bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185645; this version posted July 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Title: Development of a free radical scavenging probiotic to mitigate coral bleaching 2 Running title: Making a probiotic to mitigate coral bleaching 3 4 Ashley M. Dungana#, Dieter Bulachb, Heyu Linc, Madeleine J. H. van Oppena,d, Linda L. Blackalla 5 6 aSchool of Biosciences, The University of Melbourne, Melbourne, VIC, Australia 7 bMelbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, Australia 8 cSchool of Earth Sciences, The University of Melbourne, Melbourne, VIC, Australia 9 dAustralian Institute of Marine Science, Townsville, QLD, Australia 10 11 12 #Address correspondence to Ashley M. Dungan,
[email protected] 13 14 Abstract word count: 211 words 15 Text word count: 4838 words 16 17 Keywords: symbiosis, Exaiptasia diaphana, Exaiptasia pallida, probiotic, antioxidant, ROS, 18 Symbiodiniaceae, bacteria 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185645; this version posted July 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 19 ABSTRACT 20 Corals are colonized by symbiotic microorganisms that exert a profound influence on the 21 animal’s health.