View (FOV) 210, Number of in a Level C Recommendation for INALA for Acute Acquisitions 3; Sagittal T1 Weighted: TR Range 710, TE 10, Migraine Treatment [6]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NASAL CAVITY and PARANASAL SINUSES, PTERYGOPALATINE FOSSA, and ORAL CAVITY (Grant's Dissector [16Th Ed.] Pp
NASAL CAVITY AND PARANASAL SINUSES, PTERYGOPALATINE FOSSA, AND ORAL CAVITY (Grant's Dissector [16th Ed.] pp. 290-294, 300-303) TODAY’S GOALS (Nasal Cavity and Paranasal Sinuses): 1. Identify the boundaries of the nasal cavity 2. Identify the 3 principal structural components of the nasal septum 3. Identify the conchae, meatuses, and openings of the paranasal sinuses and nasolacrimal duct 4. Identify the openings of the auditory tube and sphenopalatine foramen and the nerve and blood supply to the nasal cavity, palatine tonsil, and soft palate 5. Identify the pterygopalatine fossa, the location of the pterygopalatine ganglion, and understand the distribution of terminal branches of the maxillary artery and nerve to their target areas DISSECTION NOTES: General comments: The nasal cavity is divided into right and left cavities by the nasal septum. The nostril or naris is the entrance to each nasal cavity and each nasal cavity communicates posteriorly with the nasopharynx through a choana or posterior nasal aperture. The roof of the nasal cavity is narrow and is represented by the nasal bone, cribriform plate of the ethmoid, and a portion of the sphenoid. The floor is the hard palate (consisting of the palatine processes of the maxilla and the horizontal portion of the palatine bone). The medial wall is represented by the nasal septum (Dissector p. 292, Fig. 7.69) and the lateral wall consists of the maxilla, lacrimal bone, portions of the ethmoid bone, the inferior nasal concha, and the perpendicular plate of the palatine bone (Dissector p. 291, Fig. 7.67). The conchae, or turbinates, are recognized as “scroll-like” extensions from the lateral wall and increase the surface area over which air travels through the nasal cavity (Dissector p. -
Lecture 7 Anatomy the PTERYGOPALATINE FOSSA
د.احمد فاضل القيسي Lecture 7 Anatomy THE PTERYGOPALATINE FOSSA The pterygopalatine fossa lies beneath the posterior surface of the maxilla and the pterygoid process of the sphenoid bone. The pterygopalatine fossa contains the maxillary nerve, the maxillary artery (third part) and the pterygopalatine parasympathetic ganglion. Boundaries Anteriorly: posterior surface of maxilla. Posteriorly: anterior margin of pterygoid process below and greater wing of sphenoid above. Medially: perpendicular plate of palatine bone. Superiorly: greater wing of sphenoid. Laterally: communicates with infratemporal fossa through pterygomaxillary fissure Communications and openings: 1. The pterygomaxillary fissure: transmits the maxillary artery from the infratemporal fossa, the posterior superior alveolar branches of the maxillary division of the trigeminal nerve and the sphenopalatine veins. 2. The inferior orbital fissure: transmits the infraorbital and zygomatic branches of the maxillary nerve, the orbital branches of the pterygopalatine ganglion and the infraorbital vessels. 3. The foramen rotundum from the middle cranial fossa, occupying the greater wing of the sphenoid bone and transmit the maxillary division of the trigeminal nerve 4. The pterygoid canal from the region of the foramen lacerum at the base of the skull. The pterygoid canal transmits the greater petrosal and deep petrosal nerves (which combine to form the nerve of the pterygoid canal) and an accompanying artery derived from the maxillary artery. 5. The sphenopalatine foramen lying high up on the medial wall of the fossa.This foramen communicates with the lateral wall of the nasal cavity. It transmits the nasopalatine and posterior superior nasal nerves (from the pterygopalatine ganglion) and the sphenopalatine vessels. 6. The opening of a palatine canal found at the base of the fossa. -
Extended Endoscopic Endonasal Approach to the Pterygopalatine Fossa: Anatomical Study and Clinical Considerations
Neurosurg Focus 19 (1):E5, 2005 Extended endoscopic endonasal approach to the pterygopalatine fossa: anatomical study and clinical considerations LUIGI M. CAVALLO, M.D., PH.D., ANDREA MESSINA, M.D., PAUL GARDNER, M.D., FELICE ESPOSITO, M.D., AMIN B. KASSAM, M.D., PAOLO CAPPABIANCA, M.D., ENRICO DE DIVITIIS, M.D., AND MANFRED TSCHABITSCHER, M.D. Department of Neurological Sciences, Division of Neurosurgery, Università degli Studi di Napoli Federico II, Naples, Italy; Microsurgical and Endoscopic Anatomy Study Group, University of Vienna, Austria; and Center for Image-Guided and Minimally Invasive Neurosurgery, Department of Neurosurgery, University of Pittsburgh Medical Center-Presbyterian, Pittsburgh, Pennsylvania Object. The pterygopalatine fossa is an area located deep in the skull base. The microsurgical transmaxillary–trans- antral route is usually chosen to remove lesions in this region. The increasing use of the endoscope in sinonasal func- tional surgery has more recently led to the advent of the endoscope for the treatment of tumors located in the pterygo- palatine fossa as well. Methods. An anatomical dissection of three fresh cadaveric heads (six pterygopalatine fossas) and three dried skull base specimens was performed to evaluate the feasibility of the approach and to illustrate the surgical landmarks that are useful for operations in this complex region. The endoscopic endonasal approach allows a wide exposure of the pterygopalatine fossa. Furthermore, with the same access (that is, through the nostril) it is possible to expose regions contiguous with the pterygopalatine fossa, either to visualize more surgical landmarks or to accomplish a better lesion removal. Conclusions. In this anatomical study the endoscopic endonasal approach to the pterygopalatine fossa has been found to be a safe approach for the removal of lesions in this region. -
Chapter One: Introduction
CHAPTER ONE: INTRODUCTION 1 1.1 Introduction With the growing need for rehabilitation of the edentulous anterior maxilla, the anatomy of this region has become very important; this is especially with implant procedures where the dental implant may interfere with the incisive canal and its contents. It is further reported that more care must be taken with females and younger patients during the immediate implant placement (at the mid-root level of maxillary central incisor) due to the root proximity to incisive or nasopalatine canal (Mardinger et al., 2008). It can be safely stated that the interference between dental implant and incisive canal and its contents may jeopardize a successful implant placement. This interference actually may cause non-osseointegration of implant or lead to sensory dysfunction. Therefore it is important to evaluate and consider the presence of incisive canal and its morphology (size and shape) prior to surgical procedures to avoid any complications (Mraiwa et al., 2004). To avoid the risk of injury to the incisive canal and its contents, a study was undertaken to determine the position and morphology (size and shape) of the incisive canal amongst Malaysians who ethnically belonged to the Malay and Chinese ethnicity groups. 1.2 Statement of problem The incisive canal and its opening, the incisive foramen is in close proximity to the upper central incisor. Any surgical procedure in this area may cause damage to the neurovascular bundle in the canal. It is therefore necessary to determine if there are any significant anthropological variations of these structures and whether these variations are useful for forensic applications. -
Pterygopalatine Ganglion
nd Dr.Ban I.S. head & neck anatomy 2 y جامعة تكريت كلية طب اﻻسنان مادة التشريح املرحلة الثانية أ.م.د. بان امساعيل صديق 6102/6102 nd Dr.Ban I.S. head & neck anatomy 2 y Pterygopalatine fossa: The pterygopalatine fossa is a cone-shaped depression , It is located between the maxilla, sphenoid and palatine bones, and communicates with other regions of the skull and facial skeleton via several canals and foramina. Boundaries : Anterior: Posterior wall of the maxilla. Posterior: Pterygoid process of the sphenoid bone. Inferior: Palatine bone. At the bottom of the fossa, the pyramidal process of the palatine bone articulates with the lateral pterygoid plate and maxilla and forming the narrow floor of the pterygopalatine fossa. Superior: body of the sphenoid and the Inferior orbital fissure. Medial: Perpendicular plate of the palatine bone Lateral: Pterygomaxillary fissure Pterygopalatine fossa contain , 3rd part of maxillary artery, maxillary nerve and its branches and pterygopalatine ganglion. nd Dr.Ban I.S. head & neck anatomy 2 y Maxillary vessels The 3rd part of maxillary artery passes through the pterygomaxillary fissure, enters the pterygopalatine fossa in front of the ganglion and gives off its branches. Veins accompany the arteries and, passing through the fossa, emerge at the pterygomaxillary fissure to drain into the pterygoid plexus. Maxillary nerve The maxillary nerve arises from the trigeminal ganglion in the middle cranial fossa. It passes forward in the lateral wall of the cavernous sinus and leaves the skull through the foramen rotundum and crosses the pterygopalatine fossa to enter the orbit through the inferior orbital fissure. -
Maxillary Nerve Block Via the Greater Palatine Canal: an Old Technique Revisited
Review Article Maxillary nerve block via the greater palatine canal: An old technique revisited Georges Aoun1,2, Ibrahim Zaarour1, Sayde Sokhn3, Ibrahim Nasseh3 1Department of Oral Pathology and Diagnosis, 2Department of Fundamental Sciences and 3Department of Dentomaxillofacial Radiology and Imaging, School of Dentistry, Lebanese University, Beirut, Lebanon Corresponding author (email: <[email protected]>) Dr. Georges Aoun, Departments of Oral Pathology and Diagnosis and Fundamental Sciences, School of Dentistry, Lebanese University, Beirut, Lebanon. Abstract Background: Maxillary nerve block through the greater palatine canal is rarely adopted by dental practitioners due to lack of experience in the technique at hand which may lead into several complications. Nevertheless, it is an excellent method to achieve profound anesthesia in the maxilla. This review focuses on the anatomy as well as the indications, contraindications, and complications associated with this technique. Materials and Methods: A literature search was performed using the scientific databases (PubMed and Google Scholar) for articles published up to December 2014 in English, using the key words “maxillary nerve block via the greater palatine canal.” A total of 34 references met the inclusion criteria for this review and were selected. Conclusion: Block of the maxillary nerve through the greater palatine canal is a useful technique providing profound anesthesia in the hemi‑maxilla, if practiced properly. Key words: Anesthesia, cone beam computed tomography, greater -
Pterygo Fossa
Pterygopalatine Fossa Alex Meredith, PhD The ptergopalatine fossa is located medial (deep) to the infratemporal region. From a lateral view, its shape can be thought to outline a quadrilateral whose inferior aspect is narrower than its top. The walls of the pterygopalatine fossa can be imagined to be constituted by four such quadrilaterals. The pterygopalatine fossa contains the pterygopalatine ganglion, nerve branches to and from the ganglion, and the third part of the maxillary artery and its branches. Fig 1 Roof: None, but is related, superiorly, to the greater wing of sphenoid. Walls: each is formed by portions of two cranial bones: 1. Lateral: Pterygoid plate, posteriorly Maxilla, anteriorly 2. Anteriorly: Maxilla, laterally Palatine, medially 3. Medial: Palatine, anteriorly Body of Sphenoid, posteriorly 4. Posterior: Body of Sphenoid, medially Pterygoid plate, laterally Floor: None, but the fossa is directly continuous with a canal in the palatine bone (“palatine canal”) that leads inferiorly to the greater and lesser palatine foramina. Foramina: 1. Lateral: Pterygomaxillary fissure, the opening between the pterygoid plate and posterior surface of the maxilla. 2. Anterior: Inferior orbital fissure: a groove in the maxilla 3. Medial: Sphenopalatine foramen: the body of the sphenoid bone meets a notch in the palatine bone. 4. Posterior: a. Pharvngeal canal (often a groove): at the juntion of posterior and medial walls, runs posterior medial direction towards the nasopharynx and auditory tube. b. Pterygoid canal: runs posteriorly through the base of the phenoid sinus. c. Foramen rotundum: enters posterosuperiorly. Fig 2 Numbers 114 below correspond with figure 2. 1. Maxillary a., enters through pteygomaxillary fissure. -
Pharynx, Larynx, Nasal Cavity and Pterygopalatine Fossa
Pharynx, Larynx, Nasal cavity And Pterygopalatine Fossa Mikel H. Snow, Ph.D. Dental Anatomy [email protected] July 29, 2018 Pharynx Food & Air Passage Pharynx The pharynx is a skeletal muscle tube that opens anteriorly with 3 regions. The upper part communicates with nasal cavity, the middle communicates with oral cavity, and the lower communicates with the larynx. Nasal cavity Nasal Oral cavity cavity Larynx Air Nasopharynx: between Oral sphenoid sinus & uvula Food/ cavity Oropharynx: between uvula & epiglottis drink Laryngopharynx: between epiglottis & esophagus Esophagus Trachea The posterior and lateral walls are 3 skeletal muscles (constrictors) that propel food/liquid inferiorly to the esophagus. Constrictors innervated by CNX. Additional muscles elevate the pharynx (stylopharyngeus is external). Stylopharyngeus innervated by CNIX. Stylopharyngeus Superior constrictor Middle constrictor Inferior constrictor Two additional internal muscles we’ll get to later… Key relationship: Glossopharyngeal nerve wraps around stylopharyngeus muscle. CN IX wraps around stylopharyngeus muscle and Stylopharyngeus innervates it. Pharyngeal constrictors Pharynx Interior 1 Nasopharynx: 1. Pharyngeal tonsils 2. Auditory tube ostia 2 3 3. Salpingopharyngeal fold 4 4 Oropharynx: 4. Palatine tonsils 5 5 Laryngopharynx: Slit open 5. Piriform recess constrictors to examine interior Lateral Wall of Pharynx 5. Salpingopharyngeus muscle 6. Levator veli palatini muscle 1. Pharyngeal tonsils 7. Tensor veli palatini muscle 2. Torus tubarius 8. Palatine tonsil 3. -
The Pterygopalatine Fossa and Its Connections
Where is it? • Deep to the infratemporal fossa • Anterior to the pterygoid process • Behind the posterior wall of the maxillary sinus (perpendicular plate of the palatine bone) Pterygopalatine fossa and its connections David R. DeLone, MD ©2017 MFMER | slide-1 ©2017 MFMER | slide-2 What’s in it? What’s in it? ©2017 MFMER | slide-3 ©2017 MFMER | slide-4 Autonomic function What goes in and out of it? • Posterior • Parasympathetic • Foramen rotundum • Parasympathetic preganglionic fibers coming along Vidian nerve (GSPN) • Vidian canal synapse at pterygopalatine ganglion. • Palatovaginal (pharyngeal) canal • Postganglionic fibers pass along the pterygopalatine nerves, to maxillary nerve, zygomatic nerve (inferior orbital fissure), and then along • Vomerovaginal (basipharyngeal) canal zygomaticotemporal nerve. The fibers then communicate with the lacrimal • Medial branch of the ophthalmic nerve. • Sphenopalatine foramen • Supplies the lacrimal gland and mucosa of nasopharynx and nasal cavity. • Lateral • Sympathetic • Pterygomaxillary fissure • Postganglionic fibers arising from superior cervical ganglion pass along the carotid plexus, become deep petrosal nerve, which joins the GSPN to form • Anterosuperior the Vidian nerve. • Inferior orbital fissure • Sympathetic fibers pass through pterygopalatine ganglion without synapse and then distribute analogously to the parasympathetic fibers. • Inferior • Greater and lesser palatine foramina ©2017 MFMER | slide-5 ©2017 MFMER | slide-6 What goes in and out of it? • Posterior • Foramen rotundum (Meckel’s cave) • Maxillary nerve (V2) • Artery of foramen rotundum • Emissary veins • Vidian canal (foramen lacerum) • Vidian nerve and Vidian artery • Greater superficial petrosal nerve • Deep petrosal nerve • Palatovaginal (pharyngeal) canal • Pterygovaginal artery • Pharyngeal nerve to Eustachian tube • Vomerovaginal (basipharyngeal) canal • Branch of the sphenopalatine artery Vidus Vidius Tubbs Neurosurgery 2006 (Guido Guidi) Rumboldt AJR 2006 circa 1547. -
Anatomic Moment: Osseous Anatomy of the Pterygopalatine Fossa
Anatomic Moment Osseous Anatomy of the Pterygopalatine Fossa David L. Daniels, Leighton P. Mark, John L. Ulmer, Mahmood F. Mafee, Jim McDaniel, Nirav C. Shah, Scott Erickson, Lowell A. Sether, and Safwan S. Jaradeh The pterygopalatine fossa (PPF) represents a major dicular plate is variably contoured and fuses with the pathway of spread of malignancy and infection from medial surface of the medial pterygoid plate (Fig 3). the head and neck into the skull base. The ability to At the upper part of the perpendicular plate, pro- precisely locate tumor and infection on CT and MR cesses are present that fuse with the maxillary and imaging studies is crucial for performing biopsies and sphenoid bones. The orbital process extends supero- planning treatment. laterally to attach to the posterior margin of the Determining the exact margins of the PPF is prob- orbital surface of the maxillary bone and partly to the lematic, because they are not strictly defined even in inferior surface of the body of the sphenoid bone the anatomic literature. The obliquely oriented upper (Figs 3A and B, and 5B and C). The sphenoidal part of the perpendicular plate of the palatine bone process extends superomedially to attach to the base and the pterygoid process form a small pyramidal- of the medial pterygoid plate (Figs 3A and B, and 4B shaped fossa that probably was called the PPF be- and E). At the junction of the perpendicular and cause it contains the pterygopalatine ganglion (1) (Fig horizontal plates, the pyramidal process attaches to 1B and C). However, axial CT studies define a larger the maxillary bone and extends posterolaterally to fossa, which incorporates the pyramidal-shaped fossa attach to the angled inferior margins of the pterygoid and has its posterolateral margin at the lateral edges plates (Figs 2A; 4B, C, and E; and 5B and C). -
SPHENOPALATINE ARTERY (SPA) LIGATION Darlene Lubbe
OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY SPHENOPALATINE ARTERY (SPA) LIGATION Darlene Lubbe SPA ligation is generally indicated for intractable posterior epistaxis that does not Frontal sinus settle following 24hrs of adequate anterior Post ethmoidal foramen Orbital process pal bone Anterior ethmoidal Sphenopalatine for and posterior nasal packing, and for recur- foramen rent unilateral epistaxis unrelated to an For rotundum underlying systemic disease or a drug rela- ted blood dyscrasia. Lacrimal fossa Uncinate Anatomy of the sphenopalatine artery Max sinus ostium Pterygoid canal Inferior turbinate Palatine bone The sphenopalatine artery (SPA) is one of Lateral pterygoid the terminal branches of the internal maxil- plate lary artery (IMA) which originates from the Pyramidal process palatine external carotid artery system. It provides bone 90% of the blood supply to the nasal cavity Figure 2: Picture showing the left maxil- i.e. the lateral nasal wall, the turbinates and lary sinus and the sphenopalatine foramen most of the nasal septum. The anterior and located behind the posterior wall of the superior nasal septum is supplied by the maxillary sinus anterior and posterior ethmoidal arteries which originate from the ophthalmic artery (internal carotid artery system). The sphe- nopalatine artery is one of six terminal branches of the 3rd or pterygomaxillary por- tion of the internal maxillary artery (Figure 1). These 6 branches all originate in the ptergyopalatine fossa which is located behind the medial part of the posterior wall of the maxillary sinus (Figures 2, 3 & 4). Figure 3: Axial CT scan of sinuses with red arrow pointing to the SPA and pterygo- palatine fossa, and the yellow arrow poin- ting to the christa ethmoidalis The sphenopalatine artery may have 1-10 branches, with 97% of patients having >2 branches and 67% having >3 branches. -
Connections of the Skull Made By: Dr
Connections of the skull Made by: dr. Károly Altdorfer Revised by: dr. György Somogyi Semmelweis University Medical School - Department of Anatomy, Histology and Embryology, Budapest, 2002-2005 ¡ © ¡ © ¡ ¡ ¡ § § § § § § § § § ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¢ £ ¤ ¥ ¥ ¢ £ ¤ ¥ ¨ ¤ ¢ ¤ ¥ ¨ ¢ ¨ ¢ ¢ ¤ ¥ ¨ ¥ ¢ £ ¥ ¥ ¢ £ £ ¤ ¥ ¥ ¢ £ ¢ ¥ ¨ ¥ ¤ ¥ ¨ £ ¢ ¢ ¢ ¤ ¥ ¢ ¢ # " 4 4 + 3 9 : 4 5 + + 3 4 + + 1 3 6 6 6 6 ! ) ) ) ) ) ) ) ) ) ) ) % / 0 7 , / 0 , % , ( ( % & ( % ( & , ( % / 0 , / 0 7 , ( , % / % ( ( & , % % , ( & % % . % / % 0 , 0 0 , ' * $ ' ' * 8 $ ' * ' - 2 $ = < ; ? @ > B A Nasal cavity 1) Common nasal meatus From where (to where) Contents Cribriform plate Anterior cranial fossa Olfactory nerves (I. n.) and foramina Anterior ethmoidal a. and n. Piriform aperture face Incisive canal Oral cavity Nasopalatine a. "Y"-shaped canal Nasopalatine n. (of Scarpa) (from V/2 n.) Sphenopalatine foramen Pterygopalatine fossa Superior posterior nasal nerves (from V/2 n.) or pterygopalatine foramen Sphenopalatine a. Choana - nasopharynx - Aperture of sphenoid sinus Sphenoid sinus -- ventillation (paranasal sinus!) in the sphenoethmoidal recess 2) Superior nasal meatus Posterior ethmoidal air cells (sinuses) -- ventillation (paranasal sinuses!) 3) Middle nasal meatus Anterior and middle ethmoidal air cells -- ventillation (paranasal sinuses!) (sinuses) Semilunar hiatus (Between ethmoid bulla and uncinate process) • Anteriorly: Ethmoidal infundibulum Frontal sinus -- ventillation (paranasal sinus!) • Behind: Aperture of maxillary sinus