DEPA 2050 Study Report

Total Page:16

File Type:pdf, Size:1020Kb

DEPA 2050 Study Report DEPA 2050 Study Report DEPA 2050 Development Pathways for Aviation up to 2050 - Final Report - DEPA 2050 Study Report Title Development Pathways for Aviation up to 2050 – Study Report Project Acronym DEPA 2050 Publisher German Aerospace Center Authors Leipold, Alexandra; Aptsiauri, Gubaz; Ayazkhani, Amir; Bauder, Uwe; Becker, Richard-Gregor; Berghof, Ralf; Claßen, Axel; Dadashi, Alireza; Dahlmann, Katrin; Dzikus, Niclas; Flüthmann, Nico; Grewe, Volker; Göhlich, Lukas; Grimme, Wolfgang; Günther; Yves; Jaksche, Roman; Jung, Martin; Knabe, Franz; Kutne, Peter; Le Clercq, Patrick; Pabst, Holger; Poggel, Steffen; Staggat, Martin; Wicke, Kai; Wolters, Florian; Zanger, Jan; Zill, Thomas Page 2 DEPA 2050 Study Report A note on Covid-19 The DEPA 2050 study was conceptualised and, to a large extent, already conducted before the full impact of the Covid-19 pandemic became apparent. Thus, the results of this study have to be regarded and interpreted in the light of a pre-Covid 19 environment. However, major changes through the Covid-19 pandemic are illustrated and discussed in the relevant sections of this report to provide additional information on potential impacts on the results and the situation of air transport as it is today. Page 3 DEPA 2050 Study Report Content 1. Introduction ................................................................................................................... 11 1.1. Motivation for the Project ........................................................................................ 11 1.2. State of Research .................................................................................................... 12 1.3. Research Objectives ................................................................................................. 15 2. Project DEPA 2050 ......................................................................................................... 16 2.1. Objectives ............................................................................................................... 16 2.2. Structure ................................................................................................................. 18 2.3. Methodology .......................................................................................................... 19 3. Air Transport System Development up to 2050 ........................................................... 24 3.1. DEPA 2050 Scenario Assumptions ........................................................................... 24 3.1.1. Methodological Approach ..................................................................................... 24 3.1.2. Relevant Drivers and Factors .................................................................................. 25 3.1.3. Scenario Taxonomy ............................................................................................... 29 3.1.4. Framework Developments ..................................................................................... 31 3.1.5. Vehicle-specific Scenarios ...................................................................................... 42 3.2. COVID-19 impact on aviation and DEPA 2050 scenarios ........................................... 56 3.3. Demand Forecast .................................................................................................... 61 3.3.1. Traffic Forecast Methodology for established Vehicle Concepts ............................... 61 3.3.2. Traffic Forecast Results for established Vehicle Concepts ......................................... 65 3.3.3. Traffic Forecast Results and Methodology for Supersonic Aircraft ............................ 71 3.3.4. Traffic Forecast Results and Methodology for Urban Air Mobility ............................. 74 3.4. Fleet Forecast .......................................................................................................... 77 3.4.1. Fleet Forecast Methodology ................................................................................... 77 3.4.2. Fleet Forecast Results ............................................................................................. 83 3.5. Expected Development and Efficiency Gains in Airport and Terminal Management .... 88 4. Technological Developments/Technology Roadmaps ................................................. 94 4.1. Technological Developments “Passenger Aircraft“ ................................................... 94 4.1.1. Propulsion ............................................................................................................. 94 4.1.2. Aircraft Technology ............................................................................................... 98 4.2. Aircraft Configuration Roadmaps .......................................................................... 103 4.3. Passenger Aircraft within DEPA 2050 ..................................................................... 105 4.3.1. Seat Category 1-4 ............................................................................................... 105 4.3.2. Seat Category 5-12 ............................................................................................. 108 4.4. Hydrogen Aircraft ................................................................................................. 116 4.5. Technological Developments “ATM“ ..................................................................... 120 4.5.1. ATM Roadmaps on World Level and European Level ............................................. 120 4.5.2. Expected Efficiency Gains in ATM......................................................................... 126 Page 4 DEPA 2050 Study Report 4.5.3. ATM Efficiency Measurements and Forecasts ........................................................ 128 4.6. Technological Developments “Aviation MRO” ....................................................... 135 4.6.1. Technological Trends in Aviation MRO ................................................................. 135 4.6.2. Implications of Sustainable Propulsion Concepts for Future Aviation MRO ............. 140 4.7. Technological Developments “Synthetic Fuels/Alternative Fuels“ ............................. 146 4.7.1. Current Status of SAF – Approval and Technology ................................................ 146 4.7.2. Current SAF Development ................................................................................... 148 4.7.3. Potential Limitations and Opportunities ................................................................ 149 4.7.4. Assumptions for the DEPA 2050 Scenarios ........................................................... 150 4.8. Technological Developments “Advanced Vehicle Concepts“ ................................... 153 4.8.1. Technological Developments “Supersonic Aircraft“ .............................................. 153 4.8.2. Technological Developments “Rotorcraft“ ............................................................ 158 4.8.3. Technological Developments “Urban Air Mobility“ ............................................... 159 5. Impact Analysis for the DEPA 2050 Scenarios ............................................................ 166 5.1. Results on Mobility and Vehicle Productivity ........................................................... 166 5.1.1. Mainliner/regional aircraft .................................................................................... 166 5.1.2. Small air transport ............................................................................................... 179 5.2. Results on Emissions and Climate Impact ............................................................... 182 5.2.1. Methodology of Emission Inventories ................................................................... 182 5.2.2. Emission Inventory Results ................................................................................... 182 5.2.3. Outcome on Climate Impact ................................................................................ 189 5.2.4. Estimation of CO2 Emissions of Supersonic Air Transport ...................................... 196 5.3. Results on Aircraft Noise ........................................................................................ 196 5.3.1. Preliminary Analytical Investigation of Rotor-Stator Interaction (RSI) Noise for a Distributed Propulsion System .............................................................................. 197 5.3.2. Analytical Prediction of Boundary Layer Ingestion (BLI) Noise ................................. 200 5.3.3. Literature Review ................................................................................................. 203 5.3.4. Conclusion of Aircraft Noise Studies ..................................................................... 206 5.3.5. State of Research in Aircraft Noise Impact Assessments ........................................ 206 5.4. Results on Economy .............................................................................................. 209 5.4.1. Overview ............................................................................................................. 209 5.4.2. Results on global scale ......................................................................................... 211 5.4.3. Results for EU level .............................................................................................. 213 5.5. Evaluation of Results ............................................................................................. 214 6. Conclusion ..................................................................................................................
Recommended publications
  • Aviation Safety Regulation
    * Paul Stephen Dempsey McGill University Institute of Air & Space Law Some slides from Singapore CAA, France BEA, US FAA, ICAO and various websites. *The Chicago Convention of 1944 created the International Civil Aviation Organization [ICAO] and gave it quasi-legislative authority to promulgate standards and recommended practices [SARPs] as Annexes to the Chicago Convention. These standards are binding upon member States that fail to notify ICAO of the differences in their domestic law. * * Article 12 of the Convention requires every contracting State to keep its regulations uniform, to the greatest extent possible, with those established under the Convention. * Article 37 attempts to achieve uniformity in air navigation, by requiring that every contracting State cooperate in achieving the “highest practicable degree of uniformity in regulations, standards, procedures, and organization in relation to aircraft personnel, airways and auxiliary services in all matters in which uniformity will facilitate and improve air navigation.” * The sentence that follows provides, “[T]o this end [ICAO] shall adopt and amend from time to time . international standards and recommended practices and procedures” addressing various aspects of air navigation. * Therefore, ICAO’s 191 member States have an affirmative obligation to conform their domestic laws, rules, and regulations to the international leveling standards adopted by ICAO. * * Annex 1 (Personnel Licensing), Annex 6 (Operation of Aircraft), and Annex 8 (Airworthiness of Aircraft) require ICAO’s member States to promulgate domestic laws and regulations to certify airmen, aircraft, and aircraft operators as airworthy and competent to carry out safe operations in international aviation. * Subject to the notification of differences under Article 38 of the Convention, the legal regime effectively assumes that States are in compliance with these safety mandates.
    [Show full text]
  • Concorde Is a Museum Piece, but the Allure of Speed Could Spell Success
    CIVIL SUPERSONIC Concorde is a museum piece, but the allure Aerion continues to be the most enduring player, of speed could spell success for one or more and the company’s AS2 design now has three of these projects. engines (originally two), the involvement of Air- bus and an agreement (loose and non-exclusive, by Nigel Moll but signed) with GE Aviation to explore the supply Fourteen years have passed since British Airways of those engines. Spike Aerospace expects to fly a and Air France retired their 13 Concordes, and for subsonic scale model of the design for the S-512 the first time in the history of human flight, air trav- Mach 1.5 business jet this summer, to explore low- elers have had to settle for flying more slowly than speed handling, followed by a manned two-thirds- they used to. But now, more so than at any time scale supersonic demonstrator “one-and-a-half to since Concorde’s thunderous Olympus afterburn- two years from now.” Boom Technology is working ing turbojets fell silent, there are multiple indi- on a 55-seat Mach 2.2 airliner that it plans also to cations of a supersonic revival, and the activity offer as a private SSBJ. NASA and Lockheed Martin appears to be more advanced in the field of busi- are encouraged by their research into reducing the ness jets than in the airliner sector. severity of sonic booms on the surface of the planet. www.ainonline.com © 2017 AIN Publications. All Rights Reserved. For Reprints go to Shaping the boom create what is called an N-wave sonic boom: if The sonic boom produced by a supersonic air- you plot the pressure distribution that you mea- craft has long shaped regulations that prohibit sure on the ground, it looks like the letter N.
    [Show full text]
  • Aviation Week & Space Technology
    $14.95 JUNE 29-JULY 12, 2020 Quest for Speed BOOM XB-1 TAKES SHAPE RICH MEDIA EXCLUSIVE Europe’s Hydrogen- Powered Aircraft Push PRIME TIME FOR How Safe Are HYPERSONICS Aircraft Cabins? Canada’s Fighter RICH MEDIA EXCLUSIVE Strategy Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa.
    [Show full text]
  • Feeling Supersonic
    FlightGlobal.com May 2021 How Max cuts hurt Boeing backlog Making throwaway Feeling aircraft aff ordable p32 Hydrogen switch for Fresson’s Islander p34 supersonic Will Overture be in tune with demand? p52 9 770015 371327 £4.99 Big worries Warning sign We assess A380 Why NOTAM outlook as last burden can delivery looms baffl e pilots 05 p14 p22 Comment Prospects receding Future dreaming Once thought of as the future of air travel, the A380 is already heading into retirement, but aviation is keenly focused on the next big thing Airbus t has been a rapid rise and fall for on who you ask. As we report else- Hydrogen is not without its the Airbus A380, which not so where in this issue, there are those issues, of course, but nonethe- long ago was being hailed as the banking on supersonic speeds be- less it appears more feasible as a future of long-haul air travel. ing the answer. power source for large transport IThe superjumbo would be, The likes of Aerion and Boom Su- aircraft than batteries do at pres- forecasts said, the perfect tool for personic view the ability to shave ent, even allowing for improving airlines operating into mega-hubs significant time from journeys as a energy densities. such as Dubai that were beginning unique selling point. However, there are others who to spring up. While projects are likely to be see hydrogen through a differ- But the planners at Airbus failed technologically feasible, to be able ent filter. They argue that so- to take into consideration the to sell these new aircraft in signif- called sub-regional aircraft – the efficiency gains available from icant volumes their manufacturers Britten-Norman Islander, among a new generation of widebody will have to ensure that supersonic others – can be given fresh impetus twinjets that allowed operators to flight is not merely the domain of if a fuel source can be found that is open up previously uneconomical the ultra-rich.
    [Show full text]
  • Alex Cosmas Expert Associate Partner Mckinsey & Company
    Alex Cosmas Expert Associate Partner McKinsey & Company Alex Cosmas Expert Associate Partner McKinsey & Company Private information about my Airline’s fares, products, My cards cards schedule Competitor's itineraries Community Public information cards in play schedules, fares available at cards time of purchase All “breadcrumbs” left from Opponent’s Belief of opponent’s strength of customer interaction with airline cards hand Action: call or fold Action: correctly bundle and Opponent’s information is encrypted price an ancillary package and revealed through “tells” (signals) TICKET PURCHASE SEAT SELECTION LUGGAGE BOARDING GROUND TRANSPORTATION • PNR Data: Origin, dest., • Premium seat purchase • Number of bags • Priority purchase • Mode routing, etc. • Weight • Boarding time • Destination PRE-FLIGHT FLIGHT POST-FLIGHT SEARCH CHANGES CHECK-IN AIRPORT ACTIVITY ONBOARD ANCILLARY REVIEWS • Kind of tickets searched for • Change dates • Check-in platform • Travel path • Wi Fi • Official complaints (refundable, one- way) • Change types (class, • Check-in time • Purchases • Food/beverage • Social media/blog • Available fares at time of routing, etc.) reviews purchase Ticket info viewed A COGNITIVE MODEL OF THE AIRLINE CONSUMER • Willingness-to-pay • Desired • Buy-down probability destinations • No-show probability • Desired product • Change probability • Desired aircraft configuration • Desired ancillary purchases Fare differential Itinerary Quality Market/Freq. Share Product Quality Incentivize booking of higher Incentivize booking of less Incentivize booking of less Incentivize booking away from fare on similar quality itinerary desirable routing popular carrier competitor’s higher quality product Valuation of passengers’ disutility is dependent on each individual’s cognitive model • Lives in Singapore • Purchases WiFi whenever it is available/rarely books flights without WiFi • Joseph is searching for a ticket on SQ’s website.
    [Show full text]
  • Aviation Week & Space Technology
    STARTS AFTER PAGE 34 Using AI To Boost How Emirates Is Extending ATM Efficiency Maintenance Intervals ™ $14.95 JANUARY 13-26, 2020 2020 THE YEAR OF SUSTAINABILITY RICH MEDIA EXCLUSIVE Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa.
    [Show full text]
  • W Oltoria Di Un Uo Non Man at Taman Antonio La D
    W OLTORIA DI UN USUO NON20180134382A1 MAN AT TAMAN ANTONIOLA D ( 19) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 /0134382 A1 Scholl et al. (43 ) Pub . Date : May 17 , 2018 ( 54 ) COMMERCIAL SUPERSONIC AIRCRAFT Publication Classification AND ASSOCIATED SYSTEMS AND (51 ) Int. Cl. METHODS B64C 30 / 00 (2006 .01 ) B64D 13 /08 ( 2006 . 01) ( 71) Applicant: Boom Technology, Inc. , Englewood , B64D 43 / 00 (2006 . 01 ) CO (US ) B64D 11 /06 ( 2006 .01 ) (72 ) Inventors : Nathaniel Blake Scholl, Englewood , (52 ) U . S . CI. CO (US ) ; Joe Wilding, Englewood , CO CPC . .. .. B64C 30 / 00 ( 2013 .01 ) ; B64D 13 / 08 (US ) ; Josh Krall, Englewood , CO (2013 .01 ) ; B64D 2013 /0618 (2013 .01 ) ; B64D (US ) ; Andy Berryann , Englewood , CO 11 / 064 (2014 . 12 ); B64D 43 / 00 ( 2013 .01 ) (US ) ; Michael Reid , Englewood , CO (US ) (57 ) ABSTRACT Commercial supersonic aircraft and associated systems and ( 21 ) Appl. No. : 15 /811 ,327 methods . A representative commercial supersonic aircraft includes a fuselage configured to carry a crew and between ( 22 ) Filed : Nov . 13 , 2017 20 and 60 passengers, a delta wing mounted to the fuselage , and a propulsion system carried by at least one of the wing Related U . S . Application Data and the fuselage , the propulsion system including a plurality (60 ) Provisional application No . 62 /421 , 870 , filed on Nov . of engines , at least one variable - geometry inlet , and at least 14 , 2016 . one variable - geometry nozzle . 101 103 100 102 51216 Chen 110 - - - - 000000 - -
    [Show full text]
  • Air Transport Industry Analysis Report
    Annual Analyses of the EU Air Transport Market 2016 Final Report March 2017 European Commission Annual Analyses related to the EU Air Transport Market 2016 328131 ITD ITA 1 F Annual Analyses of the EU Air Transport Market 2013 Final Report March 2015 Annual Analyses of the EU Air Transport Market 2013 MarchFinal Report 201 7 European Commission European Commission Disclaimer and copyright: This report has been carried out for the Directorate General for Mobility and Transport in the European Commission and expresses the opinion of the organisation undertaking the contract MOVE/E1/5-2010/SI2.579402. These views have not been adopted or in any way approved by the European Commission and should not be relied upon as a statement of the European Commission's or the Mobility and Transport DG's views. The European Commission does not guarantee the accuracy of the information given in the report, nor does it accept responsibility for any use made thereof. Copyright in this report is held by the European Communities. Persons wishing to use the contents of this report (in whole or in part) for purposes other than their personal use are invited to submit a written request to the following address: European Commission - DG MOVE - Library (DM28, 0/36) - B-1049 Brussels e-mail (http://ec.europa.eu/transport/contact/index_en.htm) Mott MacDonald, Mott MacDonald House, 8-10 Sydenham Road, Croydon CR0 2EE, United Kingdom T +44 (0)20 8774 2000 F +44 (0)20 8681 5706 W www.mottmac.com Issue and revision record StandardSta Revision Date Originator Checker Approver Description ndard A 28.03.17 Various K.
    [Show full text]
  • Aviation Week & Space Technology
    STARTS AFTER PAGE 34 How Air Trvel New Momentum for My Return Smll Nrrowbodies? ™ $14.95 APRIL 20-MAY 3, 2020 SUSTAINABLY Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa.
    [Show full text]
  • GENERAL AVIATION REPORT GUIDANCE – December 2013
    GENERAL AVIATION REPORT GUIDANCE – December 2013 Changes from November 2013 version Annex C – Wick Airport updated to reflect that it is approved for 3rd country aircraft imports No other changes to November version Introduction These instructions have been produced by Border Force are designed and published for General Aviation1 pilots, operators and owners of aircraft. They help you to complete and submit a General Aviation Report (GAR) and inform you about the types of airport you can use to make your journey. The instructions explain: - What a General Aviation Report (GAR) is What powers are used to require a report Where aircraft can land and take off When you are asked to submit a General Aviation Report (GAR); When, how and where to send the GAR How to complete the GAR How GAR information is used Custom requirements when travelling to the UK The immigration and documentation requirements to enter the UK What to do if you see something suspicious What is a General Aviation Report (GAR)? General Aviation pilots, operators and owners of aircraft making Common Travel Area2 and international journeys in some circumstances are required to report their expected journey to the Police and/or the Border Force command of the Home Office. Border Force and the Police request that the report is made using a GAR. The GAR helps Border Force and the Police in securing the UK border and preventing crime and terrorism. What powers are used to require a report? An operator or pilot of a general aviation aircraft is required to report in relation to international or Channel Islands journeys to or from the UK, unless they are travelling outbound directly from the UK to a destination in the European Union as specified under Sections 35 and 64 of the Customs & 1 The term General Aviation describes any aircraft not operating to a specific and published schedule 2 The Common Travel Area is comprised of Great Britain, Northern Ireland, Ireland, the Isle of Man and the Channel Islands Excise Management Act 1979.
    [Show full text]
  • Make America Boom Again: How to Bring Back Supersonic Transport,” Eli Dourado and Samuel Hammond Show That It Is Time to Revisit the Ban
    MAKE AMERICA BOOM AGAIN How to Bring Back Supersonic Transport _____________________ In 1973, the Federal Aviation Administration (FAA) banned civil supersonic flight over the United States, stymieing the development of a supersonic aviation industry. In “Make America Boom Again: How to Bring Back Supersonic Transport,” Eli Dourado and Samuel Hammond show that it is time to revisit the ban. Better technology—including better materials, engines, and simulation capabilities—mean it is now possible to produce a supersonic jet that is more economical and less noisy than those of the 1970s. It is time to rescind the ban in favor of a more modest and sensible noise standard. BACKGROUND Past studies addressing the ban on supersonic flight have had little effect. However, this paper takes a comprehensive view of the topic, covering the history of supersonic flight, the case for supersonic travel, the problems raised by supersonic flight, and regulatory alternatives to the ban. Dourado and Hammond synthesize the best arguments for rescinding the ban on supersonic flights over land and establish that the ban has had a real impact on the development of supersonic transport. KEY FINDINGS The FAA Should Replace the Ban on Overland Supersonic Flight with a Noise Standard The sonic boom generated by the Concorde and other early supersonic aircraft was very loud, and as a result the FAA banned flights in the United States from going faster than the speed of sound (Mach 1). This ban should be rescinded and replaced with a noise standard. A noise limit of 85–90 A-weighted decibels would be similar to noise standards for lawnmowers, blenders, and motorcy- cles, and would therefore be a reasonable standard during daytime hours.
    [Show full text]
  • Aircraft Requirements for Sustainable Regional Aviation
    aerospace Article Aircraft Requirements for Sustainable Regional Aviation Dominik Eisenhut 1,*,† , Nicolas Moebs 1,† , Evert Windels 2, Dominique Bergmann 1, Ingmar Geiß 1, Ricardo Reis 3 and Andreas Strohmayer 1 1 Institute of Aircraft Design, University of Stuttgart, 70569 Stuttgart, Germany; [email protected] (N.M.); [email protected] (D.B.); [email protected] (I.G.); [email protected] (A.S.) 2 Aircraft Development and Systems Engineering (ADSE) BV, 2132 LR Hoofddorp, The Netherlands; [email protected] 3 Embraer Research and Technology Europe—Airholding S.A., 2615–315 Alverca do Ribatejo, Portugal; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Recently, the new Green Deal policy initiative was presented by the European Union. The EU aims to achieve a sustainable future and be the first climate-neutral continent by 2050. It targets all of the continent’s industries, meaning aviation must contribute to these changes as well. By employing a systems engineering approach, this high-level task can be split into different levels to get from the vision to the relevant system or product itself. Part of this iterative process involves the aircraft requirements, which make the goals more achievable on the system level and allow validation of whether the designed systems fulfill these requirements. Within this work, the top-level aircraft requirements (TLARs) for a hybrid-electric regional aircraft for up to 50 passengers are presented. Apart from performance requirements, other requirements, like environmental ones, Citation: Eisenhut, D.; Moebs, N.; are also included.
    [Show full text]