Feeling Supersonic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Raes Annual Report & Accounts 2020
Royal Aeronautical Society Trustees’ Annual Report and Accounts Year Ended 31 December 2020 Charity Registration Number: 313708 Incorporating: Charity Registration Number: 1013530 Charity Registration Number: 1045004 ROYAL AERONAUTICAL SOCIETY REPORT OF THE TRUSTEES FOR YEAR ENDED 31 DECEMBER 2020 Report of the Board of Trustees for the year ended 31 December 2020 The members of the Board of Trustees are pleased to present their annual report and financial statements of the Society for the year ended 31 December 2020. The Trustees confirm that they have complied with the Charities Act 2011 to have due regard to public benefit guidance published by the Charities Commission in determining the activities undertaken by the Society. The financial statements have been prepared in accordance with the accounting polices set out in note 1 to the accounts and comply with the Financial Reporting Standard applicable in the UK and Republic of Ireland (FRS 102) (effective 1 January 2015) - (Charities SORP (FRS 102)). Objectives and Activities Founded in the United Kingdom in 1866, it is the world’s oldest and most respected aeronautical society. The principal objectives of the Society as set out in its Charter of Incorporation granted by letter patent of His Majesty The King George VI in 1949 are “the general advancement of Aeronautical Art, Science and Engineering and more particularly promoting that species of knowledge which distinguishes the profession of Aeronautics.” The Society strives to maintain the highest standards of professionalism in all aerospace disciplines and, as such, the qualifications endowed by the Society are internationally recognised as a professional hallmark. As a learned body, it runs an extensive conference and lecture programme which is available to the public. -
Concorde Is a Museum Piece, but the Allure of Speed Could Spell Success
CIVIL SUPERSONIC Concorde is a museum piece, but the allure Aerion continues to be the most enduring player, of speed could spell success for one or more and the company’s AS2 design now has three of these projects. engines (originally two), the involvement of Air- bus and an agreement (loose and non-exclusive, by Nigel Moll but signed) with GE Aviation to explore the supply Fourteen years have passed since British Airways of those engines. Spike Aerospace expects to fly a and Air France retired their 13 Concordes, and for subsonic scale model of the design for the S-512 the first time in the history of human flight, air trav- Mach 1.5 business jet this summer, to explore low- elers have had to settle for flying more slowly than speed handling, followed by a manned two-thirds- they used to. But now, more so than at any time scale supersonic demonstrator “one-and-a-half to since Concorde’s thunderous Olympus afterburn- two years from now.” Boom Technology is working ing turbojets fell silent, there are multiple indi- on a 55-seat Mach 2.2 airliner that it plans also to cations of a supersonic revival, and the activity offer as a private SSBJ. NASA and Lockheed Martin appears to be more advanced in the field of busi- are encouraged by their research into reducing the ness jets than in the airliner sector. severity of sonic booms on the surface of the planet. www.ainonline.com © 2017 AIN Publications. All Rights Reserved. For Reprints go to Shaping the boom create what is called an N-wave sonic boom: if The sonic boom produced by a supersonic air- you plot the pressure distribution that you mea- craft has long shaped regulations that prohibit sure on the ground, it looks like the letter N. -
Flight International – July 2021.Pdf
FlightGlobal.com July 2021 RISE of the open rotor Airbus, Boeing cool subsidies feud p12 Home US Air Force studies advantage resupply rockets p28 MC-21 leads Russian renaissance p44 9 770015 371327 £4.99 Sonic gloom Ton up Investors A400M gets pull plug a lift with on Aerion 100th delivery 07 p30 p26 Comment All together now Green shoots Irina Lavrishcheva/Shutterstock While CFM International has set out its plan to deliver a 20% fuel saving from its next engine, only the entire aviation ecosystem working in concert can speed up decarbonisation ohn Slattery, the GE Aviation restrictions, the RISE launch event governments have a key role to chief executive, has many un- was the first time that Slattery and play here through incentivising the doubted skills, but perhaps his Safran counterpart, Olivier An- production and use of SAF; avia- the least heralded is his abil- dries, had met face to face since tion must influence policy, he said. Jity to speak in soundbites while they took up their new positions. It He also noted that the engine simultaneously sounding natural. was also just a week before what manufacturers cannot do it alone: It is a talent that politicians yearn would have been the first day of airframers must also drive through for, but which few can master; the Paris air show – the likely launch aerodynamic and efficiency im- frequently the individual simply venue for the RISE programme. provements for their next-genera- sounds stilted, as though they were However, out of the havoc tion products. reading from an autocue. -
Report by the Senate Rural and Regional Affairs and Transport References Committee
Parliament of the Commonwealth of Australia Air Safety and Cabin Air Quality in the BAe 146 Aircraft Report by the Senate Rural and Regional Affairs and Transport References Committee OCTOBER 2000 ii © Commonwealth of Australia 2000 ISBN 0 642 71093 7 This document was produced from camera-ready copy prepared by the Senate Rural and Regional Affairs and Transport Legislation Committee, and printed by the Senate Printing Unit, Department of the Senate, Parliament House, Canberra. iii MEMBERS OF THE COMMITTEE Members Senator John Woodley AD, Queensland Chairman Senator Winston Crane LP, Western Australia Deputy Chairman Senator Jeannie Ferris LIB, South Australia Senator Michael Forshaw ALP, New South Wales Senator Sue Mackay ALP, Tasmania Senator Kerry O’Brien ALP, Tasmania Participating Members Senator Abetz Senator Faulkner Senator McLucas Senator Bartlett Senator Ferguson Senator Mason Senator Boswell Senator Gibson Senator S Macdonald Senator Brown Senator Harradine Senator Murphy Senator Buckland Senator Harris Senator Payne Senator Calvert Senator Hutchins Senator Tchen Senator Chapman Senator Knowles Senator Tierney Senator Coonan Senator Lightfoot Senator Watson Senator Crossin Senator McGauran Senator West Senator Eggleston Senator McKiernan Committee Secretariat The Senate Parliament House Canberra ACT 2600 Telephone (02) 6277 3511 Facsimile (02) 6277 5811 Internet www.aph.gov.au/senate Email [email protected] TABLE OF CONTENTS MEMBERS OF THE COMMITTEE ............................................................. iii TABLE -
Some Supersonic Aerodynamics
Some Supersonic Aerodynamics W.H. Mason Configuration Aerodynamics Class Grumman Tribody Concept – from 1978 Company Calendar The Key Topics • Brief history of serious supersonic airplanes – There aren’t many! • The Challenge – L/D, CD0 trends, the sonic boom • Linear theory as a starting point: – Volumetric Drag – Drag Due to Lift • The ac shift and cg control • The Oblique Wing • Aero/Propulsion integration • Some nonlinear aero considerations • The SST development work • Brief review of computational methods • Possible future developments Are “Supersonic Fighters” Really Supersonic? • If your car’s speedometer goes to 120 mph, do you actually go that fast? • The official F-14A supersonic missions (max Mach 2.4) – CAP (Combat Air Patrol) • 150 miles subsonic cruise to station • Loiter • Accel, M = 0.7 to 1.35, then dash 25nm – 4 ½ minutes and 50nm total • Then, head home or to a tanker – DLI (Deck Launch Intercept) • Energy climb to 35K ft., M = 1.5 (4 minutes) • 6 minutes at 1.5 (out 125-130nm) • 2 minutes combat (slows down fast) After 12 minutes, must head home or to a tanker Very few real supersonic airplanes • 1956: the B-58 (L/Dmax = 4.5) – In 1962: Mach 2 for 30 minutes • 1962: the A-12 (SR-71 in ’64) (L/Dmax = 6.6) – 1st supersonic flight, May 4, 1962 – 1st flight to exceed Mach 3, July 20, 1963 • 1964: the XB-70 (L/Dmax = 7.2) – In 1966: flew Mach 3 for 33 minutes • 1968: the TU-144 – 1st flight: Dec. 31, 1968 • 1969: the Concorde (L/Dmax = 7.4) – 1st flight, March 2, 1969 • 1990: the YF-22 and YF-23 (supercruisers) – YF-22: 1st flt. -
Make America Boom Again: How to Bring Back Supersonic Transport,” Eli Dourado and Samuel Hammond Show That It Is Time to Revisit the Ban
MAKE AMERICA BOOM AGAIN How to Bring Back Supersonic Transport _____________________ In 1973, the Federal Aviation Administration (FAA) banned civil supersonic flight over the United States, stymieing the development of a supersonic aviation industry. In “Make America Boom Again: How to Bring Back Supersonic Transport,” Eli Dourado and Samuel Hammond show that it is time to revisit the ban. Better technology—including better materials, engines, and simulation capabilities—mean it is now possible to produce a supersonic jet that is more economical and less noisy than those of the 1970s. It is time to rescind the ban in favor of a more modest and sensible noise standard. BACKGROUND Past studies addressing the ban on supersonic flight have had little effect. However, this paper takes a comprehensive view of the topic, covering the history of supersonic flight, the case for supersonic travel, the problems raised by supersonic flight, and regulatory alternatives to the ban. Dourado and Hammond synthesize the best arguments for rescinding the ban on supersonic flights over land and establish that the ban has had a real impact on the development of supersonic transport. KEY FINDINGS The FAA Should Replace the Ban on Overland Supersonic Flight with a Noise Standard The sonic boom generated by the Concorde and other early supersonic aircraft was very loud, and as a result the FAA banned flights in the United States from going faster than the speed of sound (Mach 1). This ban should be rescinded and replaced with a noise standard. A noise limit of 85–90 A-weighted decibels would be similar to noise standards for lawnmowers, blenders, and motorcy- cles, and would therefore be a reasonable standard during daytime hours. -
10. Supersonic Aerodynamics
Grumman Tribody Concept featured on the 1978 company calendar. The basis for this idea will be explained below. 10. Supersonic Aerodynamics 10.1 Introduction There have actually only been a few truly supersonic airplanes. This means airplanes that can cruise supersonically. Before the F-22, classic “supersonic” fighters used brute force (afterburners) and had extremely limited duration. As an example, consider the two defined supersonic missions for the F-14A: F-14A Supersonic Missions CAP (Combat Air Patrol) • 150 miles subsonic cruise to station • Loiter • Accel, M = 0.7 to 1.35, then dash 25 nm - 4 1/2 minutes and 50 nm total • Then, must head home, or to a tanker! DLI (Deck Launch Intercept) • Energy climb to 35K ft, M = 1.5 (4 minutes) • 6 minutes at M = 1.5 (out 125-130 nm) • 2 minutes Combat (slows down fast) After 12 minutes, must head home or to a tanker. In this chapter we will explain the key supersonic aerodynamics issues facing the configuration aerodynamicist. We will start by reviewing the most significant airplanes that had substantial sustained supersonic capability. We will then examine the key physical underpinnings of supersonic gas dynamics and their implications for configuration design. Examples are presented showing applications of modern CFD and the application of MDO. We will see that developing a practical supersonic airplane is extremely demanding and requires careful integration of the various contributing technologies. Finally we discuss contemporary efforts to develop new supersonic airplanes. 10.2 Supersonic “Cruise” Airplanes The supersonic capability described above is typical of most of the so-called supersonic fighters, and obviously the supersonic performance is limited. -
Archiv Quark 06 2016.Pdf
2016 ZAMYSLENIE NA ÚVOD Vydáva Udržať kvalitu Už viac ako dve desaťročia náš časopis bojuje o priazeň čitateľov Centrum vedecko-technických a o svoje miesto na trhu tlačených médií. Som rád, že nestráca informácií SR a svojich predplatiteľov a úspešne sa predáva. Okrem toho má svojich priaznivcov na Facebooku, pravidelných návštevníkov na webstrán- ke quark.sk a aj takých, ktorí si ho sťahujú do mobilov. Robia tak z jednoduchého dôvodu – tešia sa na novinky a zaujímavosti l Poverený vedením redakcie z oblasti vedy či techniky, ktoré v našom časopise nájdu. Ing. Vladimír Ješko Každý mesiac prinášame informácie o revolúcii v niektorom z vedných alebo technických l Redakcia odborov. Aj v Quarku, ktorý ste práve otvorili, nájdete dva príspevky o dvoch veľkých zme- Mgr. Renáta Józsová nách z oblasti vedy a techniky. Tie zmeny už nastali, alebo sa v blízkej budúcnosti stanú, Mgr. Pavol Prikryl a sú súčasťou života nás všetkých. Príspevok Vitajme v antropocéne objasňuje vplyv ľudskej l Grafická úprava a sadzba činnosti na našu planétu. Tieto zmeny síce siahajú ďaleko do minulosti, v posledných dvoch Ing. Ľudmila Gebauerová storočiach však nadobudli nebývalú intenzitu. Príspevok Prichádza robotická doba sa zasa l Tlač Valeur, s. r. o. Foto Pixabay www.valeur.sk l Sídlo redakcie Quark Staré grunty 52 842 44 Bratislava tel.: 02/69 29 52 02, 03 e-mail: [email protected] www.quark.sk IČO 151882 l Číslo 6, jún 2016 ročník XXII. l Vychádza začiatkom každého mesiaca. Počas roka vyjde 12 čísel. Cena jedného výtlačku je 1,89 €. l Objednávky predplatného v sídle vydavateľa QUARK, CVTI SR Lamačská cesta 8/A 811 04 Bratislava telefón: 02/69 25 31 98 e-mail: [email protected] l EV 554/08 pozerá do budúcnosti, lebo roboty, ktoré nás už teraz obklopujú, sa čoskoro stanú našimi ISSN1335-4000 každodennými súputníkmi. -
The Changing Structure of the Global Large Civil Aircraft Industry and Market: Implications for the Competitiveness of the U.S
ABSTRACT On September 23, 1997, at the request of the House Committee on Ways and Means (Committee),1 the United States International Trade Commission (Commission) instituted investigation No. 332-384, The Changing Structure of the Global Large Civil Aircraft Industry and Market: Implications for the Competitiveness of the U.S. Industry, under section 332(g) of the Tariff Act of 1930, for the purpose of exploring recent developments in the global large civil aircraft (LCA) industry and market. As requested by the Committee, the Commission’s report on the investigation is similar in scope to the report submitted to the Senate Committee on Finance by the Commission in August 1993, initiated under section 332(g) of the Tariff Act of 1930 (USITC inv. No. 332-332, Global Competitiveness of U.S. Advanced-Technology Manufacturing Industries: Large Civil Aircraft, Publication 2667) and includes the following information: C A description of changes in the structure of the global LCA industry, including the Boeing-McDonnell Douglas merger, the restructuring of Airbus Industrie, the emergence of Russian producers, and the possibility of Asian parts suppliers forming consortia to manufacture complete airframes; C A description of developments in the global market for aircraft, including the emergence of regional jet aircraft and proposed jumbo jets, and issues involving Open Skies and free flight; C A description of the implementation and status of the 1992 U.S.-EU Large Civil Aircraft Agreement; C A description of other significant developments that affect the competitiveness of the U.S. LCA industry; and C An analysis of the aforementioned structural changes in the LCA industry and market to assess the impact of these changes on the competitiveness of the U.S. -
Aircraft of Today. Aerospace Education I
DOCUMENT RESUME ED 068 287 SE 014 551 AUTHOR Sayler, D. S. TITLE Aircraft of Today. Aerospace EducationI. INSTITUTION Air Univ.,, Maxwell AFB, Ala. JuniorReserve Office Training Corps. SPONS AGENCY Department of Defense, Washington, D.C. PUB DATE 71 NOTE 179p. EDRS PRICE MF-$0.65 HC-$6.58 DESCRIPTORS *Aerospace Education; *Aerospace Technology; Instruction; National Defense; *PhysicalSciences; *Resource Materials; Supplementary Textbooks; *Textbooks ABSTRACT This textbook gives a brief idea aboutthe modern aircraft used in defense and forcommercial purposes. Aerospace technology in its present form has developedalong certain basic principles of aerodynamic forces. Differentparts in an airplane have different functions to balance theaircraft in air, provide a thrust, and control the general mechanisms.Profusely illustrated descriptions provide a picture of whatkinds of aircraft are used for cargo, passenger travel, bombing, and supersonicflights. Propulsion principles and descriptions of differentkinds of engines are quite helpful. At the end of each chapter,new terminology is listed. The book is not available on the market andis to be used only in the Air Force ROTC program. (PS) SC AEROSPACE EDUCATION I U S DEPARTMENT OF HEALTH. EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRO OUCH) EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIG INATING IT POINTS OF VIEW OR OPIN 'IONS STATED 00 NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EOU CATION POSITION OR POLICY AIR FORCE JUNIOR ROTC MR,UNIVERS17/14AXWELL MR FORCEBASE, ALABAMA Aerospace Education I Aircraft of Today D. S. Sayler Academic Publications Division 3825th Support Group (Academic) AIR FORCE JUNIOR ROTC AIR UNIVERSITY MAXWELL AIR FORCE BASE, ALABAMA 2 1971 Thispublication has been reviewed and approvedby competent personnel of the preparing command in accordance with current directiveson doctrine, policy, essentiality, propriety, and quality. -
Pwc and Flight International Top 100 Special Report 2012
TOP 100 SPECIAL REPORT Gareth JJ Burgess JJ Gareth 30 | Flight International | 18-24 September 2012 flightglobal.com TOP 100 SPECIAL REPORT Our Top 100 ranking of aerospace manufacturers’ 2011 financial performance reveals the beginning of a sharp divergence in fortunes between companies supplying civil programmes and those reliant on military sales DAN THISDELL LONDON the defence side, and programmes such as the However, the most dramatic response to Boeing 787 and 737, or Airbus A320 and – the defence squeeze has been, and will con- or a quick summary of the aerospace soon – A350 are starting to drive revenue tinue to be, attempts to shift into cyber secu- industry financial situation today, growth along their supply chains. But for rity, typically by acquisition. For military sup- think three words: civil versus de- those heavily reliant on defence, the response pliers, the strategy is attractive because that fence. The 2011 financial data ana- to this market schizophrenia is going to be the sector shares many defence technologies and, F lysed by PwC to compile our latest Top 100 defining story of the aerospace industry for critically, government customers. report on the following pages highlights the the next several years. But PwC’s head of aerospace and defence beginning of the end of the post-9/11 military PwC strategy director Anna Sargeant, who Neil Hampson advises caution; the cyber in- spending surge, but the economic impact on leads the Top 100 analysis team, says the in- dustry culture resembles Silicon Valley more defence-focused companies will not really hit dustry needs to recognise that the current than it does the bureaucratic, process-driven hard until 2013. -
Roger Hiorns: Plane Burial / the Retrospective View of the Pathway (Pathways), 2017 Ongoing
Roger Hiorns: Plane Burial / The retrospective view of the pathway (pathways), 2017 ongoing Off-site project on the occassion of the 100th exhibtion of the gallery’s establishment in 1994 When: Sunday 1 October, talks from 11am, plane burial from 2pm Where: ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, Dolní Břežany, Praha-Západ The latest project of the British artist Roger Hiorns, who exhibited at Galerie Rudolfinum in 2015, “buries” a jet fighter MiG-21. In his project, Hiorns references the land art tradition as well as the recent phenomenon of updating traditional rituals in today’s globalized society. From the innate human dream to take flight, powerful machines were born – apparatuses for demonstrating and cementing power, underlining the triumph of enlightenment, technology and progress. The machines are confronted with the man’s last rites. An act of solemn parting. A silent triumph in a dystopian landscape. A terse sculptural happening with an undertone of social criticism. An idea of buried aircraft of different types, in different corners of our planets, and in different contexts. Roger Hiorns Studied art at Goldsmiths, University of London. Short-listed for the Turner Prize in 2009. Participated at the Venice Biennale 2013, exhibited at prominent art galleries including Tate Modern in London, MoMA Contemporary Art Center in Long Island City, NY, Armand Hammer Museum of Art at UCLA, Los Angeles, and Walker Art Center, Minneapolis. Roger Hiorns’ solo exhibitions include IKON Gallery, Birmingham (2016), Kunsthaus CentrePasquArt, Biel and Galerie Rudolfinum, Prague (2015), Kunsthalle Wien and The Hepworth, Wakefield, United Kingdom (2014), De Hallen, Haarlem, the Netherlands (2012-2013) and MIMA, Middlesbrough, United Kingdom (2012).