Aliagarivorans Marinus Gen. Nov., Sp. Nov. and Aliagarivorans Taiwanensis Sp

Total Page:16

File Type:pdf, Size:1020Kb

Aliagarivorans Marinus Gen. Nov., Sp. Nov. and Aliagarivorans Taiwanensis Sp International Journal of Systematic and Evolutionary Microbiology (2009), 59, 1880–1887 DOI 10.1099/ijs.0.008235-0 Aliagarivorans marinus gen. nov., sp. nov. and Aliagarivorans taiwanensis sp. nov., facultatively anaerobic marine bacteria capable of agar degradation Wen Dar Jean,1 Ssu-Po Huang,2 Tung Yen Liu,2 Jwo-Sheng Chen3 and Wung Yang Shieh2 Correspondence 1Center for General Education, Leader University, No. 188, Sec. 5, An-Chung Rd, Tainan, Wung Yang Shieh Taiwan, ROC [email protected] 2Institute of Oceanography, National Taiwan University, PO Box 23-13, Taipei, Taiwan, ROC 3College of Health Care, China Medical University, No. 91, Shyue-Shyh Rd, Taichung, Taiwan, ROC Two agarolytic strains of Gram-negative, heterotrophic, facultatively anaerobic, marine bacteria, designated AAM1T and AAT1T, were isolated from seawater samples collected in the shallow coastal region of An-Ping Harbour, Tainan, Taiwan. Cells grown in broth cultures were straight rods that were motile by means of a single polar flagellum. The two isolates required NaCl for growth and grew optimally at about 25–30 6C, in 2–4 % NaCl and at pH 8. They grew aerobically and could achieve anaerobic growth by fermenting D-glucose or other sugars. The major isoprenoid quinone was Q-8 (79.8–92.0 %) and the major cellular fatty acids were summed feature 3 (C16 : 1v7c and/or iso-C15 : 0 2-OH; 26.4–35.6 %), C18 : 1v7c (27.1–31.4 %) and C16 : 0 (14.8–16.3 %) in the two strains. Strains AAM1T and AAT1T had DNA G+C contents of 52.9 and 52.4 mol%, respectively. The two strains had a 16S rRNA gene sequence similarity of 98.6 % and shared 84.9–92.4 % sequence similarity with the type strains of Agarivorans albus (91.2– 92.4 %), eight Alteromonas species (84.9–87.1 %), two Aestuariibacter species (86.0–87.0 %), Bowmanella denitrificans (86.1–86.7 %), eight Glaciecola species (85.0–87.9 %) and Salinimonas chungwhensis (85.9–86.1 %). Despite their high sequence similarity, strains AAM1T and AAT1T had a DNA–DNA relatedness value of only 4.5 %. The data obtained from these polyphasic taxonomic studies revealed that the two agarolytic isolates could be classified as representatives of two novel species in a new genus, Aliagarivorans gen. nov., with Aliagarivorans marinus sp. nov. [type strain is AAM1T (5BCRC 17888T5JCM 15522T)] as the type species and Aliagarivorans taiwanensis sp. nov. [type strain is AAT1T (5BCRC 17889T5JCM 15537T)] as a second species. Agar, a complex polysaccharide extracted from marine red and ‘Verrucomicrobia’ (Scheuermayer et al., 2006; Shieh & algae, is widely used as a gelling agent for microbiological Jean, 1998). culture media. Hydrolysis of this refractory material, a Two strains of agarolytic bacteria, AAM1T and AAT1T, property found only among members of the domain were isolated in our laboratory from seawater samples ‘Bacteria’, is indicated by the development of softening, collected in the shallow coastal region of An-Ping Harbour, depressions or, in some cases, complete liquefaction of the Tainan, Taiwan, during a survey of the diversity of marine agar surrounding colonies of agarolytic bacteria. Marine agarolytic bacteria in Taiwan. Data from the present agarolytic bacteria are ubiquitous in coastal and estuarine polyphasic study indicated that the two isolates could be regions. They include species of various genera belonging classified as representatives of two different species in a to the phyla ‘Bacteroidetes’ (previously known as the Cytophaga–Flavobacterium–Bacteroides) (Yoon et al., new genus belonging to the class Gammaproteobacteria. 2007), ‘Proteobacteria’ (Jean et al., 2006a; Shieh et al., 2008) An-Ping Harbour is located in the south-west coast of Taiwan. Seawater samples were collected from the shallow The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene T T coastal regions of this harbour in the morning at low tide. sequences of strains AAM1 and AAT1 are FJ167390 and FJ167391, Each sample was decimally diluted to the order of 1023 respectively. 1880 008235 G 2009 IUMS Printed in Great Britain Aliagarivorans gen. nov. with two novel species with sterile NaCl-Tris buffer (30 g NaCl and 0.24 g Tris Gammaproteobacteria and were rather closely related to base in 1 l deionized water, pH 8.0). Aliquots (0.1 ml) of each other (98.6 % sequence similarity, 21 differences out the 10-fold dilutions (1021 to 1023) were spread onto of 1461 nt positions) than to strains of any recognized polypeptone-yeast extract (PY) plate medium (Shieh et al., bacterial species (,93 % sequence similarity). Strains 2000) in triplicate. The plates were incubated at 25 uCin AAM1T and AAT1T showed highest levels of sequence the dark for 7 days under aerobic conditions. Individual similarity to the type strains of Agarivorans albus (91.2– colonies that appeared to be agarolytic were picked off and 92.4 %; Kurahashi & Yokota, 2004), eight Alteromonas purified by successive streaking on PY plates. Maintenance species (84.9–87.1 %; Bowman & McMeekin, 2005; Chiu et of the isolates in our laboratory was performed regularly at al., 2007; Ivanova et al., 2005; Martı´nez-Checa et al., 2005; intervals of 3–4 months by inoculating early stationary Van Trappen et al., 2004a; Yoon et al., 2003, 2004), two phase cultures grown in PY broth into 7/10-strength Aestuariibacter species (86.0–87.0 %; Yi et al., 2004), seawater at a ratio of 1 : 25 (v/v). Maintenance cultures Bowmanella denitrificans (86.1–86.7 %; Jean et al., 2006c), were kept at 20 uC under aerobic conditions. Lyophilized eight Glaciecola species (85.0–87.9 %; Baik et al., 2006; cultures of both strains were also created. Bowman et al., 1998; Matsuyama et al., 2006; Romanenko Physiological and morphological characterization of et al., 2003; Yong et al., 2007; Van Trappen et al., 2004b; AAM1T and AAT1T, including growth and other pheno- Zhang et al., 2006) and Salinimonas chungwhensis (85.9– typic properties, was carried out according to previously 86.1 %; Jeon et al., 2005). The distant relationship between described established procedures (Jean et al., 2006b), with the two novel isolates and these bacteria was also evident in modifications and additional tests as described below. the neighbour-joining tree, in which the two isolates Hydrolysis of chitin and cellulose was tested by growth of formed a stable monophyletic clade (bootstrap value, the strains on modified PY plate media containing either 100 %) located next to a sister clade comprising only 21 Agarivorans albus strains (Fig. 1). The two isolates and colloidal chitin or cellulose at 2 g l (Shieh et al., 2008). T Haemolysis was tested as described by Chiu et al. (2007). Agarivorans albus (strain MKT 106 plus other reference Utilization of various compounds as sole carbon and strains), together with the type strains of various other energy sources for growth was tested in carbohydrate/ species belonging to the Alteromonadaceae (eight mineral (CM) media (Shieh et al., 2004) plus various Alteromonas species, eight Glaciecola species, two carbon sources. Sugars and sugar alcohols were both Aestuariibacter species, S. chungwhensis and B. denitrificans) provided at 5 g l21, whereas organic acids and amino acids formed a suprageneric monophyletic clade (Fig. 1). Similar were each provided at 2 g l21. All the test cultures were results were obtained from the maximum-likelihood and incubated aerobically at 30 uC in the dark for 7 days, unless maximum-parsimony algorithms (not shown). The low stated otherwise. levels of 16S rRNA gene sequence similarity to all recognized bacterial species (,93 %), together with the Cells grown in PY broth and on PY plate medium at 30 uC phylogenetic data from the three tree-making algorithms for 7 days were used for analyses of cellular fatty acids, employed, showed that the two novel isolates could be + isoprenoid quinones and DNA G C content according to assigned to a novel genus. the methods described by Shieh et al. (2008). DNA–DNA T T hybridization between strains AAM1Tand AAT1T was Strains AAM1 and AAT1 , like Agarivorans albus and performed as described by Jean et al. (2009). species of the genera Alteromonas, Glaciecola, Aestuariibacter, Salinimonas and Bowmanella, contained Cells grown in PY broth at 30 uC for 7 days were harvested [ summed feature 3 C16 : 1v7c and/or iso-C15 : 0 2-OH (the by centrifugation. Extraction and purification of total two fatty acids could not be differentiated in the MIDI genomic DNA from the cells and PCR amplification of 16S system); 26.4–35.6 % of the total fatty acids],C v7c rRNA genes were performed according to previously 18 : 1 (27.1–31.4 %) and C16 : 0 (14.8–16.3 %) as the major fatty described methods (Jean et al., 2006b). Sequencing of the acids (Table 1). However, the fatty acid profiles of the two 16S rRNA genes, alignment and comparison of the novel isolates could be distinguished from those of closely resulting sequences with reference sequences available in related species by differences in the levels of the fatty acids GenBank, calculation of distance matrices for the aligned C18 : 1v7c (27.1–31.4 % vs 0–19.4 %), iso-C18 : 0 (1.1–6.1 % sequences and reconstruction of phylogenetic trees based vs 0 % to trace amount detected, with the exception of on the neighbour-joining, maximum-parsimony and Alteromonas addita) and iso-C16 : 0 (2.8–6.5 % vs 0–1.5 %, maximum-likelihood methods were performed as with the exception of Agarivorans albus). Other quantitat- described by Shieh et al. (2004) and Jean et al. (2006b). ive differences in the fatty acids that might serve to Stability of clusters was evaluated by bootstrap analysis of differentiate the two novel isolates from the relevant species 1000 resamplings. are listed in Table 1.
Recommended publications
  • Updating the Taxonomic Toolbox: Classification of Alteromonas Spp
    1 Updating the taxonomic toolbox: classification of Alteromonas spp. 2 using Multilocus Phylogenetic Analysis and MALDI-TOF Mass 3 Spectrometry a a a 4 Hooi Jun Ng , Hayden K. Webb , Russell J. Crawford , François a b b c 5 Malherbe , Henry Butt , Rachel Knight , Valery V. Mikhailov and a, 6 Elena P. Ivanova * 7 aFaculty of Life and Social Sciences, Swinburne University of Technology, 8 PO Box 218, Hawthorn, Vic 3122, Australia 9 bBioscreen, Bio21 Institute, The University of Melbourne, Vic 3010, Australia 10 cG.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian 11 Academy of Sciences, Vladivostok 690022, Russian Federation 12 13 *Corresponding author: Tel: +61-3-9214-5137. Fax: +61-3-9214-5050. 14 E-mail: [email protected] 15 16 Abstract 17 Bacteria of the genus Alteromonas are Gram-negative, strictly aerobic, motile, 18 heterotrophic marine bacteria, known for their versatile metabolic activities. 19 Identification and classification of novel species belonging to the genus Alteromonas 20 generally involves DNA-DNA hybridization (DDH) as distinct species often fail to be 1 21 resolved at the 97% threshold value of the 16S rRNA gene sequence similarity. In this 22 study, the applicability of Multilocus Phylogenetic Analysis (MLPA) and Matrix- 23 Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF 24 MS) for the differentiation of Alteromonas species has been evaluated. Phylogenetic 25 analysis incorporating five house-keeping genes (dnaK, sucC, rpoB, gyrB, and rpoD) 26 revealed a threshold value of 98.9% that could be considered as the species cut-off 27 value for the delineation of Alteromonas spp.
    [Show full text]
  • Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associations
    fmicb-09-02879 December 1, 2018 Time: 14:0 # 1 ORIGINAL RESEARCH published: 04 December 2018 doi: 10.3389/fmicb.2018.02879 Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associations Klervi Crenn, Delphine Duffieux and Christian Jeanthon* CNRS, Sorbonne Université, Station Biologique de Roscoff, Adaptation et Diversité en Milieu Marin, Roscoff, France Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. The cosmopolitan diatoms Thalassiosira and Chaetoceros often dominate phytoplankton communities in marine systems. Past studies of diatom-bacterial associations have employed community- level methods and culture-based or natural diatom populations. Although bacterial assemblages attached to individual diatoms represents tight associations little is known on their makeup or interactions. Here, we examined the epibiotic bacteria of 436 Thalassiosira and 329 Chaetoceros single cells isolated from natural samples and Edited by: collection cultures, regarded here as short- and long-term associations, respectively. Matthias Wietz, Epibiotic microbiota of single diatom hosts was analyzed by cultivation and by cloning- Alfred Wegener Institut, Germany sequencing of 16S rRNA genes obtained from whole-genome amplification products. Reviewed by: The prevalence of epibiotic bacteria was higher in cultures and dependent of the host Lydia Jeanne Baker, Cornell University, United States species. Culture approaches demonstrated that both diatoms carry distinct bacterial Bryndan Paige Durham, communities in short- and long-term associations. Bacterial epibonts, commonly University of Washington, United States associated with phytoplankton, were repeatedly isolated from cells of diatom collection *Correspondence: cultures but were not recovered from environmental cells.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Indicators of Iron
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Indicators of Iron Metabolism in Marine Microbial Genomes and Ecosystems A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Shane Lahman Hogle Committee in charge: Katherine Barbeau, Chair Eric Allen Bianca Brahamsha Christopher Dupont Brian Palenik Kit Pogliano 2016 Copyright Shane Lahman Hogle, 2016 All rights reserved . The Dissertation of Shane Lahman Hogle is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION Mom, Dad, Joel, and Marie thank you for everything iv TABLE OF CONTENTS Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Table of Contents .................................................................................................................v List of Figures ................................................................................................................... vii List of Tables ..................................................................................................................... ix Acknowledgements ..............................................................................................................x Vita ..................................................................................................................................
    [Show full text]
  • Motiliproteus Sediminis Gen. Nov., Sp. Nov., Isolated from Coastal Sediment
    Antonie van Leeuwenhoek (2014) 106:615–621 DOI 10.1007/s10482-014-0232-2 ORIGINAL PAPER Motiliproteus sediminis gen. nov., sp. nov., isolated from coastal sediment Zong-Jie Wang • Zhi-Hong Xie • Chao Wang • Zong-Jun Du • Guan-Jun Chen Received: 3 April 2014 / Accepted: 4 July 2014 / Published online: 20 July 2014 Ó Springer International Publishing Switzerland 2014 Abstract A novel Gram-stain-negative, rod-to- demonstrated that the novel isolate was 93.3 % similar spiral-shaped, oxidase- and catalase- positive and to the type strain of Neptunomonas antarctica, 93.2 % facultatively aerobic bacterium, designated HS6T, was to Neptunomonas japonicum and 93.1 % to Marino- isolated from marine sediment of Yellow Sea, China. bacterium rhizophilum, the closest cultivated rela- It can reduce nitrate to nitrite and grow well in marine tives. The polar lipid profile of the novel strain broth 2216 (MB, Hope Biol-Technology Co., Ltd) consisted of phosphatidylethanolamine, phosphatidyl- with an optimal temperature for growth of 30–33 °C glycerol and some other unknown lipids. Major (range 12–45 °C) and in the presence of 2–3 % (w/v) cellular fatty acids were summed feature 3 (C16:1 NaCl (range 0.5–7 %, w/v). The pH range for growth x7c/iso-C15:0 2-OH), C18:1 x7c and C16:0 and the main was pH 6.2–9.0, with an optimum at 6.5–7.0. Phylo- respiratory quinone was Q-8. The DNA G?C content genetic analysis based on 16S rRNA gene sequences of strain HS6T was 61.2 mol %. Based on the phylogenetic, physiological and biochemical charac- teristics, strain HS6T represents a novel genus and The GenBank accession number for the 16S rRNA gene T species and the name Motiliproteus sediminis gen.
    [Show full text]
  • Which Organisms Are Used for Anti-Biofouling Studies
    Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E.
    [Show full text]
  • The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
    FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities.
    [Show full text]
  • Biodiversity of Microorganisms Colonizing the Surface of Polystyrene Samples Exposed to Different Aqueous Environments
    sustainability Article Biodiversity of Microorganisms Colonizing the Surface of Polystyrene Samples Exposed to Different Aqueous Environments Tatyana Tourova 1, Diyana Sokolova 1, Tamara Nazina 1,* , Denis Grouzdev 2 , Eugeni Kurshev 3 and Anatoly Laptev 3 1 Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] (T.T.); [email protected] (D.S.) 2 Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] 3 Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials”, State Research Center of the Russian Federation, 105005 Moscow, Russia; [email protected] (E.K.); [email protected] (A.L.) * Correspondence: [email protected]; Tel.: +7-499-135-03-41 Received: 25 March 2020; Accepted: 29 April 2020; Published: 30 April 2020 Abstract: The contamination of marine and freshwater ecosystems with the items from thermoplastics, including polystyrene (PS), necessitates the search for efficient microbial degraders of these polymers. In the present study, the composition of prokaryotes in biofilms formed on PS samples incubated in seawater and the industrial water of a petrochemical plant were investigated. Using a high-throughput sequencing of the V3–V4 region of the 16S rRNA gene, the predominance of Alphaproteobacteria (Blastomonas), Bacteroidetes (Chryseolinea), and Gammaproteobacteria (Arenimonas and Pseudomonas) in the biofilms on PS samples exposed to industrial water was revealed. Alphaproteobacteria (Erythrobacter) predominated on seawater-incubated PS samples. The local degradation of the PS samples was confirmed by scanning microscopy. The PS-colonizing microbial communities in industrial water differed significantly from the PS communities in seawater.
    [Show full text]
  • Session #1 Abstracts
    Poster Session 1 1. A Comparative Genomics Approach to Understanding the Roles of P53 Binding Sites Nicole Pelletier, Adrian Acuna Higaki and Lei Zhou, University of Florida Cancer is one of the leading causes of mortality worldwide, with over 8 million deaths per year. In more than 50% of cancers, the transcription factor P53 comes into play, serving as a tumor suppressor that exerts distinct anti-proliferative functions in response to a variety of oncogenic stressors. Through ChIP-Seq analysis, thousands of P53 binding sites in mammalian genomes have been previously identified, yet the functionality of these binding sites remains to be established. It is hypothesized that mutations or epigenetic silencing of non-coding regulatory sequences of P53 target genes play just as an important role in cancers as do the extensively studied coding regions of p53. By using Drosophila as a model organism, a comparative genomic approach to identify functional P53 binding sites and determine their roles in tumorigenesis is proposed. To do this, a library of significant P53 binding sites must first be established by looking at upregulated and downregulated genes obtained from RNA-seq and comparing them to our ChIP-Seq data. Next, CRISPR-Cas9 will be used to generate Drosophila models containing mutations in the P53 binding sites near the Drosophila pro-apoptotic genes Hid and Rpr. Selected adult flies containing the CRISPR-Cas9 induced mutations near the specific bindings sites will undergo irradiation induced DNA damage to assess their functional importance. By using this approach we will discover functional roles of non-coding regulatory regions in tumorigenesis and contribute to apoptosis inducing cancer therapies.
    [Show full text]
  • Textile Waste and Microplastic Induce Activity and Development of Unique
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.08.939876; this version posted February 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Textile waste and microplastic induce activity and 2 development of unique hydrocarbon-degrading marine 3 bacterial communities 4 5 Elsa B. Girard1, Melanie Kaliwoda2, Wolfgang W. Schmahl1,2,3, Gert Wörheide1,3,4 and 6 William D. Orsi1,3* 7 8 1 Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, 9 80333 Munich, Germany 10 2 SNSB - Mineralogische Staatssammlung München, 80333 München, Germany 11 3 GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 12 4 SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, 80333 Munich, Germany 13 *Corresponding author (e-mail: [email protected]) 14 15 16 17 18 KEYWORDS 19 Microplastic, Fiber, Hydrocarbon-degrading bacteria, Microbial community, Pollution 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.08.939876; this version posted February 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 ABSTRACT 23 Biofilm-forming microbial communities on plastics and textile fibers are of growing interest since 24 they have potential to contribute to disease outbreaks and material biodegradability in the 25 environment.
    [Show full text]
  • Thèses Traditionnelles
    UNIVERSITÉ D’AIX-MARSEILLE FACULTÉ DE MÉDECINE DE MARSEILLE ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ THÈSE Présentée et publiquement soutenue devant LA FACULTÉ DE MÉDECINE DE MARSEILLE Le 23 Novembre 2017 Par El Hadji SECK Étude de la diversité des procaryotes halophiles du tube digestif par approche de culture Pour obtenir le grade de DOCTORAT d’AIX-MARSEILLE UNIVERSITÉ Spécialité : Pathologie Humaine Membres du Jury de la Thèse : Mr le Professeur Jean-Christophe Lagier Président du jury Mr le Professeur Antoine Andremont Rapporteur Mr le Professeur Raymond Ruimy Rapporteur Mr le Professeur Didier Raoult Directeur de thèse Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR 7278 Directeur : Pr. Didier Raoult 1 Avant-propos : Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master des Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené à respecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe et qui permet un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre à l’étudiant de commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]
  • Thalassomonas Agarivorans Sp. Nov., a Marine Agarolytic Bacterium Isolated from Shallow Coastal Water of An-Ping Harbour, Taiwan
    International Journal of Systematic and Evolutionary Microbiology (2006), 56, 1245–1250 DOI 10.1099/ijs.0.64130-0 Thalassomonas agarivorans sp. nov., a marine agarolytic bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the genus Thalassomonas Wen Dar Jean,1 Wung Yang Shieh2 and Tung Yen Liu2 Correspondence 1Center for General Education, Leader University, No. 188, Sec. 5, An-Chung Rd, Tainan, Wung Yang Shieh Taiwan [email protected] 2Institute of Oceanography, National Taiwan University, PO Box 23-13, Taipei, Taiwan A marine agarolytic bacterium, designated strain TMA1T, was isolated from a seawater sample collected in a shallow-water region of An-Ping Harbour, Taiwan. It was non-fermentative and Gram-negative. Cells grown in broth cultures were straight or curved rods, non-motile and non-flagellated. The isolate required NaCl for growth and exhibited optimal growth at 25 6C and 3 % NaCl. It grew aerobically and was incapable of anaerobic growth by fermenting glucose or other carbohydrates. Predominant cellular fatty acids were C16 : 0 (17?5 %), C17 : 1v8c (12?8 %), C17 : 0 (11?1 %), C15 : 0 iso 2-OH/C16 : 1v7c (8?6 %) and C13 : 0 (7?3 %). The DNA G+C content was 41?0 mol%. Phylogenetic, phenotypic and chemotaxonomic data accumulated in this study revealed that the isolate could be classified in a novel species of the genus Thalassomonas in the family Colwelliaceae. The name Thalassomonas agarivorans sp. nov. is proposed for the novel species, with TMA1T (=BCRC 17492T=JCM 13379T) as the type strain. Alteromonas-like bacteria in the class Gammaproteobacteria however, they are not exclusively autochthonous in the comprise a large group of marine, heterotrophic, polar- marine environment, since some reports have shown that flagellated, Gram-negative rods that are mainly non- they also occur in freshwater, sewage and soil (Agbo & Moss, fermentative aerobes.
    [Show full text]
  • Succession and Cazyme Expression of Marine Bacterial
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.416354; this version posted December 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Sweet and magnetic: Succession and CAZyme expression of marine bacterial communities encountering a mix of alginate and pectin particles Carina Bunse1,2,*, Hanna Koch3,4,*, Sven Breider3, Meinhard Simon1,3 and Matthias Wietz2,3# 1Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Germany 2Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Germany 3Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Germany 4Department of Microbiology, Radboud University Nijmegen, The Netherlands *These authors contributed equally to this work. #Corresponding author HGF-MPG Joint Research Group for Deep-Sea Ecology and Technology Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Am Handelshafen 12 27570 Bremerhaven Germany Email: [email protected] Telephone +49-471-48311454 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.416354; this version posted December 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Polysaccharide particles are an important nutrient source and microhabitat for marine bacteria. However, substrate-specific bacterial dynamics in a mixture of particle types with different polysaccharide composition, as likely occurring in natural habitats, are undescribed.
    [Show full text]