Bacterial Fish Pathogens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – APRIL 2011
SGR 129 Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – APRIL 2011 DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR FOOD SAFETY AND APPLIED NUTRITION OFFICE OF FOOD SAFETY Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – April 2011 Additional copies may be purchased from: Florida Sea Grant IFAS - Extension Bookstore University of Florida P.O. Box 110011 Gainesville, FL 32611-0011 (800) 226-1764 Or www.ifasbooks.com Or you may download a copy from: http://www.fda.gov/FoodGuidances You may submit electronic or written comments regarding this guidance at any time. Submit electronic comments to http://www.regulations. gov. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register. U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition (240) 402-2300 April 2011 Table of Contents: Fish and Fishery Products Hazards and Controls Guidance • Guidance for the Industry: Fish and Fishery Products Hazards and Controls Guidance ................................ 1 • CHAPTER 1: General Information .......................................................................................................19 • CHAPTER 2: Conducting a Hazard Analysis and Developing a HACCP Plan -
The Hydrocarbon Biodegradation Potential of Faroe-Shetland Channel Bacterioplankton
THE HYDROCARBON BIODEGRADATION POTENTIAL OF FAROE-SHETLAND CHANNEL BACTERIOPLANKTON Angelina G. Angelova Submitted for the degree of Doctor of Philosophy Heriot Watt University School of Engineering and Physical Sciences July 2017 The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information. ABSTRACT The Faroe-Shetland Channel (FSC) is an important gateway for dynamic water exchange between the North Atlantic Ocean and the Nordic Seas. In recent years it has also become a frontier for deep-water oil exploration and petroleum production, which has raised the risk of oil pollution to local ecosystems and adjacent waterways. In order to better understand the factors that influence the biodegradation of spilled petroleum, a prerequisite has been recognized to elucidate the complex dynamics of microbial communities and their relationships to their ecosystem. This research project was a pioneering attempt to investigate the FSC’s microbial community composition, its response and potential to degrade crude oil hydrocarbons under the prevailing regional temperature conditions. Three strategies were used to investigate this. Firstly, high throughput sequencing and 16S rRNA gene-based community profiling techniques were utilized to explore the spatiotemporal patterns of the FSC bacterioplankton. Monitoring proceeded over a period of 2 years and interrogated the multiple water masses flowing through the region producing 2 contrasting water cores: Atlantic (surface) and Nordic (subsurface). Results revealed microbial profiles more distinguishable based on water cores (rather than individual water masses) and seasonal variability patterns within each core. -
Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associations
fmicb-09-02879 December 1, 2018 Time: 14:0 # 1 ORIGINAL RESEARCH published: 04 December 2018 doi: 10.3389/fmicb.2018.02879 Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associations Klervi Crenn, Delphine Duffieux and Christian Jeanthon* CNRS, Sorbonne Université, Station Biologique de Roscoff, Adaptation et Diversité en Milieu Marin, Roscoff, France Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. The cosmopolitan diatoms Thalassiosira and Chaetoceros often dominate phytoplankton communities in marine systems. Past studies of diatom-bacterial associations have employed community- level methods and culture-based or natural diatom populations. Although bacterial assemblages attached to individual diatoms represents tight associations little is known on their makeup or interactions. Here, we examined the epibiotic bacteria of 436 Thalassiosira and 329 Chaetoceros single cells isolated from natural samples and Edited by: collection cultures, regarded here as short- and long-term associations, respectively. Matthias Wietz, Epibiotic microbiota of single diatom hosts was analyzed by cultivation and by cloning- Alfred Wegener Institut, Germany sequencing of 16S rRNA genes obtained from whole-genome amplification products. Reviewed by: The prevalence of epibiotic bacteria was higher in cultures and dependent of the host Lydia Jeanne Baker, Cornell University, United States species. Culture approaches demonstrated that both diatoms carry distinct bacterial Bryndan Paige Durham, communities in short- and long-term associations. Bacterial epibonts, commonly University of Washington, United States associated with phytoplankton, were repeatedly isolated from cells of diatom collection *Correspondence: cultures but were not recovered from environmental cells. -
Salmon Aquaculture Dialogue Working Group Report on Salmon Disease
Salmon Aquaculture Dialogue Working Group Report on Salmon Disease Larry Hammell - Atlantic Veterinary College, University of Prince Edward Island, Canada Craig Stephen- Centre for Coastal Health, University of Calgary, Canada Ian Bricknell- School of Marine Sciences, University of Maine, USA Øystein Evensen- Norwegian School of Veterinary Medicine, Oslo, Norway Patricio Bustos- ADL Diagnostic Chile Ltda., Chile With Contributions by: Ricardo Enriquez- University of Austral, Chile 1 Citation: Hammell, L., Stephen, C., Bricknell, I., Evensen Ø., and P. Bustos. 2009 “Salmon Aquaculture Dialogue Working Group Report on Salmon Disease” commissioned by the Salmon Aquaculture Dialogue, available at http://wwf.worldwildlife.org/site/PageNavigator/SalmonSOIForm Corresponding author: Larry Hammell, email: [email protected] This report was commissioned by the Salmon Aquaculture Dialogue. The Salmon Dialogue is a multi-stakeholder, multi-national group which was initiated by the World Wildlife Fund in 2004. Participants include salmon producers and other members of the market chain, NGOs, researchers, retailers, and government officials from major salmon producing and consuming countries. The goal of the Dialogue is to credibly develop and support the implementation of measurable, performance-based standards that minimize or eliminate the key negative environmental and social impacts of salmon farming, while permitting the industry to remain economically viable The Salmon Aquaculture Dialogue focuses their research and standard development on seven key areas of impact of salmon production including: social; feed; disease; salmon escapes; chemical inputs; benthic impacts and siting; and, nutrient loading and carrying capacity. Funding for this report and other Salmon Aquaculture Dialogue supported work is provided by the members of the Dialogue‘s steering committee and their donors. -
Cryptic Inoviruses Revealed As Pervasive in Bacteria and Archaea Across Earth’S Biomes
ARTICLES https://doi.org/10.1038/s41564-019-0510-x Corrected: Author Correction Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes Simon Roux 1*, Mart Krupovic 2, Rebecca A. Daly3, Adair L. Borges4, Stephen Nayfach1, Frederik Schulz 1, Allison Sharrar5, Paula B. Matheus Carnevali 5, Jan-Fang Cheng1, Natalia N. Ivanova 1, Joseph Bondy-Denomy4,6, Kelly C. Wrighton3, Tanja Woyke 1, Axel Visel 1, Nikos C. Kyrpides1 and Emiley A. Eloe-Fadrosh 1* Bacteriophages from the Inoviridae family (inoviruses) are characterized by their unique morphology, genome content and infection cycle. One of the most striking features of inoviruses is their ability to establish a chronic infection whereby the viral genome resides within the cell in either an exclusively episomal state or integrated into the host chromosome and virions are continuously released without killing the host. To date, a relatively small number of inovirus isolates have been extensively studied, either for biotechnological applications, such as phage display, or because of their effect on the toxicity of known bacterial pathogens including Vibrio cholerae and Neisseria meningitidis. Here, we show that the current 56 members of the Inoviridae family represent a minute fraction of a highly diverse group of inoviruses. Using a machine learning approach lever- aging a combination of marker gene and genome features, we identified 10,295 inovirus-like sequences from microbial genomes and metagenomes. Collectively, our results call for reclassification of the current Inoviridae family into a viral order including six distinct proposed families associated with nearly all bacterial phyla across virtually every ecosystem. -
Bacterium That Produces Antifouling Agents
International Journal of Systematic Bacteriology (1998), 48, 1205-1 21 2 Printed in Great Britain ~- Pseudoalteromonas tunicata sp. now, a bacterium that produces antifouling agents Carola Holmstromfl Sally James,’ Brett A. Neilan,’ David C. White’ and Staffan Kjellebergl Author for correspondence : Carola Holmstrom. Tel: + 61 2 9385 260 1. Fax: + 6 1 2 9385 159 1. e-mail: c.holmstrom(cx unsw.edu.au 1 School of Microbiology A dark-green-pigmented marine bacterium, previously designated D2, which and Immunology, The produces components that are inhibitory to common marine fouling organisms University of New South Wales, Sydney 2052, has been characterized and assessed for taxonomic assignment. Based on Australia direct double-stranded sequencing of the 16s rRNA gene, D2Twas found to show the highest similarity to members of the genus 2 Center for Environmental (93%) B iotechnology, Un iversity Pseudoalteromonas. The G+C content of DZT is 42 molo/o, and it is a of Tennessee, 10515 facultatively anaerobic rod and oxidase-positive. DZT is motile by a sheathed research Drive, Suite 300, Knoxville, TN 37932, USA polar flagellum, exhibited non-fermentative metabolism and required sodium ions for growth. The strain was not capable of using citrate, fructose, sucrose, sorbitol and glycerol but it utilizes mannose and maltose and hydrolyses gelatin. The molecular evidence, together with phenotypic characteristics, showed that this bacterium which produces an antifouling agent constitutes a new species of the genus Pseudoalteromonas.The name Pseudoalteromonas tunicata is proposed for this bacterium, and the type strain is DZT (= CCUG 2 6 7 5 7T). 1 Kevwords: PseudoalttJvomonas tunicata, pigment, antifouling bacterium, marine, 16s I rRNA sequence .__ , INTRODUCTION results suggested that the genus Alteromonas should be separated into two genera. -
Detection and Identification of Fish Pathogens: What Is the Future?
The Israeli Journal of Aquaculture – Bamidgeh 60(4), 2008, 213-229. 213 Detection and Identification of Fish Pathogens: What is the Future? A Review I. Frans1,2†, B. Lievens1,2*†, C. Heusdens1,2 and K.A. Willems1,2 1 Scientia Terrae Research Institute, B-2860 Sint-Katelijne-Waver, Belgium 2 Research Group Process Microbial Ecology and Management, Department Microbial and Molecular Systems, Katholieke Universiteit Leuven Association, De Nayer Campus, B-2860 Sint-Katelijne-Waver, Belgium, and Leuven Food Science and Nutrition Research Centre (LfoRCe), Katholieke Universiteit Leuven, B-3001 Heverlee-Leuven, Belgium (Received 1.8.08, Accepted 20.8.08) Key words: biosecurity, diagnosis, DNA array, multiplexing, real-time PCR Abstract Fish diseases pose a universal threat to the ornamental fish industry, aquaculture, and public health. They can be caused by many organisms, including bacteria, fungi, viruses, and protozoa. The lack of rapid, accurate, and reliable means of detecting and identifying fish pathogens is one of the main limitations in fish pathogen diagnosis and disease management and has triggered the search for alternative diagnostic techniques. In this regard, the advent of molecular biology, especially polymerase chain reaction (PCR), provides alternative means for detecting and iden- tifying fish pathogens. Many techniques have been developed, each requiring its own protocol, equipment, and expertise. A major challenge at the moment is the development of multiplex assays that allow accurate detection, identification, and quantification of multiple pathogens in a single assay, even if they belong to different superkingdoms. In this review, recent advances in molecular fish pathogen diagnosis are discussed with an emphasis on nucleic acid-based detec- tion and identification techniques. -
Supplementary Figure S2. Taxonomic Composition in Individual Microcosm Treatments Across a 14-Week Experiment
100. 0 f Viruses|g Viruses|s Sulfitobacter phage pCB2047 C f Viruses|g Viruses|s Sulfitobacter phage pCB2047 A f Sinobacteraceae|g Sinobacteraceae f Vibrionaceae|g Vibrio|s Vibrio splendidus f Vibrionaceae|g Vibrio|s Vibrio kanaloae f Piscirickettsiaceae|g Methylophaga|s Methylophaga 90.0 f Piscirickettsiaceae|g Cycloclasticus|s Cycloclasticus pugetii f Pseudomonadaceae|g Pseudomonas|s Pseudomonas stutzeri f Pseudomonadaceae|g Pseudomonas|s Pseudomonas sp S9 f Pseudomonadaceae|g Pseudomonas|s Pseudomonas pelagia f Pseudomonadaceae|g Pseudomonas|s Pseudomonas f Pseudomonadaceae|g Cellvibrio|s Cellvibrio 80.0 f Moraxellaceae|g Psychrobacter|s Psychrobacter cryohalolentis f Moraxellaceae|g Acinetobacter|s Acinetobacter f Oceanospirillaceae|g Marinomonas|s Marinomonas sp MWYL1 f Oceanospirillaceae|g Marinomonas|s Marinomonas f Halomonadaceae|g Halomonas|s Halomonas titanicae 70.0 f Halomonadaceae|g Halomonas|s Halomonas f Alcanivoracaceae|g Alcanivorax|s Alcanivorax f Gammaproteobacteria|g Gammaproteobacteria|s gammaproteobacterium HIMB55 f Enterobacteriaceae|g Buchnera|s Buchnera aphidicola f Shewanellaceae|g Shewanella|s Shewanella frigidimarina f Shewanellaceae|g Shewanella|s Shewanella baltica 60.0 f Shewanellaceae|g Shewanella|s Shewanella f Pseudoalteromonadaceae|g Pseudoalteromonas|s Pseudoalteromonas undina f Pseudoalteromonadaceae|g Pseudoalteromonas|s Pseudoalteromonas haloplanktis f Pseudoalteromonadaceae|g Pseudoalteromonas|s Pseudoalteromonas arctica f Pseudoalteromonadaceae|g Pseudoalteromonas|s Pseudoalteromonas agarivorans -
Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment
antibiotics Article Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment Alicia Sorgen 1, James Johnson 2, Kevin Lambirth 2, Sandra M. Clinton 3 , Molly Redmond 1 , Anthony Fodor 2 and Cynthia Gibas 2,* 1 Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (A.S.); [email protected] (M.R.) 2 Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (J.J.); [email protected] (K.L.); [email protected] (A.F.) 3 Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-704-687-8378 Abstract: Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify Citation: Sorgen, A.; Johnson, J.; phenotypically resistant cultivable portions of these bacterial communities and characterized the Lambirth, K.; Clinton, -
Centro De Investigación Científica Y De Educación Superior De Ensenada, Baja California
Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California Maestría en Ciencias en Acuicultura Calidad bacteriológica del agua en sistemas de mantenimiento de reproductores de Seriola lalandi Tesis para cubrir parcialmente los requisitos necesarios para obtener el grado de Maestro en Ciencias Presenta: Miriam Esther Garcia Mendoza Ensenada, Baja California, México 2017 Tesis defendida por Miriam Esther Garcia Mendoza y aprobada por el siguiente Comité Dr. Jorge Abelardo Cáceres Martínez Director de tesis Dra. Rebeca Vásquez Yeomans Dra. Beatriz Cordero Esquivel Dr. Pierrick Gerard Jean Fournier Dr. Jorge Abelardo Cáceres Martínez Coordinador del Posgrado en Acuicultura Dra. Rufina Hernández Martínez Directora de Estudios de Posgrado Miriam Esther Garcia Mendoza © 2017 Queda prohibida la reproducción parcial o total de esta obra sin el permiso formal y explícito del autor y director de la tesis. ii Resumen de la tesis que presenta Miriam Esther Garcia Mendoza como requisito parcial para la obtención del grado de Maestro en Ciencias en Acuicultura. Calidad bacteriológica del agua en sistemas de mantenimiento de reproductores de Seriola lalandi Resumen aprobado por: __ ____________________________ Dr. Jorge Abelardo Cáceres Martínez Director de tesis Con la expansión e intensificación de la piscicultura, los brotes de enfermedades infecciosas se han incrementado y reconocido como una limitante para su desarrollo. Entre éstas, se encuentran las causadas por bacterias, que ocasionan uno de los efectos más negativos. La industria japonesa de cultivo de Seriola spp. pierde anualmente $200 millones de USD debido a estas enfermedades. Una medida recomendada para evitar su ocurrencia, es conocer la carga y diversidad de comunidades bacterianas a las que están expuestas los peces. -
The Different Dietary Sugars Modulate The
Wang et al. BMC Microbiology (2020) 20:61 https://doi.org/10.1186/s12866-020-01726-6 RESEARCH ARTICLE Open Access The different dietary sugars modulate the composition of the gut microbiota in honeybee during overwintering Hongfang Wang, Chunlei Liu, Zhenguo Liu, Ying Wang, Lanting Ma and Baohua Xu* Abstract Background: The health of honeybee colonies is critical for bee products and agricultural production, and colony health is closely associated with the bacteria in the guts of honeybees. Although colony loss in winter is now the primary restriction in beekeeping, the effects of different sugars as winter food on the health of honeybee colonies are not well understood. Therefore, in this study, the influence of different sugar diets on honeybee gut bacteria during overwintering was examined. Results: The bacterial communities in honeybee midguts and hindguts before winter and after bees were fed honey, sucrose, and high-fructose syrup as winter-food were determined by targeting the V3-V4 region of 16S rDNA using the Illumina MiSeq platform. The dominant microbiota in honeybee guts were the phyla Proteobacteria (63.17%), Firmicutes (17.61%; Lactobacillus, 15.91%), Actinobacteria (4.06%; Bifidobacterium, 3.34%), and Bacteroidetes (1.72%). The dominant taxa were conserved and not affected by season, type of overwintering sugar, or spatial position in the gut. However, the relative abundance of the dominant taxa was affected by those factors. In the midgut, microbial diversity of the sucrose group was higher than that of the honey and high-fructose syrup groups, but in the hindgut, microbial diversity of the honey and high-fructose groups was higher than that in the sucrose group. -
A New Symbiotic Lineage Related to Neisseria and Snodgrassella Arises from the Dynamic and Diverse Microbiomes in Sucking Lice
bioRxiv preprint doi: https://doi.org/10.1101/867275; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice Jana Říhová1, Giampiero Batani1, Sonia M. Rodríguez-Ruano1, Jana Martinů1,2, Eva Nováková1,2 and Václav Hypša1,2 1 Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic 2 Institute of Parasitology, Biology Centre, ASCR, v.v.i., České Budějovice, Czech Republic Author for correspondence: Václav Hypša, Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic, +42 387 776 276, [email protected] Abstract Phylogenetic diversity of symbiotic bacteria in sucking lice suggests that lice have experienced a complex history of symbiont acquisition, loss, and replacement during their evolution. By combining metagenomics and amplicon screening across several populations of two louse genera (Polyplax and Hoplopleura) we describe a novel louse symbiont lineage related to Neisseria and Snodgrassella, and show its' independent origin within dynamic lice microbiomes. While the genomes of these symbionts are highly similar in both lice genera, their respective distributions and status within lice microbiomes indicate that they have different functions and history. In Hoplopleura acanthopus, the Neisseria-related bacterium is a dominant obligate symbiont universally present across several host’s populations, and seems to be replacing a presumably older and more degenerated obligate symbiont.