The Hydrocarbon Biodegradation Potential of Faroe-Shetland Channel Bacterioplankton
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associations
fmicb-09-02879 December 1, 2018 Time: 14:0 # 1 ORIGINAL RESEARCH published: 04 December 2018 doi: 10.3389/fmicb.2018.02879 Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associations Klervi Crenn, Delphine Duffieux and Christian Jeanthon* CNRS, Sorbonne Université, Station Biologique de Roscoff, Adaptation et Diversité en Milieu Marin, Roscoff, France Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. The cosmopolitan diatoms Thalassiosira and Chaetoceros often dominate phytoplankton communities in marine systems. Past studies of diatom-bacterial associations have employed community- level methods and culture-based or natural diatom populations. Although bacterial assemblages attached to individual diatoms represents tight associations little is known on their makeup or interactions. Here, we examined the epibiotic bacteria of 436 Thalassiosira and 329 Chaetoceros single cells isolated from natural samples and Edited by: collection cultures, regarded here as short- and long-term associations, respectively. Matthias Wietz, Epibiotic microbiota of single diatom hosts was analyzed by cultivation and by cloning- Alfred Wegener Institut, Germany sequencing of 16S rRNA genes obtained from whole-genome amplification products. Reviewed by: The prevalence of epibiotic bacteria was higher in cultures and dependent of the host Lydia Jeanne Baker, Cornell University, United States species. Culture approaches demonstrated that both diatoms carry distinct bacterial Bryndan Paige Durham, communities in short- and long-term associations. Bacterial epibonts, commonly University of Washington, United States associated with phytoplankton, were repeatedly isolated from cells of diatom collection *Correspondence: cultures but were not recovered from environmental cells. -
Cultivation-Dependent and Cultivation-Independent Characterization of Hydrocarbon-Degrading Bacteria in Guaymas Basin Sediments
ORIGINAL RESEARCH published: 07 July 2015 doi: 10.3389/fmicb.2015.00695 Cultivation-dependent and cultivation-independent characterization of hydrocarbon-degrading bacteria in Guaymas Basin sediments Tony Gutierrez1,2*, Jennifer F. Biddle3, Andreas Teske4 and Michael D. Aitken1 1 Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 2 School of Life Sciences, Heriot-Watt University, Edinburgh, UK, 3 College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, USA, 4 Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Marine hydrocarbon-degrading bacteria perform a fundamental role in the biodegradation of crude oil and its petrochemical derivatives in coastal and open Edited by: ocean environments. However, there is a paucity of knowledge on the diversity and Peter Dunfield, University of Calgary, Canada function of these organisms in deep-sea sediment. Here we used stable-isotope Reviewed by: probing (SIP), a valuable tool to link the phylogeny and function of targeted microbial Martin Krüger, groups, to investigate polycyclic aromatic hydrocarbon (PAH)-degrading bacteria under Federal Institute for Geosciences 13 and Natural Resources, Germany aerobic conditions in sediments from Guaymas Basin with uniformly labeled [ C]- 13 Casey R. J. Hubert, phenanthrene (PHE). The dominant sequences in clone libraries constructed from C- Newcastle University, UK enriched bacterial DNA (from PHE enrichments) were identified to belong to the genus *Correspondence: Cycloclasticus. We used quantitative PCR primers targeting the 16S rRNA gene of Tony Gutierrez, School of Life Sciences, Heriot-Watt the SIP-identified Cycloclasticus to determine their abundance in sediment incubations University, Edinburgh EH14 4AS, amended with unlabeled PHE and showed substantial increases in gene abundance Scotland, UK [email protected] during the experiments. -
Bacterium That Produces Antifouling Agents
International Journal of Systematic Bacteriology (1998), 48, 1205-1 21 2 Printed in Great Britain ~- Pseudoalteromonas tunicata sp. now, a bacterium that produces antifouling agents Carola Holmstromfl Sally James,’ Brett A. Neilan,’ David C. White’ and Staffan Kjellebergl Author for correspondence : Carola Holmstrom. Tel: + 61 2 9385 260 1. Fax: + 6 1 2 9385 159 1. e-mail: c.holmstrom(cx unsw.edu.au 1 School of Microbiology A dark-green-pigmented marine bacterium, previously designated D2, which and Immunology, The produces components that are inhibitory to common marine fouling organisms University of New South Wales, Sydney 2052, has been characterized and assessed for taxonomic assignment. Based on Australia direct double-stranded sequencing of the 16s rRNA gene, D2Twas found to show the highest similarity to members of the genus 2 Center for Environmental (93%) B iotechnology, Un iversity Pseudoalteromonas. The G+C content of DZT is 42 molo/o, and it is a of Tennessee, 10515 facultatively anaerobic rod and oxidase-positive. DZT is motile by a sheathed research Drive, Suite 300, Knoxville, TN 37932, USA polar flagellum, exhibited non-fermentative metabolism and required sodium ions for growth. The strain was not capable of using citrate, fructose, sucrose, sorbitol and glycerol but it utilizes mannose and maltose and hydrolyses gelatin. The molecular evidence, together with phenotypic characteristics, showed that this bacterium which produces an antifouling agent constitutes a new species of the genus Pseudoalteromonas.The name Pseudoalteromonas tunicata is proposed for this bacterium, and the type strain is DZT (= CCUG 2 6 7 5 7T). 1 Kevwords: PseudoalttJvomonas tunicata, pigment, antifouling bacterium, marine, 16s I rRNA sequence .__ , INTRODUCTION results suggested that the genus Alteromonas should be separated into two genera. -
Supplementary Figure S2. Taxonomic Composition in Individual Microcosm Treatments Across a 14-Week Experiment
100. 0 f Viruses|g Viruses|s Sulfitobacter phage pCB2047 C f Viruses|g Viruses|s Sulfitobacter phage pCB2047 A f Sinobacteraceae|g Sinobacteraceae f Vibrionaceae|g Vibrio|s Vibrio splendidus f Vibrionaceae|g Vibrio|s Vibrio kanaloae f Piscirickettsiaceae|g Methylophaga|s Methylophaga 90.0 f Piscirickettsiaceae|g Cycloclasticus|s Cycloclasticus pugetii f Pseudomonadaceae|g Pseudomonas|s Pseudomonas stutzeri f Pseudomonadaceae|g Pseudomonas|s Pseudomonas sp S9 f Pseudomonadaceae|g Pseudomonas|s Pseudomonas pelagia f Pseudomonadaceae|g Pseudomonas|s Pseudomonas f Pseudomonadaceae|g Cellvibrio|s Cellvibrio 80.0 f Moraxellaceae|g Psychrobacter|s Psychrobacter cryohalolentis f Moraxellaceae|g Acinetobacter|s Acinetobacter f Oceanospirillaceae|g Marinomonas|s Marinomonas sp MWYL1 f Oceanospirillaceae|g Marinomonas|s Marinomonas f Halomonadaceae|g Halomonas|s Halomonas titanicae 70.0 f Halomonadaceae|g Halomonas|s Halomonas f Alcanivoracaceae|g Alcanivorax|s Alcanivorax f Gammaproteobacteria|g Gammaproteobacteria|s gammaproteobacterium HIMB55 f Enterobacteriaceae|g Buchnera|s Buchnera aphidicola f Shewanellaceae|g Shewanella|s Shewanella frigidimarina f Shewanellaceae|g Shewanella|s Shewanella baltica 60.0 f Shewanellaceae|g Shewanella|s Shewanella f Pseudoalteromonadaceae|g Pseudoalteromonas|s Pseudoalteromonas undina f Pseudoalteromonadaceae|g Pseudoalteromonas|s Pseudoalteromonas haloplanktis f Pseudoalteromonadaceae|g Pseudoalteromonas|s Pseudoalteromonas arctica f Pseudoalteromonadaceae|g Pseudoalteromonas|s Pseudoalteromonas agarivorans -
Centro De Investigación Científica Y De Educación Superior De Ensenada, Baja California
Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California Maestría en Ciencias en Acuicultura Calidad bacteriológica del agua en sistemas de mantenimiento de reproductores de Seriola lalandi Tesis para cubrir parcialmente los requisitos necesarios para obtener el grado de Maestro en Ciencias Presenta: Miriam Esther Garcia Mendoza Ensenada, Baja California, México 2017 Tesis defendida por Miriam Esther Garcia Mendoza y aprobada por el siguiente Comité Dr. Jorge Abelardo Cáceres Martínez Director de tesis Dra. Rebeca Vásquez Yeomans Dra. Beatriz Cordero Esquivel Dr. Pierrick Gerard Jean Fournier Dr. Jorge Abelardo Cáceres Martínez Coordinador del Posgrado en Acuicultura Dra. Rufina Hernández Martínez Directora de Estudios de Posgrado Miriam Esther Garcia Mendoza © 2017 Queda prohibida la reproducción parcial o total de esta obra sin el permiso formal y explícito del autor y director de la tesis. ii Resumen de la tesis que presenta Miriam Esther Garcia Mendoza como requisito parcial para la obtención del grado de Maestro en Ciencias en Acuicultura. Calidad bacteriológica del agua en sistemas de mantenimiento de reproductores de Seriola lalandi Resumen aprobado por: __ ____________________________ Dr. Jorge Abelardo Cáceres Martínez Director de tesis Con la expansión e intensificación de la piscicultura, los brotes de enfermedades infecciosas se han incrementado y reconocido como una limitante para su desarrollo. Entre éstas, se encuentran las causadas por bacterias, que ocasionan uno de los efectos más negativos. La industria japonesa de cultivo de Seriola spp. pierde anualmente $200 millones de USD debido a estas enfermedades. Una medida recomendada para evitar su ocurrencia, es conocer la carga y diversidad de comunidades bacterianas a las que están expuestas los peces. -
Arthrocnemum Macrostachyum Y Su Microbioma Como Herramienta Para La Recuperación De Suelos Degradados
Arthrocnemum macrostachyum y su microbioma como herramienta para la recuperación de suelos degradados TESIS DOCTORAL Salvadora Navarro de la Torre Sevilla, 2017 DEPARTAMENTO DE MICROBIOLOGÍA Y PARASITOLOGÍA FACULTAD DE FARMACIA UNIVERSIDAD DE SEVILLA ARTHROCNEMUM MACROSTACHYUM Y SU MICROBIOMA COMO HERRAMIENTA PARA LA RECUPERACIÓN DE SUELOS DEGRADADOS SALVADORA NAVARRO DE LA TORRE SEVILLA, 2017 La Tesis Doctoral titulada “Arthrocnemum macrostachyum y su microbioma como herramienta para la recuperación de suelos degradados”, realizada por la Licenciada en Biología Dña. Salvadora Navarro de la Torre para optar al grado de Doctor en Biología Molecular y Biomedicina con Mención Internacional por la Universidad de Sevilla, se presenta con la aprobación de los Directores y el Departamento de Microbiología y Parasitología de la Universidad de Sevilla. Los directores, Fdo. Dr. Ignacio D. Rodríguez Llorente Fdo. Dra. Eloísa Pajuelo Domínguez El Director del Departamento, La doctoranda, Fdo. Dr. Miguel Ángel Caviedes Formento Fdo. Salvadora Navarro de la Torre A todas las personas que han formado parte de esta etapa de aprendizaje “Sin prisa, pero sin descanso” Johann W. Goethe “Una sucesión de pequeñas voluntades consigue un gran resultado” Charles Baudelaire AGRADECIMIENTOS Todos los que me conocéis sabréis como soy, y por ello sabréis que esta parte de la Tesis puede que haya sido la más difícil de escribir, por lo que intentaré que no quede muy sosa. Siempre me gustó el Conocimiento del Medio en el colegio, y conforme esta asignatura fue avanzando durante el instituto, me fue gustando cada vez más, sobre todo “esa parte” de las bacterias y las células (desde pequeña iba para bióloga de bata). -
Microbial Communities Responding to Deep-Sea Hydrocarbon Spills Molly C. Redmond1 and David L. Valentine2 1. Department of Biolo
Microbial Communities Responding to Deep-Sea Hydrocarbon Spills Molly C. Redmond1 and David L. Valentine2 1. Department of Biological Sciences, University of North Carolina at Charlotte, [email protected] 2. Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, [email protected] Abstract The 2010 Deepwater Horizon oil spill in the Gulf of Mexico can be considered the world’s first deep-sea hydrocarbon spill. Deep-sea hydrocarbon spills occur in a different setting than surface oil spills and the organisms that respond must be adapted to this low temperature, high pressure environment. The hydrocarbon composition can also be quite different than at the sea surface, with high concentrations of dissolved hydrocarbons, including natural gas, and suspended droplets of petroleum. We discuss the bacteria that may respond to these spills and factors that affect their abundance, based on data collected during the Deepwater Horizon spill and in microcosm experiments in the following years. 1. Introduction When the Deepwater Horizon mobile offshore drilling unit exploded on April 20, 2010 and sank two days later, it caused the world’s first major deep-sea oil spill. Previous well blowouts such as Ixtoc I in the Gulf Mexico in 1979 and Platform A in the Santa Barbara Channel in 1969 also caused significant undersea spills, but the shallower depths of these spills (50-60 m) resulted in most of oil reaching the sea surface. In contrast, the Deepwater Horizon well was 1500 m below the sea surface and ~25% the hydrocarbons emitted remained dissolved or suspended in a deep-sea intrusion layer at depths between 900 and 1300 m (Ryerson et al. -
Degrading Bacteria in Deep‐
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aberdeen University Research Archive Journal of Applied Microbiology ISSN 1364-5072 ORIGINAL ARTICLE Hydrocarbon-degrading bacteria in deep-water subarctic sediments (Faroe-Shetland Channel) E. Gontikaki1 , L.D. Potts1, J.A. Anderson2 and U. Witte1 1 School of Biological Sciences, University of Aberdeen, Aberdeen, UK 2 Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen, UK Keywords Abstract clone libraries, Faroe-Shetland Channel, hydrocarbon degradation, isolates, marine Aims: The aim of this study was the baseline description of oil-degrading bacteria, oil spill, Oleispira, sediment. sediment bacteria along a depth transect in the Faroe-Shetland Channel (FSC) and the identification of biomarker taxa for the detection of oil contamination Correspondence in FSC sediments. Evangelia Gontikaki and Ursula Witte, School Methods and Results: Oil-degrading sediment bacteria from 135, 500 and of Biological Sciences, University of Aberdeen, 1000 m were enriched in cultures with crude oil as the sole carbon source (at Aberdeen, UK. ° E-mails: [email protected] and 12, 5 and 0 C respectively). The enriched communities were studied using [email protected] culture-dependent and culture-independent (clone libraries) techniques. Isolated bacterial strains were tested for hydrocarbon degradation capability. 2017/2412: received 8 December 2017, Bacterial isolates included well-known oil-degrading taxa and several that are revised 16 May 2018 and accepted 18 June reported in that capacity for the first time (Sulfitobacter, Ahrensia, Belliella, 2018 Chryseobacterium). The orders Oceanospirillales and Alteromonadales dominated clone libraries in all stations but significant differences occurred at doi:10.1111/jam.14030 genus level particularly between the shallow and the deep, cold-water stations. -
Changes in Bacterial Community Metabolism and Composition During
Changes in bacterial community metabolism and composition during the degradation of dissolved organic matter from the jellyfish Aurelia aurita in a Mediterranean coastal lagoon Marine Blanchet 1,2 , Olivier Pringault 3, Marc Bouvy 3, Philippe Catala 1,2 , Louise Oriol 1,2 , Jocelyne Caparros 1,2 , Eva Ortega-Retuerta 1,2,4 , Laurent Intertaglia 5,6 , Nyree West 5,6 , Martin Agis 3, Patrice Got 3, Fabien Joux 1,2* 1Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, Laboratoire dOcéanographie Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France 2 CNRS, UMR 7621, Laboratoire dOcéanographie Microbienne, Observatoire Océanologique, F- 66650 Banyuls/mer, France 3UMR5119 Ecologie des systèmes marins côtiers (ECOSYM), CNRS, IRD, UM2, UM1; Université Montpellier 2. Case 093, F-34095 Montpellier Cedex 5, France 4Institut de Ciències del Mar, CSIC, Barcelona, Spain 5Sorbonne Universités UPMC Univ Paris 06, UMS 2348, Observatoire Océanologique, F-66650 Banyuls/Mer, France 6CNRS, UMS 2348, Observatoire Océanologique, F-66650 Banyuls/Mer, France *corresponding author: Email: [email protected], Phone: 33(0)4 6888 7342, Fax: 33(0)4 6888 7395 Abstract Spatial increases and temporal shifts in outbreaks of gelatinous plankton have been observed over the past several decades in many estuarine and coastal ecosystems. The effects of these blooms on marine ecosystem functioning, and particularly on the dynamics of the heterotrophic bacteria are still unclear. The response of the bacterial community from a Mediterranean coastal lagoon to th e addition of dissolved organic matter (DOM) from the jellyfish Aurelia aurita, corresponding to an enrichment of dissolved organic carbon (DOC) by 1.4, was assessed during 22 days in microcosms (8 liters). -
Simulation of Deepwater Horizon Oil Plume Reveals Substrate Specialization Within a Complex Community of Hydrocarbon Degraders
Simulation of Deepwater Horizon oil plume reveals substrate specialization within a complex community of hydrocarbon degraders Ping Hua, Eric A. Dubinskya,b, Alexander J. Probstc, Jian Wangd, Christian M. K. Sieberc,e, Lauren M. Toma, Piero R. Gardinalid, Jillian F. Banfieldc, Ronald M. Atlasf, and Gary L. Andersena,b,1 aEcology Department, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; bDepartment of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720; cDepartment of Earth and Planetary Science, University of California, Berkeley, CA 94720; dDepartment of Chemistry and Biochemistry, Florida International University, Miami, FL 33199; eDepartment of Energy, Joint Genome Institute, Walnut Creek, CA 94598; and fDepartment of Biology, University of Louisville, Louisville, KY 40292 Edited by Rita R. Colwell, University of Maryland, College Park, MD, and approved May 30, 2017 (received for review March 1, 2017) The Deepwater Horizon (DWH) accident released an estimated Many studies of the plume samples reported that the structure 4.1 million barrels of oil and 1010 mol of natural gas into the Gulf of the microbial communities shifted as time progressed (3–6, 11– of Mexico, forming deep-sea plumes of dispersed oil droplets and 16). Member(s) of the order Oceanospirillales dominated from dissolved gases that were largely degraded by bacteria. During the May to mid-June, after which their numbers rapidly declined and course of this 3-mo disaster a series of different bacterial taxa were species of Cycloclasticus and Colwellia dominated for the next enriched in succession within deep plumes, but the metabolic capa- several weeks (4, 5, 14). -
Halomonas Maura Sp. Nov., a Novel Moderately Halophilic, Exopolysaccharide-Producing Bacterium
International Journal of Systematic and Evolutionary Microbiology (2001), 51, 1625–1632 Printed in Great Britain Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium Microbial Samir Bouchotroch, Emilia Quesada, Ana del Moral, Inmaculada Llamas Exopolysaccharides Research Group, Department of and Victoria Be! jar Microbiology, Faculty of Pharmacy, Campus Universitario de Cartuja, Author for correspondence: Emilia Quesada. Tel: j34 958 243871. Fax: j34 958 246235. University of Granada, e-mail: equesada!platon.ugr.es 18071 Granada, Spain Four moderately halophilic, exopolysaccharide-producing bacterial strains isolated from soil samples collected from a saltern at Asilah (Morocco) are reported. These four strains were initially considered to belong to the genus Halomonas. Their DNA GMC contents varied between 622 and 641 mol%. DNA–DNA hybridization revealed a considerable degree of DNA–DNA similarity amongst all four strains (755–808%). Nevertheless, similarity with the reference strains of phylogenetically close relatives was lower than 40%. 16S rRNA gene sequences were compared with those of other species of Halomonas and other Gram-negative bacteria and they were sufficiently distinct phylogenetically from other recognized Halomonas species to warrant their designation as a novel species. The name Halomonas maura sp. nov. is therefore proposed, with strain S-31T (l CECT 5298T l DSM 13445T) as the type strain. The fatty acid composition of strain S-31T revealed the presence of 18:1ω7c,16:1ω7c/2-OH i15:0 and 16:0 as the major components. Growth rate analysis showed that strain S-31T had specific cationic requirements for NaM and Mg2M. Keywords: exopolysaccharides, moderately halophilic bacteria, Halomonas INTRODUCTION In the course of our studies into hypersaline environ- ments, a group of Halomonas eurihalina strains were The family Halomonadaceae includes the genera isolated that synthesized large quantities of exopoly- Halomonas, Chromohalobacter and Zymobacter. -
An Astrobiological Study of an Alkaline-Saline Hydrothermal Environment, Relevant to Understanding the Habitability of Mars
An astrobiological study of an alkaline-saline hydrothermal environment, relevant to understanding the habitability of Mars A thesis submitted for the Degree of Doctor of Philosophy By Lottie Elizabeth Davis Department of Earth Sciences University College London March 2012 1 I, Lottie Elizabeth Davis confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Declaration Abstract The on going exploration of planets such as Mars is producing a wealth of data which is being used to shape a better understanding of potentially habitable environments beyond the Earth. On Mars, the relatively recent identification of minerals which indicate the presence of neutral/alkaline aqueous activity has increased the number of potentially habitable environments which require characterisation and exploration. The study of terrestrial analogue environments enables us to develop a better understanding of where life can exist, what types of organisms can exist and what evidence of that life may be preserved. The study of analogue environments is necessary not only in relation to the possibility of identifying extinct/extant indigenous life on Mars, but also for understanding the potential for contamination. As well as gaining an insight into the habitability of an environment, it is also essential to understand how to identify such environments using the instruments available to missions to Mars. It is important to be aware of instrument limitations to ensure that evidence of a particular environment is not overlooked. This work focuses upon studying the bacterial and archaeal diversity of Lake Magadi, a hypersaline and alkaline soda lake, and its associated hydrothermal springs.