal renal metabolizing function) o Commonly prescribed NOACs: apixaban (Eliquis), dabigatran (Pradaxa), rivaroxaban (Xarelto), edoxaban (Savaysa) □ Severe head trauma within last 3 months □ Active
    [Show full text]
  • The Role of Fibrinolytic Factors in Ischaemia
    Eye (1991) 5,159-169 The Role of Fibrinolytic Factors in Ischaemia M. PANDOLFI and A. AL-RUSHOOD Saudi Arabia Summary The fibrinolytic system is an enzymatic cascade system whose activation leads to for­ mation of a trypsin-like serine protease, plasmin, which splits insoluble fibrin into soluble degradation products. It is believed that the main function of fibrinolysis is defence against thrombotic occlusion of vessels and dissolution of thrombi once they are formed (thrombolysis). The authors review the recent literature providing evidence that fibrinolysis plays a role in the pathogenesis of vascular occlusions. From earlier studies based on global assay methods it is known that fibrinolysis is depressed in patients with vascular occlusions. Selective assay methods show that almost invariably the fibrinolytic activity of these patients is depressed either following increased levels of fibrinolytic inhibitors (mainly plasminogen activator inhibitor I or PAl-I) and/or decreased· levels of a plasminogen activator (tissue plasminogen activator or t-PA). In a few cases the molecule of plasminogen shows a conformational abnormality making it less susceptible to conversion to plasmin. In the last decade numerous studies have been published showing a connection between a depressed fibrinolysis and venous thrombosis. In patients with coronary artery occlusion fibrinolysis is depressed mainly because of increased levels of PAl-I. Hypertriglyceridaemia seems to aggravate the defective fibrinolysis. There is also evidence of a decreased fibrinolysis in patients with peripheral ischaemic diseases. A depressed fibrinolysis has also been documented in states predisposing to vas­ cular occlusions. Thus Iwo levels of t-PA/increased levels of PAI-I have been found in obesity, diabetes mellitus, postoperative states, SLE, malignancies, and miscellan­ eous diseases oftencomplicated with thrombosis such as Beh�et's syndrome.
    [Show full text]