Aerospace and Aviation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aviation Week & Space Technology
$14.95 JUNE 29-JULY 12, 2020 Quest for Speed BOOM XB-1 TAKES SHAPE RICH MEDIA EXCLUSIVE Europe’s Hydrogen- Powered Aircraft Push PRIME TIME FOR How Safe Are HYPERSONICS Aircraft Cabins? Canada’s Fighter RICH MEDIA EXCLUSIVE Strategy Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa. -
Aviation Week & Space Technology
STARTS AFTER PAGE 34 How Air Trvel New Momentum for My Return Smll Nrrowbodies? ™ $14.95 APRIL 20-MAY 3, 2020 SUSTAINABLY Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa. -
Vysoké Učení Technické V Brně Zavedení a Provoz Supersonického Business Jetu
VYSOKÉ UÈENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ LETECKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AEROSPACE ENGINEERING ZAVEDENÍ A PROVOZ SUPERSONICKÉHO BUSINESS JETU LAUNCHING AND OPERATING ISSUES OF SUPERSONIC BUSINESS JET DIPLOMOVÁ PRÁCE MASTER'S THESIS AUTOR PRÁCE Bc. DANIELA KINCOVÁ AUTHOR VEDOUCÍ PRÁCE Ing. RÓBERT ©O©OVIÈKA, Ph.D. SUPERVISOR BRNO 2015 Abstrakt Tato práce se zabývá problematikou zavedení a provozu nadzvukových business jetù. V dnešní době se v civilní letecké pøepravě, po ukončení provozu Concordu, žádná nadzvuková letadla nevyskytují. V dnešní době existuje mnoho projektù a organizací, které se zabý- vají znovuzavedením nadzvukových letounù do civilního letectví a soustředí se pøevážně na business jety. Hlavní otázkou je, zda je vùbec vhodné, èi rozumné se k tomu typu dopravy znovu vracet. Existuje hodně problémù, které toto komplikují. Tyto letouny způsobují příliš velký hluk, mají obrovskou spotøebu paliva a musí øe¹it nadměrné emise, létají ve vysokých výškách ve kterých mùže docházet k problémùm s pøetlakováním kabiny, navi- gací, radioaktivním zářením apod. Navíc zákaz supersonických letù nad pevninou letové cesty omezuje a prodlužuje. Současně vznikající projekty navíc nedosahují tak velkého doletu jako klasické moderní bussjety, což zpùsobuje, že se nadzvukové business jety se na delších tratích stávají neefektivní. I pøes tyto problémy, je víceméně jisté, že k zavedení nadzvukových business jetù dojde během následujících 10 - 15 let, i kdyby to měla být jen otázka jisté prestiže velmi bohatých lidí. Summary This thesis is dealing with problematic about launching and operating supersonic business jets. Nowadays, after Concorde retirement, there are no more any supersonic aircrafts in civil transport system. -
After Concorde, Who Will Manage to Revive Civilian Supersonic Aviation?
After Concorde, who will manage to revive civilian supersonic aviation? By François Sfarti and Sebastien Plessis December 2019 Commercial aircraft are flying at the same speed as 60 years ago. Since Concorde, which made possible to fly from Paris to New York in only 3h30, no civilian airplane has broken the sound barrier. The loudness of the sonic boom was a major technological lock to Concorde success, but 50 years after its first flight, an on-going project led by NASA is about to make supersonic flights over land possible. If successful, it will significantly increase the number of supersonic routes and increase the supersonic aircraft market size substantially. This technological improvement combined with R&D efforts on operational costs and a much larger addressable market than when Concorde flew may revive civilian supersonic aviation in the coming years. Who are the new players at the forefront and the early movers? What are the current investments in this field? What are the key success drivers and remaining technological and regulatory locks to revive supersonic aviation? EXECUTIVE SUMMARY Commercial aircraft are typically flying between 800 km/h and 900 km/h, which is between 75% and 85% of the speed of sound. It is the same speed as 60 years ago and since Concorde, which flew at twice the speed of sound, was retired in 2003, there has been no civilian supersonic aircraft in service. Due to a prohibition to fly supersonic over land and large operational costs, Concorde did not reach commercial success. Even if operational costs would remain larger than subsonic flights, current market environment seems much more favourable: since Concorde was retired in 2003, the air traffic has more than doubled and the willingness to pay can be supported by an increase in the number of high net worth individuals and the fact that business travellers value higher speed levels. -
S U Personics + Clim a Te
MOON LANDING 36 HYPERSONICS 14 SPACE ECONOMY 30 What Apollo can teach Artemis Predicting overheating A new role for space-faring governments ICS + ON CL RS IM E A P T U E S Mach 1 passenger jets could exacerbate aviation’s carbon footprint. The search for solutions is underway. PAGE 22 REPORTER’S PICKS PAGE 18 Your IAC preview OCTOBER 2019 | A publication of the American Institute of Aeronautics and Astronautics | aerospaceamerica.aiaa.org SECURE YOUR AIAA CORPORATE MEMBERSHIP TODAY! Take advantage of being a Corporate Member: › Industry recognition › Transformative conversations › Automatically elevate your staff to AIAA Senior Members › Annual forum registration allotment and discounted registrations › Recruit students and young professionals at Meet the Employer events › Plus so much more! LEARN MORE: aiaa.org/corporatemembership CONTACT US TO TODAY TO LEARN WHAT AIAA CAN DO FOR YOU! Chris Semon • Vickie Singer • Paul doCarmo 703.264.7510 | [email protected] FEATURES | October 2019 MORE AT aerospaceamerica.aiaa.org 18 30 36 22 IAC preview Seismic shift in Apollo’s lessons satellite market for Artemis Supersonic transports Our staff reporter describes the Space-faring Experience gleaned International and climate change governments are during the 20th- Astronautical taking a new role century moon program The industry has creative ideas for Congress events she in the satellite can help sustain addressing the warming infl uence of doesn’t want to miss. market as startups today’s momentum proposed Mach 1 passenger jets. and established toward a 2024 lunar By Cat Hofacker companies vie for landing. By Adam Hadhazy investors. By John M. Logsdon By Debra Werner On the cover: Photo illustration aerospaceamerica.aiaa.org | OCTOBER 2019 | 1 RENO, NEVADA 15–19 June 2020 | Reno-Sparks Convention Center CALL FOR PAPERS The AIAA AVIATION Forum is the only global event that covers the entire integrated spectrum of aviation business, research, development, and technology. -
Signature Ups Supply of SAF Will Be Among Its first to Make Sustainable Aviation by Curt Epstein Fuel Available on a Regular Basis to Customers
PUBLICATIONS Vol.49 | No.10 $9.00 OCTOBER 2020 | ainonline.com Signature Flight Support’s FBO at London Luton Airport Signature ups supply of SAF will be among its first to make sustainable aviation by Curt Epstein fuel available on a regular basis to customers. Ahead of the start of the inaugural Sustain- Fuel Standard (LCFS) tax incentive programs, having the first FBO in the world that is able able Business Aviation Fuels Summit on Sep- while those at London Luton can reduce car- to offer operators a reliable, full volume of tember 14, Signature Flight Support launched bon offsetting needs for the EU’s ETS. SAF at a competitive price only a few dollars the Signature Renew industry sustainability The SAF purchase agreement is the continues on page 52 program, including agreements with sustain- largest by an FBO operator to date. “Sig- Deliveries able aviation fuel (SAF) provider Neste and nature is undertaking a momentous step Read Our SPECIAL REPORT GAMA 2H numbers NetJets, thus connecting all segments of the that enables the widescale adoption of fuel supply chain from producer to end-user. SAF,” said Signature COO Tony Lefeb- show big decline page 8 The deal with Neste calls for Signature to vre. “Prior to establishing a permanent purchase five million gallons of SAF, which supply of SAF, FBOs have only been able Product Support will be used to establish permanent supplies of to provide a few thousand gallons at one AIN readers rate the support they the environmentally-friendly fuel at its FBOs time, typically by request of an individual received in the last 12 months for the Supersonic at San Francisco International Airport (SFO) aircraft operator or for a one-off event.” engines that power their aircraft. -
Review and Prospect of Supersonic Business Jet Design
Review and prospect of supersonic business jet design Yicheng Sun1, Howard Smith Cranfield University, Bedford, MK43 0AL, United Kingdom Abstract This paper reviews the environmental issues and challenges appropriate to the design of supersonic business jets (SSBJs). There has been a renewed, worldwide interest in developing an environmentally friendly, economically viable and technologically feasible supersonic transport aircraft. A historical overview indicates that the SSBJ will be the pioneer for the next generation of supersonic airliners. As a high-end product itself, the SSBJ will likely take a market share in the future. The mission profile appropriate to this vehicle is explored considering the rigorous environmental constraints. Mitigation of the sonic boom and improvements aerodynamic efficiency in flight are the most challenging features of civil supersonic transport. Technical issues and challenges associated with this type of aircraft are identified, and methodologies for the SSBJ design are discussed. Due to the tightly coupled issues, a multidisciplinary design, analysis and optimization environment is regarded as the essential approach to Abbreviations: Ae, equivalent area; CAPAS, CAD-based Automatic Panel Analysis System; CFD, Computational Fluid Dynamics; CFR, Code of Federal Regulations; C.G., Centre of Gravity; CIAM, Central Institute of Aviation Motors; CS, Certification Specifications; CST, Class Shape Transformation; DARPA, Defense Advanced Research Projects Agency; E.I., emission indices; GAC, Gulfstream Aerospace -
Beyond Concorde – Supersonic Research in Germany and Europe
Beyond Concorde – Supersonic Research in Germany and Europe Rolf Henke, German Aerospace Center DLR Timeline Supersonic Aircraft – European Products & Concepts Tu 244 1968 1979 2000 Now 2 The Legacy of Concorde • Technical Perspective Political Perspective • Aerodynamic design of an civil supersonic aircraft • Transnational civil aircraft development in Europe • Plus: At that time advanced technologies e.g. (between UK and France), paving the path for other • Flight control systems programs and in the end Airbus (incl. first FADEC in a civil aircraft!) (First of this kind was the military transport aircraft • First of a kind carbon anti-skid brakes Transall with F & D, plus UK and It, started in 1958) • Droop-nose • Variable engine intake design Concorde Signing Ceremony, Nov. 29th,1962 3 Foundation of STAB 1978 in Germany • A potential Concorde successor product has been a research topic for fundamental aerodynamics research • In Germany, a scientific network has been founded by industry and research DFVLR: STAB (Stroemung mit Abloesung = Flow with Separation), covering all research areas of fluid mechanics for aircraft design • Strong focus on flight physics • Structured in project groups • Transport aircraft incl. engine integration • New aircraft configurations & multidisciplinary optimization • Turbulence research and modelling • Hypersonic Aerothermodynamics • Flow control, transition & hybrid laminar flow technologies • High agile configurations • Rotorcraft aerodynamics At that time, the author worked on „The Leeside Flow Over Deltawings in Supersonic Flow“ 4 Wind Tunnel with Super- and Hypersonic Capabilities in Europe (Examples) 5 Space Plane Designs: Sänger/Horus, Hermes, SFB 253, Spaceliner • First idea of a two-staged hypersonic passenger spaceliner in Germany in 1940s by Eugen Sänger. -
Aviation Week & Space Technology
STARTS AFTER PAGE 34 Boeing’s 787 Aircraft Production Building a Hydrogen Quality Misses Is It Still Too High? Infrastructure ™ RICH MEDIA EXCLUSIVE $14.95 SEPTEMBER 14-27, 2020 BEYOND THE MQ-9 Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa. -
DEPA 2050 Study Report
DEPA 2050 Study Report DEPA 2050 Development Pathways for Aviation up to 2050 - Final Report - DEPA 2050 Study Report Title Development Pathways for Aviation up to 2050 – Study Report Project Acronym DEPA 2050 Publisher German Aerospace Center Authors Leipold, Alexandra; Aptsiauri, Gubaz; Ayazkhani, Amir; Bauder, Uwe; Becker, Richard-Gregor; Berghof, Ralf; Claßen, Axel; Dadashi, Alireza; Dahlmann, Katrin; Dzikus, Niclas; Flüthmann, Nico; Grewe, Volker; Göhlich, Lukas; Grimme, Wolfgang; Günther; Yves; Jaksche, Roman; Jung, Martin; Knabe, Franz; Kutne, Peter; Le Clercq, Patrick; Pabst, Holger; Poggel, Steffen; Staggat, Martin; Wicke, Kai; Wolters, Florian; Zanger, Jan; Zill, Thomas Page 2 DEPA 2050 Study Report A note on Covid-19 The DEPA 2050 study was conceptualised and, to a large extent, already conducted before the full impact of the Covid-19 pandemic became apparent. Thus, the results of this study have to be regarded and interpreted in the light of a pre-Covid 19 environment. However, major changes through the Covid-19 pandemic are illustrated and discussed in the relevant sections of this report to provide additional information on potential impacts on the results and the situation of air transport as it is today. Page 3 DEPA 2050 Study Report Content 1. Introduction ................................................................................................................... 11 1.1. Motivation for the Project ........................................................................................ 11 1.2. State of Research -
Oceanaire Systems Requirements Review REVISED with NEW
SYSTEMS REQUIREMENTS REVIEW GREG FREEMAN ANDY GRIMES NICK GURTWOSKI MOTOHIDE HO VICKI HUFF POORVI KALARIA ROMAN MAIRE TARA PALMER SANJEEV RAMAIAH JACK YANG AAE 451 FEBRUARY 12, 2009 1 . TABLE OF CONTENTS Executive Summary (Page 4) I. MISSION STATEMENT (Page 5) i. Major assumptions II. MARKET/CUSTOMERS (Page 6) i. Customers’ Needs and Benefits ii. Primary Customer iii. Market Size III. COMPETITORS (Page 8) i. Market Competition IV. CONCEPT OF OPERATIONS (Page 9) i. Representative city-pairs ii. Cost Predictions iii. Meeting Customer Needs iv. Payload/Passenger Capacity v. Cabin Layout vi. Design Mission Profile vii. Economic Mission Profile V. SYSTEM DESIGN REQUIREMENTS (Page 20) i. Customer Attributes ii. Quantifiable Characteristics iii. House of Quality iv. Target and threshold values v. Benchmarking vi. Technologies/advanced concepts 2 . VI. INITIAL SIZING (Page 25) i. Estimates for L/D ii. Empty weight fraction predictor VII. CONCLUSION (Page 31) i. Summary ii. Next Steps VIII. REFERENCES (Page 32) 3 . EXECUTIVE SUMMARY As aviation advances, the desire for an economic, affordable Supersonic Transport (SST) has increased rapidly. Since the Concorde, there have been no operable Supersonic Transports in the world. OceanAire intends to design the world’s next SST, called Sky, which will solve the technical challenges that have impeded the development of supersonic airliners for decades. As stated by NASA Aeronautics Research Mission Directorate’s 2008-2009 University Competition, the technical challenges include supersonic cruise efficiency, low sonic boom, and high-lift for take-off and landing. Other design specifications decided upon were high cruise speed, long distance cruise, and reasonable passenger capacity, along with providing a luxurious flight. -
Make America Boom Again: How to Bring Back Supersonic Transport Eli Dourado and Samuel Hammond
Make America Boom Again: How to Bring Back Supersonic Transport Eli Dourado and Samuel Hammond MERCATUS RESEARCH Eli Dourado and Samuel Hammond. “Make America Boom Again: How to Bring Back Supersonic Transport.” Mercatus Research, Mercatus Center at George Mason Univer- sity, Arlington, VA, October 2016. ABSTRACT In 1973, the FAA banned civil supersonic flight over the United States. As a result, the supersonic aviation industry has not developed. It is now time to revisit the ban. Better technology—materials, engines, and simulation capabilities—means that it is now possible to produce a supersonic jet that is more economical and less noisy than those of the 1970s. In this paper, we examine the case for, the his- tory of, and the legitimate issues created by supersonic flight. We conclude that it is past time to rescind the ban in favor of a modest and sensible noise standard. JEL codes: L9, N7, R4, L5 Keywords: supersonic, regulation, aviation, sonic booms, airport noise Copyright © 2016 by Eli Dourado, Samuel Hammond, and the Mercatus Center at George Mason University Release: October 2016 The opinions expressed in Mercatus Research are the authors’ and do not represent official positions of the Mercatus Center or George Mason University. n aircraft flying roughly twice the speed of sound could take off in New York City and land in Los Angeles in just two hours. The tech- nology to travel at this speed exists, but in 1973 the Federal Aviation Administration (FAA) issued a complete ban on civil supersonic Aaviation over all US land and territorial waters,1 a ban that remains in effect to this day.