Preparation of Peptide and Recombinant Tissue Plasminogen Activator Conjugated Poly(Lactic-Co-Glycolic Acid)

Total Page:16

File Type:pdf, Size:1020Kb

Preparation of Peptide and Recombinant Tissue Plasminogen Activator Conjugated Poly(Lactic-Co-Glycolic Acid) International Journal of Molecular Sciences Article Preparation of Peptide and Recombinant Tissue Plasminogen Activator Conjugated Poly(Lactic-Co-Glycolic Acid) (PLGA) Magnetic Nanoparticles for Dual Targeted Thrombolytic Therapy Huai-An Chen 1, Yunn-Hwa Ma 2 , Tzu-Yuan Hsu 2 and Jyh-Ping Chen 1,3,4,5,* 1 Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; [email protected] 2 Department of Physiology and Pharmacology and Healthy Aging Research Center, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; [email protected] (Y.-H.M.); [email protected] (T.-Y.H.) 3 Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan 4 Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan 5 Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan * Correspondence: [email protected]; Tel.: +886-3211-8800 (ext. 5298) Received: 10 March 2020; Accepted: 10 April 2020; Published: 13 April 2020 Abstract: Recombinant tissue plasminogen activator (rtPA) is the only thrombolytic agent that has been approved by the FDA for treatment of ischemic stroke. However, a high dose intravenous infusion is required to maintain effective drug concentration, owing to the short half-life of the thrombolytic drug, whereas a momentous limitation is the risk of bleeding. We envision a dual targeted strategy for rtPA delivery will be feasible to minimize the required dose of rtPA for treatment. For this purpose, rtPA and fibrin-avid peptide were co-immobilized to poly(lactic-co-glycolic acid) (PLGA) magnetic nanoparticles (PMNP) to prepare peptide/rtPA conjugated PMNPs (pPMNP-rtPA). During preparation, PMNP was first surface modified with avidin, which could interact with biotin. This is followed by binding PMNP-avidin with biotin-PEG-rtPA (or biotin-PEG-peptide), which was prepared beforehand by binding rtPA (or peptide) to biotin-PEG-maleimide while using click chemistry between maleimide and the single –SH group in rtPA (or peptide). The physicochemical property characterization indicated the successful preparation of the magnetic nanoparticles with full retention of rtPA fibrinolysis activity, while biological response studies underlined the high biocompatibility of all magnetic nanoparticles from cytotoxicity and hemolysis assays in vitro. The magnetic guidance and fibrin binding effects were also confirmed, which led to a higher thrombolysis rate in vitro using PMNP-rtPA or pPMNP-rtPA when compared to free rtPA after static or dynamic incubation with blood clots. Using pressure-dependent clot lysis model in a flow system, dual targeted pPMNP-rtPA could reduce the clot lysis time for reperfusion by 40% when compared to free rtPA at the same drug dosage. From in vivo targeted thrombolysis in a rat embolic model, pPMNP-rtPA was used at 20% of free rtPA dosage to restore the iliac blood flow in vascular thrombus that was created by injecting a blood clot to the hind limb area. Keywords: magnetic nanoparticles; tissue plasminogen activator; poly(lactic-co-glycolic acid); targeted drug delivery; clot lysis; nanomedicine Int. J. Mol. Sci. 2020, 21, 2690; doi:10.3390/ijms21082690 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, 2690 2 of 23 1. Introduction Within the two ischemic and hemorrhagic categories of stroke, the ischemic stroke accounts for ~87% of all cases, according to the American Stroke Association [1]. A multitude of molecular pathways may be involved in the onset and progression of ischemic stroke, thus an equally diverse arsenal of intervention strategies is needed. To date, the gold standard for intravenous (IV) intervention of ischemic stroke is by administrating recombinant tissue plasminogen activator (rtPA), a thrombolytic drug that dissolves clots to restore blood flow. As a serine protease, rtPA is the major enzyme that is responsible for clot dissolution by catalyzing the conversion of plasminogen to plasmin. It is currently the only thrombolytic agent approved by the U.S. Food and Drug Administration (FDA) for the treatment of ischemic stroke [2]. A major issue in rtPA therapeutic use is the short half-life (4–8 min) in the circulation due to autolysis and the influences of inhibitors, enzymes, and antibodies in blood [3]. The poor affinity of rtPA toward thrombus also reduces its thrombolysis efficacy and might cause ischemia reperfusion injury to the neuron beyond the thrombolysis window [4]. Other limitations of rtPA for clinical use include the short window time for treatment (usually within 3 h) and the risk of hemorrhagic side effects [5]. Consequently, several strategies have emerged to improve the thrombolytic efficacy of rtPA, such as ultrasound-based thrombolysis, targeting thrombolysis, and immobilized thrombolytic drug to improve the safety and effectiveness of thrombolytic therapy [6]. Nanomedicine using nanoparticles for drug delivery is a novel field for the diagnosis and treatment of diseases. Although with similar biologic molecular scale when compared with traditional medicine, the unique properties of nanoparticles provide more strategic advantages and application flexibility over pure molecular therapeutics [7]. Using nanoparticles as rtPA carrier for thrombolytic therapy has also been widely explored. For example, biodegradable polymers conjugated with rtPA can provide the protection form the inhibitor in the circulation to prolong its circulation time, which might also confer the possibility for controlled release in encapsulated drug formulation [8]. In recent years, magnetic nanoparticles (MNP), especially iron oxide (Fe3O4) MNP, are frequently employed as a nano-carrier for drug delivery. Not only to be useful as a magnetic resonance imaging contrast agent, the MNP can also be endowed with other advantages, such as magnetic targeting (physical targeting) and localized heating by magnetic field induction or near-infrared laser irradiation [9]. In addition to pristine nanoparticles, MNP could be also surface modified to enhance their functionality as a drug delivery vehicle. The most common example is surface modification with polyethylene glycol (PEG) to prevent uptake by the mononuclear phagocyte system during circulation, thus prolonging the life time of injected drug [10]. Conjugation with ligand is another commonly used strategy for nanoparticle-based targeted drug delivery. Indeed, ligand-mediated drug delivery could offer a highly specific binding between the ligand molecule immobilized to the nano-carrier and the receptor molecule highly expressed in the diseased area, which could enhance the treatment efficacy by inducing drug accumulation and increasing local drug concentration in the targeted area [11]. Many groups have proposed nanomedicine using targeted rtPA delivery strategy for thrombolysis [12]. We have extensively studied different MNP-based polymeric nano-carrier for magnetically targeted delivery of rtPA, being prepared either by immobilization of rtPA on the particle surface or by encapsulation within the polymeric matrix, and demonstrated the improved thrombolytic efficacy both in vitro and in vivo [13–15]. Recently, we also pioneered the use of thermosensitive magnetic liposomes for targeted delivery and temperature-sensitive release of rtPA [16,17]. Other groups used different ligands for targeting fibrin in a blood clot or different moieties that are associated with the blood clot. For example, the ligands used for rtPA delivery targeting thrombus include peptide targeting FXIII [18], fibrin antibody targeting fibrin [19], Arg-Gly-Asp (RGD) [20], cyclicRGD [21], or other peptides [22] targeting GP IIb/IIIa, and fucoidan targeting p-selectin [23]. Those targeted thrombolysis strategies have demonstrated promising results in improving thrombolytic efficiency with shorter clot lysis time, which makes possible the use of reduced drug dosage to circumvent associated side effects, such as the bleeding risk [24]. Int. J. Mol. Sci. 2020, 21, 2690 3 of 23 Consider a ligand targeting fibrin, which is a trimeric molecule consisting of α-, β-, and γ-chains and a major constituent of fresh or old blood clots. Although the actual quantity of fibrin content in a clot varies from clot to clot, fibrin is the major component in a clot and it exists on the surface of a clot that is slowly dissolving either spontaneously or during therapeutic thrombolytic intervention. It is conceivable that a peptide specific for fibrin could be labelled with radioisotopes and used as an imaging agent to detect vascular thrombosis. This was demonstrated from a previous study using 99mTc labelled pentapeptide Gly-Pro-Arg-Pro-Pro (GPRPP), which has high affinity for the fibrin α-chain, for the imaging of vascular thrombosis in animals [25]. The peptide GGSKGC was later added to the C-terminus of GPRPP in order to impart functionality on the peptide. This peptide (GPRPPGGSKGC) was later shown to have high fibrin-avid affinity and high resistance to proteolysis [26]. Although using a magnetic field to magnetically guide the movement of MNP for rtPA delivery is promising, the optimization of a magnetic field might be the limiting factor, especially for clinical application. On the other hand, ligand targeting for rtPA delivery might pose challenges, such as specificity and possible immunogenicity of the targeting moiety.
Recommended publications
  • Clinical Protocol
    CLINICAL PROTOCOL Subject: Page Protocol # EMERGENT TREATMENT OF PATIENTS WITH BLEEDING AND 1 of 4 NMH CCP 07.0024 CLOTTING EMERGENCIES WHO ARE TAKING NOVEL ORAL ANTICOAGULANTS Version: 1.0 Title: Revision of: Effective Date: EMERGENT TREATMENT OF PATIENTS WITH BLEEDING AND NEW 04/29/2013 CLOTTING EMERGENCIES WHO ARE TAKING NOVEL ORAL Removal Date: ANTICOAGULANT APIXABAN (ELIQUIS) I. PURPOSE: To standardize management of patients with bleeding and clotting emergencies who are taking novel oral anticoagulants (NOACs). This protocol covers emergent reversal and ischemic stroke in patients on apixaban (Eliquis) therapy. II. CLINICAL PROTOCOL: A. The NOAC apixaban (Eliquis) is FDA approved for stroke prevention in patients with atrial fibrillation. This agent presents clinicians with several challenges because there are no specific antidotes, and no readily available quantitative assay to determine the degree of anticoagulation in a patient on this therapy. B. Patients taking this agent are likely to present to the hospital with; 1. life-threatening bleeding (e.g., intracerebral hemorrhage or GI bleeding), or a need for an emergent invasive procedure (surgery, cardiac Catherization) 2. acute ischemic stroke. The administration of tissue plasminogen activator (IV tPA) in the setting of NOAC use is potentially dangerous. C. There are no accepted evidence-based guidelines for managing these situations. This protocol is a consensus of clinicians from stroke, neurology, neurosurgery, hematology, neurocritical care, laboratory medicine, cardiology, and pharmacy. III. REVERSAL PROTOCOL FOR PATIENTS WITH SEVERE/LIFE-THREATENING BLEEDING TAKING APIXABAN (ELIQUIS) A. Inclusion criteria: 1. Patient has taken any dose of apixaban within last 48 hours. a. If time of last dose is unknown, but patient is suspected of having taken apixaban in last 48 hours, and PT is abnormal and 2.
    [Show full text]
  • The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’S Perspective
    International Journal of Molecular Sciences Review The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’s Perspective Hau C. Kwaan 1,* and Paul F. Lindholm 2 1 Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA 2 Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; [email protected] * Correspondence: [email protected] Abstract: The novel coronavirus disease (COVID-19) has many characteristics common to those in two other coronavirus acute respiratory diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). They are all highly contagious and have severe pulmonary complications. Clinically, patients with COVID-19 run a rapidly progressive course of an acute respiratory tract infection with fever, sore throat, cough, headache and fatigue, complicated by severe pneumonia often leading to acute respiratory distress syndrome (ARDS). The infection also involves other organs throughout the body. In all three viral illnesses, the fibrinolytic system plays an active role in each phase of the pathogenesis. During transmission, the renin-aldosterone- angiotensin-system (RAAS) is involved with the spike protein of SARS-CoV-2, attaching to its natural receptor angiotensin-converting enzyme 2 (ACE 2) in host cells. Both tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1) are closely linked to the RAAS. In lesions in the lung, kidney and other organs, the two plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA), along with their inhibitor, plasminogen activator 1 (PAI-1), are involved. The altered fibrinolytic balance enables the development of a hypercoagulable Citation: Kwaan, H.C.; Lindholm, state.
    [Show full text]
  • ACTIVASE (Alteplase) for Injection, for Intravenous Use Initial U.S
    Application 103172 This document contains: Label for ACTIVASE [Supplement 5203, Action Date 02/13/2015] Also available: Label for CATHFLO ACTIVASE [Supplement 5071, Action Date 01/04/2005] HIGHLIGHTS OF PRESCRIBING INFORMATION Acute Ischemic Stroke These highlights do not include all the information needed to use • Current intracranial hemorrhage. (4.1) ACTIVASE safely and effectively. See full prescribing information for • Subarachnoid hemorrhage. (4.1) ACTIVASE. Acute Myocardial Infarction or Pulmonary Embolism • History of recent stroke. (4.2) ACTIVASE (alteplase) for injection, for intravenous use Initial U.S. Approval: 1987 -----------------------WARNINGS AND PRECAUTIONS-----------------------­ • Increases the risk of bleeding. Avoid intramuscular injections. Monitor for ---------------------------INDICATIONS AND USAGE--------------------------­ bleeding. If serious bleeding occurs, discontinue Activase. (5.1) Activase is a tissue plasminogen activator (tPA) indicated for the treatment of • Monitor patients during and for several hours after infusion for orolingual • Acute Ischemic Stroke (AIS). (1.1) angioedema. If angioedema develops, discontinue Activase. (5.2) • Acute Myocardial Infarction (AMI) to reduce mortality and incidence of • Cholesterol embolism has been reported rarely in patients treated with heart failure. (1.2) thrombolytic agents. (5.3) Limitation of Use in AMI: the risk of stroke may be greater than the benefit • Consider the risk of reembolization from the lysis of underlying deep in patients at low risk of death
    [Show full text]
  • A First in Class Treatment for Thrombosis Prevention. a Phase I
    Journal of Cardiology and Vascular Medicine Research Open Access A First in Class Treatment for Thrombosis Prevention. A Phase I study with CS1, a New Controlled Release Formulation of Sodium Valproate 1,2* 2 3 2 1,2 Niklas Bergh , Jan-Peter Idström , Henri Hansson , Jonas Faijerson-Säljö , Björn Dahlöf 1Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden 2 Cereno Scientific AB, Gothenburg, Sweden 3 Galenica AB, Malmö, Sweden *Corresponding author: Niklas Bergh, The Wallenberg Laboratory for Cardiovascular Research Sahlgrenska University Hospi- tal Bruna Stråket 16, 413 45 Göteborg, Tel: +46 31 3421000; E-Mail: [email protected] Received Date: June 11, 2019 Accepted Date: July 25, 2019 Published Date: July 27, 2019 Citation: Niklas Bergh (2019) A First in Class Treatment for Thrombosis Prevention? A Phase I Study With Cs1, a New Con- trolled Release Formulation of Sodium Valproate. J Cardio Vasc Med 5: 1-12. Abstract Several lines of evidence indicate that improving fibrinolysis by valproic acid may be a fruitful strategy for throm- bosis prevention. This study investigated the safety, pharmacokinetics, and effect on biomarkers for thrombosis of CS1, a new advanced controlled release formulation of sodium valproate designed to produce optimum valproic acid concen- trations during the early morning hours, when concentrations of plasminogen activator inhibitor (PAI)-1 and the risk of thrombotic events is highest. Healthy volunteers (n=17) aged 40-65 years were randomized to receive single doses of one of three formulations of CS1 (FI, FII, and FIII). The CS1 FII formulation showed the most favorable pharmacokinetics and was chosen for multiple dosing.
    [Show full text]
  • Original Article Endogenous Risk Factors for Deep-Vein Thrombosis in Patients with Acute Spinal Cord Injuries
    Spinal Cord (2007) 45, 627–631 & 2007 International Spinal Cord Society All rights reserved 1362-4393/07 $30.00 www.nature.com/sc Original Article Endogenous risk factors for deep-vein thrombosis in patients with acute spinal cord injuries S Aito*,1, R Abbate2, R Marcucci2 and E Cominelli1 1Spinal Unit, Careggi University Hospital, Florence, Italy; 2Medical division, coagulation disease, Careggi University Hospital, Florence, Italy Study design: Case–control study. Aim of the study: Investigate the presence of additional endogenous risk factors of deep-vein thrombosis (DVT). Setting: Regional Spinal Unit of Florence, Italy. Methods: A total of 43 patients with spinal lesion and a history of DVT during the acute stage of their neurological impairment (Group A) were comprehensively evaluated and the blood concentrations of the following risk factors, that are presumably associated with DVT, were determined: antithrombin III (ATIII), protein C (PC), protein S (PS), factor V Leiden, gene 200210A polymorphism, homocysteine (Hcy), inhibitor of plasminogen activator-1 (PAI-1) and lipoprotein A (LpA). The control group (Group B) consisted of 46 patients matched to Group A for sex, age, neurological status and prophylactic treatment during the acute stage, with no history of DVT. Statistical analysis was performed using the Mann–Whitney and Fisher’s exact tests. Results: Of the individuals in GroupA, 14% had no risk factor and 86% had at least one; however, in GroupB 54% had no endogenous risk factors and 46% had at least one. None of the individuals in either grouphad a deficit in their coagulation inhibitors (ATIII, PC and PS), and the LpA level was equivalent in the two groups.
    [Show full text]
  • Therapeutic Fibrinolysis How Efficacy and Safety Can Be Improved
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY VOL.68,NO.19,2016 ª 2016 PUBLISHED BY ELSEVIER ON BEHALF OF THE ISSN 0735-1097/$36.00 AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION http://dx.doi.org/10.1016/j.jacc.2016.07.780 THE PRESENT AND FUTURE REVIEW TOPIC OF THE WEEK Therapeutic Fibrinolysis How Efficacy and Safety Can Be Improved Victor Gurewich, MD ABSTRACT Therapeutic fibrinolysis has been dominated by the experience with tissue-type plasminogen activator (t-PA), which proved little better than streptokinase in acute myocardial infarction. In contrast, endogenous fibrinolysis, using one-thousandth of the t-PA concentration, is regularly lysing fibrin and induced Thrombolysis In Myocardial Infarction flow grade 3 patency in 15% of patients with acute myocardial infarction. This efficacy is due to the effects of t-PA and urokinase plasminogen activator (uPA). They are complementary in fibrinolysis so that in combination, their effect is synergistic. Lysis of intact fibrin is initiated by t-PA, and uPA activates the remaining plasminogens. Knockout of the uPA gene, but not the t-PA gene, inhibited fibrinolysis. In the clinic, a minibolus of t-PA followed by an infusion of uPA was administered to 101 patients with acute myocardial infarction; superior infarct artery patency, no reocclusions, and 1% mortality resulted. Endogenous fibrinolysis may provide a paradigm that is relevant for therapeutic fibrinolysis. (J Am Coll Cardiol 2016;68:2099–106) © 2016 Published by Elsevier on behalf of the American College of Cardiology Foundation. n occlusive intravascular thrombus triggers fibrinolysis, as shown by it frequently not being A the cardiovascular diseases that are the lead- identified specifically in publications on clinical ing causes of death and disability worldwide.
    [Show full text]
  • University of Groningen Association Between Statin Use And
    University of Groningen Association Between Statin Use and Cardiovascular Mortality at the Population Level Bijlsma, Maarten J.; Janssen, Fanny; Bos, Jens; Kamphuisen, Pieter W.; Vansteelandt, Stijn; Hak, Eelko Published in: Epidemiology DOI: 10.1097/EDE.0000000000000370 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2015 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Bijlsma, M. J., Janssen, F., Bos, J., Kamphuisen, P. W., Vansteelandt, S., & Hak, E. (2015). Association Between Statin Use and Cardiovascular Mortality at the Population Level: An Ecologic Study. Epidemiology, 26(6), 802-805. https://doi.org/10.1097/EDE.0000000000000370 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 24-09-2021 BRIEF REPORT Association Between Statin Use and Cardiovascular Mortality at the Population Level An Ecologic Study Maarten J.
    [Show full text]
  • Tenecteplase - Drugbank
    10/30/2018 Tenecteplase - DrugBank Tenecteplase Targets (11) Biointeractions (1) IDENTIFICATION Name Tenecteplase Accession Number DB00031 (BTD00019, BIOD00019) Type Biotech Groups Approved Biologic Classification Protein Based Therapies Thrombolytic agents Description Tissue plasminogen activator (tPA). Tenecteplase is a 527 amino acid glycoprotein developed by introducing the following modifications to the complementary DNA (cDNA) for natural human tPA: a substitution of threonine 103 with asparagine, and a substitution of asparagine 117 with glutamine, both within the kringle 1 domain, and a tetra-alanine substitution at amino acids 296- 299 in the protease domain. Protein structure https://www.drugbank.ca/drugs/DB00031 1/23 10/30/2018 Tenecteplase - DrugBank Protein chemical formula C2561H3919N747O781S40 Protein average weight 58951.2 Da Sequences >DB00031 sequence SYQVICRDEKTQMIYQQHQSWLRPVLRSNRVEYCWCNSGRAQCHSVPVKSCSEPRCFNGG TCQQALYFSDFVCQCPEGFAGKCCEIDTRATCYEDQGISYRGNWSTAESGAECTNWQSSA LAQKPYSGRRPDAIRLGLGNHNYCRNPDRDSKPWCYVFKAGKYSSEFCSTPACSEGNSDC YFGNGSAYRGTHSLTESGASCLPWNSMILIGKVYTAQNPSAQALGLGKHNYCRNPDGDAK PWCHVLKNRRLTWEYCDVPSCSTCGLRQYSQPQFRIKGGLFADIASHPWQAAIFAAAAAS PGERFLCGGILISSCWILSAAHCFQERFPPHHLTVILGRTYRVVPGEEEQKFEVEKYIVH KEFDDDTYDNDIALLQLKSDSSRCAQESSVVRTVCLPPADLQLPDWTECELSGYGKHEAL SPFYSERLKEAHVRLYPSSRCTSQHLLNRTVTDNMLCAGDTRSGGPQANLHDACQGDSGG PLVCLNDGRMTLVGIISWGLGCGQKDVPGVYTKVTNYLDWIRDNMRP Download FASTA Format Synonyms TNK-tPA Prescription Products Search MARKETING MARKETING NAME ↑↓ DOSAGE ↑↓ STRENGTH ↑↓ ROUTE ↑↓ LABELLER ↑↓ START
    [Show full text]
  • Protocols for Anticoagulant and Thrombolytic Therapy Mar 2020
    PROTOCOLS FOR ANTICOAGULANT AND THROMBOLYTIC THERAPY Written by Drs. Evan Shereck and John Wu, Division of Hematology/Oncology/BMT and Alison MacDonald, pharmacist References: • Antithrombotic Therapy. In: The 2009 Formulary of the Hospital for Sick Children, 11th edition. Toronto 2008. rd • Monagle P et al (eds). Andrew’s Pediatric Thromboembolism and Stroke 3 ed. 2006; BC Decker Inc. Hamilton. • Monagle P et al. Antithrombotic therapy in neonates and children: ACCP evidence-based clinical practice guidelines (8th edition). Chest 2008; 133: 887S-968S • Malowwany JI, Monagle P, Wu J et al. Enoxaparin for neonatal thrombosis: A call for a higher dose for neonates. Thrombosis Research 2008; 122: 826-30. Contents: Protocol for heparin therapy………………………….……………………….page 2 Protocol for warfarin therapy………..……………………………..………….page 3 Protocol for enoxaparin therapy………………………….……………..…….page 4 Protocol for systemic thrombolytic therapy………………………………….page 6 Heparin Information Sheet ………………………….…………….………….page 7 Warfarin Information Sheet………………………….………………….…….page 8 Enoxaparin Information Sheet……………………………………………..….page 10 Information sheet for thrombolytic therapy………….……………………….page 12 Protocols for Anticoagulant and Thrombolytic Therapy 1 PROTOCOL FOR HEPARIN THERAPY (for patients > 1 month of age) • Always obtain baseline PT/INR, APTT, CBC and fibrinogen before starting therapy • Once APTT is in the therapeutic range, repeat APTT daily; CBC and platelets are to be checked twice weekly LOADING DOSE: 75 units/kg (maximum: 5000 units/dose) -infuse IV over 10 minutes by syringe pump INITIAL MAINTENANCE DOSE: < 1 year of age: 28 units/kg/hr > 1 year of age: 20 units/kg/hr Adolescents and adults 18 units/kg/hr (maximum 1000 units/hr) Obtain APTT 4 hours after loading dose and adjust dose according to nomogram.
    [Show full text]
  • Bivalirudin During Thrombolysis with Catheter-Directed Tpa in a Heparin Refractory 2 Patient: a Case Report
    1 Bivalirudin during thrombolysis with catheter-directed tPA in a heparin refractory 2 patient: A case report. 3 Katherine Regling DO1, Michael U. Callaghan MD1, Madhvi Rajpurkar MD1 4 1Carmen and Ann Adams Department of Pediatrics, Division of Hematology Oncology, 5 Children’s Hospital of Michigan/Wayne State University, Detroit, MI 6 Corresponding Author: 7 Katherine Regling, DO 8 Carman and Ann Adams Department of Pediatrics, Division of Pediatric 9 Hematology/Oncology 10 Children’s Hospital of Michigan/Wayne State University 11 3901 Beaubien St, Detroit, Michigan 48201, USA. 12 Tel.: 313.745.5515 Fax: 313.745.5237 13 E-mail: [email protected] 14 Short running title: Bivalirudin use during catheter-directed tPA 15 Keywords: Coagulation, thrombolytic, anticoagulation therapy, intensive care, thrombosis 16 Abstract word count: 100 17 Text word count: 747 18 Tables: 1 Abbreviation Full Term VTE Venous thromboembolism UFH Unfractionated heparin HIT Heparin induced thrombocytopenia DTI Direct thrombin inhibitor tPA Tissue plasminogen activator ECHO Echocardiogram aPTT Activated partial thromboplastin time IVC Inferior vena cava PF4 Platelet factor 4 PE Pulmonary embolism 19 20 Abstract 21 Venous thromboembolism (VTE) has increasing significance in hospitalized pediatric 22 patients. Patients that have life or limb threatening thrombotic events require thrombolysis in 23 addition to anticoagulation (AC). In patients who show signs of heparin resistance or heparin 24 induced thrombocytopenia (HIT) it is imperative to identify alternative therapeutic options. We This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
    [Show full text]
  • Inclusions and Exclusions for IV
    Inclusion and Exclusion Criteria for IV Alteplase (tissue plasminogen activator, IV-tPA) Treatment of Ischemic Stroke For consideration of eligibility within 0-4.5 hours of Time Last Known Well INCLUSION CRITERIA – Patients who should receive IV alteplase □ Symptoms suggestive of ischemic stroke that are deemed to be disabling, regardless of improvement (See Reference Table at end of document) □ Able to initiate treatment within 4.5 hours of Time Last Known Well (document clock time) □ Age 18 years or older EXCLUSION CRITERIA – If patient has any of these, do not initiate IV alteplase □ CT scan demonstrating intracranial hemorrhage □ CT exhibits extensive regions (> 1/3 MCA Territory on CT) of clear hypoattenuation □ Unable to maintain BP <185/110 despite aggressive antihypertensive treatment □ Blood glucose <50 mg/dL (however should treat if stroke symptoms persist after glucose normalized) □ Laboratory (results not required before treatment unless patient is on anticoagulant therapy or there is another reason to suspect the patient may have an abnormality): o INR >1.7 o Platelet count <100,000 o PT >15 sec o aPTT >40 sec □ Medications: o **Full dose low molecular weight heparin (LMWH) within last 24 hours (patients on prophylactic dose of LMWH should NOT be excluded) o Received novel oral anticoagulant (NOAC) within last 48 hours (assuming normal renal metabolizing function) o Commonly prescribed NOACs: apixaban (Eliquis), dabigatran (Pradaxa), rivaroxaban (Xarelto), edoxaban (Savaysa) □ Severe head trauma within last 3 months □ Active
    [Show full text]
  • The Role of Fibrinolytic Factors in Ischaemia
    Eye (1991) 5,159-169 The Role of Fibrinolytic Factors in Ischaemia M. PANDOLFI and A. AL-RUSHOOD Saudi Arabia Summary The fibrinolytic system is an enzymatic cascade system whose activation leads to for­ mation of a trypsin-like serine protease, plasmin, which splits insoluble fibrin into soluble degradation products. It is believed that the main function of fibrinolysis is defence against thrombotic occlusion of vessels and dissolution of thrombi once they are formed (thrombolysis). The authors review the recent literature providing evidence that fibrinolysis plays a role in the pathogenesis of vascular occlusions. From earlier studies based on global assay methods it is known that fibrinolysis is depressed in patients with vascular occlusions. Selective assay methods show that almost invariably the fibrinolytic activity of these patients is depressed either following increased levels of fibrinolytic inhibitors (mainly plasminogen activator inhibitor I or PAl-I) and/or decreased· levels of a plasminogen activator (tissue plasminogen activator or t-PA). In a few cases the molecule of plasminogen shows a conformational abnormality making it less susceptible to conversion to plasmin. In the last decade numerous studies have been published showing a connection between a depressed fibrinolysis and venous thrombosis. In patients with coronary artery occlusion fibrinolysis is depressed mainly because of increased levels of PAl-I. Hypertriglyceridaemia seems to aggravate the defective fibrinolysis. There is also evidence of a decreased fibrinolysis in patients with peripheral ischaemic diseases. A depressed fibrinolysis has also been documented in states predisposing to vas­ cular occlusions. Thus Iwo levels of t-PA/increased levels of PAI-I have been found in obesity, diabetes mellitus, postoperative states, SLE, malignancies, and miscellan­ eous diseases oftencomplicated with thrombosis such as Beh�et's syndrome.
    [Show full text]