Bacterium That Produces Antifouling Agents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Hydrocarbon Biodegradation Potential of Faroe-Shetland Channel Bacterioplankton
THE HYDROCARBON BIODEGRADATION POTENTIAL OF FAROE-SHETLAND CHANNEL BACTERIOPLANKTON Angelina G. Angelova Submitted for the degree of Doctor of Philosophy Heriot Watt University School of Engineering and Physical Sciences July 2017 The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information. ABSTRACT The Faroe-Shetland Channel (FSC) is an important gateway for dynamic water exchange between the North Atlantic Ocean and the Nordic Seas. In recent years it has also become a frontier for deep-water oil exploration and petroleum production, which has raised the risk of oil pollution to local ecosystems and adjacent waterways. In order to better understand the factors that influence the biodegradation of spilled petroleum, a prerequisite has been recognized to elucidate the complex dynamics of microbial communities and their relationships to their ecosystem. This research project was a pioneering attempt to investigate the FSC’s microbial community composition, its response and potential to degrade crude oil hydrocarbons under the prevailing regional temperature conditions. Three strategies were used to investigate this. Firstly, high throughput sequencing and 16S rRNA gene-based community profiling techniques were utilized to explore the spatiotemporal patterns of the FSC bacterioplankton. Monitoring proceeded over a period of 2 years and interrogated the multiple water masses flowing through the region producing 2 contrasting water cores: Atlantic (surface) and Nordic (subsurface). Results revealed microbial profiles more distinguishable based on water cores (rather than individual water masses) and seasonal variability patterns within each core. -
Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associations
fmicb-09-02879 December 1, 2018 Time: 14:0 # 1 ORIGINAL RESEARCH published: 04 December 2018 doi: 10.3389/fmicb.2018.02879 Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associations Klervi Crenn, Delphine Duffieux and Christian Jeanthon* CNRS, Sorbonne Université, Station Biologique de Roscoff, Adaptation et Diversité en Milieu Marin, Roscoff, France Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. The cosmopolitan diatoms Thalassiosira and Chaetoceros often dominate phytoplankton communities in marine systems. Past studies of diatom-bacterial associations have employed community- level methods and culture-based or natural diatom populations. Although bacterial assemblages attached to individual diatoms represents tight associations little is known on their makeup or interactions. Here, we examined the epibiotic bacteria of 436 Thalassiosira and 329 Chaetoceros single cells isolated from natural samples and Edited by: collection cultures, regarded here as short- and long-term associations, respectively. Matthias Wietz, Epibiotic microbiota of single diatom hosts was analyzed by cultivation and by cloning- Alfred Wegener Institut, Germany sequencing of 16S rRNA genes obtained from whole-genome amplification products. Reviewed by: The prevalence of epibiotic bacteria was higher in cultures and dependent of the host Lydia Jeanne Baker, Cornell University, United States species. Culture approaches demonstrated that both diatoms carry distinct bacterial Bryndan Paige Durham, communities in short- and long-term associations. Bacterial epibonts, commonly University of Washington, United States associated with phytoplankton, were repeatedly isolated from cells of diatom collection *Correspondence: cultures but were not recovered from environmental cells. -
Supplementary Figure S2. Taxonomic Composition in Individual Microcosm Treatments Across a 14-Week Experiment
100. 0 f Viruses|g Viruses|s Sulfitobacter phage pCB2047 C f Viruses|g Viruses|s Sulfitobacter phage pCB2047 A f Sinobacteraceae|g Sinobacteraceae f Vibrionaceae|g Vibrio|s Vibrio splendidus f Vibrionaceae|g Vibrio|s Vibrio kanaloae f Piscirickettsiaceae|g Methylophaga|s Methylophaga 90.0 f Piscirickettsiaceae|g Cycloclasticus|s Cycloclasticus pugetii f Pseudomonadaceae|g Pseudomonas|s Pseudomonas stutzeri f Pseudomonadaceae|g Pseudomonas|s Pseudomonas sp S9 f Pseudomonadaceae|g Pseudomonas|s Pseudomonas pelagia f Pseudomonadaceae|g Pseudomonas|s Pseudomonas f Pseudomonadaceae|g Cellvibrio|s Cellvibrio 80.0 f Moraxellaceae|g Psychrobacter|s Psychrobacter cryohalolentis f Moraxellaceae|g Acinetobacter|s Acinetobacter f Oceanospirillaceae|g Marinomonas|s Marinomonas sp MWYL1 f Oceanospirillaceae|g Marinomonas|s Marinomonas f Halomonadaceae|g Halomonas|s Halomonas titanicae 70.0 f Halomonadaceae|g Halomonas|s Halomonas f Alcanivoracaceae|g Alcanivorax|s Alcanivorax f Gammaproteobacteria|g Gammaproteobacteria|s gammaproteobacterium HIMB55 f Enterobacteriaceae|g Buchnera|s Buchnera aphidicola f Shewanellaceae|g Shewanella|s Shewanella frigidimarina f Shewanellaceae|g Shewanella|s Shewanella baltica 60.0 f Shewanellaceae|g Shewanella|s Shewanella f Pseudoalteromonadaceae|g Pseudoalteromonas|s Pseudoalteromonas undina f Pseudoalteromonadaceae|g Pseudoalteromonas|s Pseudoalteromonas haloplanktis f Pseudoalteromonadaceae|g Pseudoalteromonas|s Pseudoalteromonas arctica f Pseudoalteromonadaceae|g Pseudoalteromonas|s Pseudoalteromonas agarivorans -
Centro De Investigación Científica Y De Educación Superior De Ensenada, Baja California
Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California Maestría en Ciencias en Acuicultura Calidad bacteriológica del agua en sistemas de mantenimiento de reproductores de Seriola lalandi Tesis para cubrir parcialmente los requisitos necesarios para obtener el grado de Maestro en Ciencias Presenta: Miriam Esther Garcia Mendoza Ensenada, Baja California, México 2017 Tesis defendida por Miriam Esther Garcia Mendoza y aprobada por el siguiente Comité Dr. Jorge Abelardo Cáceres Martínez Director de tesis Dra. Rebeca Vásquez Yeomans Dra. Beatriz Cordero Esquivel Dr. Pierrick Gerard Jean Fournier Dr. Jorge Abelardo Cáceres Martínez Coordinador del Posgrado en Acuicultura Dra. Rufina Hernández Martínez Directora de Estudios de Posgrado Miriam Esther Garcia Mendoza © 2017 Queda prohibida la reproducción parcial o total de esta obra sin el permiso formal y explícito del autor y director de la tesis. ii Resumen de la tesis que presenta Miriam Esther Garcia Mendoza como requisito parcial para la obtención del grado de Maestro en Ciencias en Acuicultura. Calidad bacteriológica del agua en sistemas de mantenimiento de reproductores de Seriola lalandi Resumen aprobado por: __ ____________________________ Dr. Jorge Abelardo Cáceres Martínez Director de tesis Con la expansión e intensificación de la piscicultura, los brotes de enfermedades infecciosas se han incrementado y reconocido como una limitante para su desarrollo. Entre éstas, se encuentran las causadas por bacterias, que ocasionan uno de los efectos más negativos. La industria japonesa de cultivo de Seriola spp. pierde anualmente $200 millones de USD debido a estas enfermedades. Una medida recomendada para evitar su ocurrencia, es conocer la carga y diversidad de comunidades bacterianas a las que están expuestas los peces. -
Arthrocnemum Macrostachyum Y Su Microbioma Como Herramienta Para La Recuperación De Suelos Degradados
Arthrocnemum macrostachyum y su microbioma como herramienta para la recuperación de suelos degradados TESIS DOCTORAL Salvadora Navarro de la Torre Sevilla, 2017 DEPARTAMENTO DE MICROBIOLOGÍA Y PARASITOLOGÍA FACULTAD DE FARMACIA UNIVERSIDAD DE SEVILLA ARTHROCNEMUM MACROSTACHYUM Y SU MICROBIOMA COMO HERRAMIENTA PARA LA RECUPERACIÓN DE SUELOS DEGRADADOS SALVADORA NAVARRO DE LA TORRE SEVILLA, 2017 La Tesis Doctoral titulada “Arthrocnemum macrostachyum y su microbioma como herramienta para la recuperación de suelos degradados”, realizada por la Licenciada en Biología Dña. Salvadora Navarro de la Torre para optar al grado de Doctor en Biología Molecular y Biomedicina con Mención Internacional por la Universidad de Sevilla, se presenta con la aprobación de los Directores y el Departamento de Microbiología y Parasitología de la Universidad de Sevilla. Los directores, Fdo. Dr. Ignacio D. Rodríguez Llorente Fdo. Dra. Eloísa Pajuelo Domínguez El Director del Departamento, La doctoranda, Fdo. Dr. Miguel Ángel Caviedes Formento Fdo. Salvadora Navarro de la Torre A todas las personas que han formado parte de esta etapa de aprendizaje “Sin prisa, pero sin descanso” Johann W. Goethe “Una sucesión de pequeñas voluntades consigue un gran resultado” Charles Baudelaire AGRADECIMIENTOS Todos los que me conocéis sabréis como soy, y por ello sabréis que esta parte de la Tesis puede que haya sido la más difícil de escribir, por lo que intentaré que no quede muy sosa. Siempre me gustó el Conocimiento del Medio en el colegio, y conforme esta asignatura fue avanzando durante el instituto, me fue gustando cada vez más, sobre todo “esa parte” de las bacterias y las células (desde pequeña iba para bióloga de bata). -
Changes in Bacterial Community Metabolism and Composition During
Changes in bacterial community metabolism and composition during the degradation of dissolved organic matter from the jellyfish Aurelia aurita in a Mediterranean coastal lagoon Marine Blanchet 1,2 , Olivier Pringault 3, Marc Bouvy 3, Philippe Catala 1,2 , Louise Oriol 1,2 , Jocelyne Caparros 1,2 , Eva Ortega-Retuerta 1,2,4 , Laurent Intertaglia 5,6 , Nyree West 5,6 , Martin Agis 3, Patrice Got 3, Fabien Joux 1,2* 1Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, Laboratoire dOcéanographie Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France 2 CNRS, UMR 7621, Laboratoire dOcéanographie Microbienne, Observatoire Océanologique, F- 66650 Banyuls/mer, France 3UMR5119 Ecologie des systèmes marins côtiers (ECOSYM), CNRS, IRD, UM2, UM1; Université Montpellier 2. Case 093, F-34095 Montpellier Cedex 5, France 4Institut de Ciències del Mar, CSIC, Barcelona, Spain 5Sorbonne Universités UPMC Univ Paris 06, UMS 2348, Observatoire Océanologique, F-66650 Banyuls/Mer, France 6CNRS, UMS 2348, Observatoire Océanologique, F-66650 Banyuls/Mer, France *corresponding author: Email: [email protected], Phone: 33(0)4 6888 7342, Fax: 33(0)4 6888 7395 Abstract Spatial increases and temporal shifts in outbreaks of gelatinous plankton have been observed over the past several decades in many estuarine and coastal ecosystems. The effects of these blooms on marine ecosystem functioning, and particularly on the dynamics of the heterotrophic bacteria are still unclear. The response of the bacterial community from a Mediterranean coastal lagoon to th e addition of dissolved organic matter (DOM) from the jellyfish Aurelia aurita, corresponding to an enrichment of dissolved organic carbon (DOC) by 1.4, was assessed during 22 days in microcosms (8 liters). -
Genomic and Phenotypic Analyses of Chitin Degradation and Secondary Metabolite Production in Pseudoalteromonas
Downloaded from orbit.dtu.dk on: Oct 06, 2021 Genomic and phenotypic analyses of chitin degradation and secondary metabolite production in Pseudoalteromonas Paulsen, Sara Skøtt Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Paulsen, S. S. (2020). Genomic and phenotypic analyses of chitin degradation and secondary metabolite production in Pseudoalteromonas. DTU Bioengineering. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Genomic and phenotypic analyses of chitin degradation and secondary metabolite production in Pseudoalteromonas Sara Skøtt Paulsen PhD Thesis March 2020 Preface This present PhD study serves as a partial fulfillment of the requirements to obtain a PhD degree from the Technical University of Denmark (DTU). The work has has been carried out at the Department of Biotechnology and Biomedicine (DTU Bioengineering) from October 2016 to March 2020 under the supervision of Professor Lone Gram and Senior Researcher Eva Sonnenschein. -
The Bacterial Basis of Biofouling: a Case Study
Indian Journal of Geo-Marine Sciences Vol. 43(11), November 2014, pp. 2075-2084 The Bacterial Basis of Biofouling: a Case Study Michael G. Hadfield*, Audrey Asahina, Shaun Hennings and Brian Nedved Kewalo Marine Laboratory, University of Hawaii at Manoa 41 Ahui St., Honolulu, Hawaii, 96813 USA *[E-mail: [email protected]] Received 07 March 2014; revised 14 September 2014 For billions of years bacteria have profusely colonized all parts of the oceans and formed biofilms on the benthos. Thus, from their onset, evolving marine animals adapted to the microbial world throughout their life cycles. One of the major adaptations is the use of bacterial products as signals for recruitment by larvae of many species in the seven invertebrate phyla that make up most of the biofouling community. We describe here investigations on the recruitment biology of one such species, the circum-tropical serpulid polychaete Hydroides elegans. Insights gained from in-depth studies on adults and larvae of H. elegans include: apparently constant transport of these biofouling worms on the hulls of ships maintains a globally panmictic population; larvae complete metamorphosis with little or no de novo gene transcription or translation; larvae of this tube-worm settle selectively in response to specific biofilm-dwelling bacterial species; and biofilms provide not only a cue for settlement sites, but also increase the adhesion strength of the settling worms’ tubes on a substratum. Although biofilm-bacterial species are critical to larval-settlement induction, not all biofilm elements are inductive. Because studies on chemoreception systems in the larvae failed to find evidence for the presence of common chemoreceptors, we focused on the bacterial cues themselves. -
A Bacterial Quorum-Sensing Precursor Induces Mortality in the Marine Coccolithophore, Emiliania Huxleyi
Haverford College Haverford Scholarship Faculty Publications Biology 2016 A Bacterial Quorum-Sensing Precursor Induces Mortality in the Marine Coccolithophore, Emiliania huxleyi E. L. Harvey R. W. Deering D. C. Rowley Kristen E. Whalen Haverford College, [email protected] Follow this and additional works at: https://scholarship.haverford.edu/biology_facpubs Repository Citation Harvey et al. "A Bacterial Quorum-Sensing Precursor Induces Mortality in the Marine Coccolithophore, Emiliania huxleyi."Frontiers in Microbiology, 7(59):1-12, (2016). This Journal Article is brought to you for free and open access by the Biology at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact [email protected]. ORIGINAL RESEARCH published: 03 February 2016 doi: 10.3389/fmicb.2016.00059 A Bacterial Quorum-Sensing Precursor Induces Mortality in the Marine Coccolithophore, Emiliania huxleyi Elizabeth L. Harvey1*†, Robert W. Deering2, David C. Rowley2,AbrahimElGamal3, Michelle Schorn3, Bradley S. Moore3, Matthew D. Johnson4, Tracy J. Mincer5 and Kristen E. Whalen5*† 1 Department of Marine Sciences, Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, USA, 2 Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA, 3 Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA, 4 Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA, 5 Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA Interactions between phytoplankton and bacteria play a central role in mediating Edited by: biogeochemical cycling and food web structure in the ocean. However, deciphering Xavier Mayali, the chemical drivers of these interspecies interactions remains challenging. -
Distribution of Abundant Prokaryotic Organisms in the Water Column of the Central Baltic Sea with an Oxic–Anoxic Interface
AQUATIC MICROBIAL ECOLOGY Vol. 46: 177–190, 2007 Published February 2 Aquat Microb Ecol Distribution of abundant prokaryotic organisms in the water column of the central Baltic Sea with an oxic–anoxic interface Matthias Labrenz*, Günter Jost, Klaus Jürgens IOW (Institut für Ostseeforschung Warnemünde)-Baltic Sea Research Institute Warnemünde, Department of Biological Oceanography, Seestrasse 1, 18119 Rostock-Warnemünde, Germany ABSTRACT: Anoxic marine deeps are characterized by their chemically stratified water columns. This has implications for the vertical distribution of microbial assemblages, but knowledge of this distribution is still poor. To further evaluate these systems we investigated the Fårö Deep (central Baltic Sea), which was anoxic in its bottom waters in August 2003. To resolve the vertical distribution of the dominating prokaryotic microorganisms along the physico-chemical gradients, we used 16S rRNA or 16S rRNA gene-based single strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE). Altogether, 43 microorganisms were differentiated by sequenc- ing of gel bands; 55% of these belonged to Phylum Proteobacteria, 24% to Phylum Bacteroidetes, 7% to Class Actinobacteria, 5% to Phylum Cyanobacteria, 2% were distantly related to the genus Nitro- spina and 5% were identified as Phylum Crenarchaeota. Only 10% of the investigated assemblages were identified by both fingerprinting methods used. However, both methods revealed dominant 16S rRNA bands, the sequences of which were related to the following organisms: a phototrophic Synechococcus in the photic zone, an aerobic and heterotrophic Pseudoalteromonas in the oxic to suboxic zone, and an anaerobic and autotrophic nitrate-reducing Epsilonproteobacterium in the anoxic to sulphidic zone. The latter 2 bacterial taxa have also been reported from other anoxic basins and seem to be characteristic of marine pelagic redoxclines, indicating that these environments could harbor similar microbial communities. -
The Diversity and Biotechnological Application of Marine Microbes Producing Omega-3 Fatty Acids
THE DIVERSITY AND BIOTECHNOLOGICAL APPLICATION OF MARINE MICROBES PRODUCING OMEGA-3 FATTY ACIDS BY JINWEI ZHANG A thesis presented for the degree of DOCTOR OF PHILOSOPHY March 2011 SCHOOL OF MARINE SCIENCE AND TECHNOLOGY NEWCASTLE UNIVERSITY NEWCASTLE Copyright statement This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognize that its copyright rests with its author and no quotation from the thesis and no information derived from it may be published without the author’s prior written consent. Acknowledgements Acknowledgements I would like to acknowledge my sincere thanks to my supervisors, without whom this thesis would never have been completed. Professor Grant Burgess, Professor Keith Scott and Dr. Gary Caldwell gave me their valuable scientific guidance, advice, suggestions and discussion throughout this work. My sincere thanks also go to Professor Alan Ward, Professor Michael Goodfellow, Dr Ben Wigham, Dr Jarka Glassey and Dr Michael Hall (Newcastle University), to Dr Keith Layden, Dr Surinder Chahal and Dr Robin Mitra (Croda Enterprises Ltd, England), and Dr Craig Hurst (Croda Europe Ltd - Leek) for their helpful discussions. In particular, I would like to thank Mr John Knowles, Mr Tristano Bacchetti De Gregoris, Mr William Reid and Miss Nithyalakshmy Rajarajan, who are my good colleagues in the laboratory and have given me great help during my working period at Newcastle University. I would also like to express my great thanks to Dr Enren Zhang for his inspiration and help on the microbial fuel cell project. Particularly, I am grateful for the encouragement from my friends and family. -
Adverse Effects of Immobilised Pseudoalteromonas on the Fish Pathogenic Vibrio Anguillarum: an in Vitro Study
Hindawi Publishing Corporation Journal of Marine Biology Volume 2016, Article ID 3683809, 11 pages http://dx.doi.org/10.1155/2016/3683809 Research Article Adverse Effects of Immobilised Pseudoalteromonas on the Fish Pathogenic Vibrio anguillarum: An In Vitro Study Wiebke Wesseling,1 Michael Lohmeyer,1 Sabine Wittka,1 Julia Bartels,2 Stephen Kroll,2,3 Christian Soltmann,4 Pia Kegler,5 Andreas Kunzmann,5 Sandra Neumann,6 Burkhard Ramsch,6 Beate Sellner,6 and Friedhelm Meinhardt7 1 Mikrobiologisches Labor Dr. Michael Lohmeyer GmbH, Mendelstraße 11, 48149 Munster,¨ Germany 2Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany 3MAPEX Center for Materials and Processes, Bibliothekstraße 1, 28359 Bremen, Germany 4Novelpor UG, Huchtinger Heerstraße 47, 28259 Bremen, Germany 5Leibniz-Center for Tropical Marine Ecology GmbH, Fahrenheitstraße 6, 28359 Bremen, Germany 6AquaCareGmbH&Co.KG,AmWiesenbusch11,45966Gladbeck,Germany 7Institut fur¨ Molekulare Mikrobiologie und Biotechnologie, Westfalische¨ Wilhelms-Universitat¨ Munster,¨ Corrensstraße 3, 48149 Munster,¨ Germany Correspondence should be addressed to Wiebke Wesseling; [email protected] Received 7 April 2016; Revised 5 July 2016; Accepted 28 July 2016 Academic Editor: Horst Felbeck Copyright © 2016 Wiebke Wesseling et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. As a prerequisite for use in marine aquaculture, two immobilisation systems were developed by employing the probiotic bacterium Pseudoalteromonas sp. strain MLms gA3. Their impact on the survivability of the fish pathogen Vibrio anguillarum was explored. Probiotic bacteria either grown as a biofilm on ceramic tiles or embedded in alginate beads were added to sterile artificial seawater that contained the fish pathogen.