Gives an Overview of the Aerospace Industry, Its Products, Hardware

Total Page:16

File Type:pdf, Size:1020Kb

Gives an Overview of the Aerospace Industry, Its Products, Hardware . DOCUMENT RESUME ED 026 273 SE 006 268 By-Feirer, John L. Space Resources for the High School Industrial Arts Resource Units. Spons Agency-National Aeronautics and Space Administration, Washington, D.C. Report No-EP-44 Pub Date Apr 67 Note- 1 74p. EDRS Price MF-$0.75 HC-$8.80 Descriptors-*Aerospace Technology, Bibliographies, earth Science,Films,*IndustrialArts,Instructional i Materials, *Secondary School Science, *Teaching Guides Identifiers-National Aeronautics and Space Administration This guide is intended for industrial arts teachers, supervisors, and teacher educators at all levels of instruction for use as a supplement to their courses. The eight units which are included are all directly applicable to aerospace technology. The primary purpose of the guide is to motivate and interest students and teachers in aerospace age education. The booklet is comprised of four sections. Section One gives an overview of the aerospace industry,itsproducts, hardware, and occupations. Section Two contains eight units of student activities related to aerospace applications. Section Three is entitled "Newer Directions." Section Four is an appendix of educational services offered by the National Aeronautics and Space Administration, filmlists, and a lisst of participants ata space technology conference. (BC) r , -e-1, -.?,-. 4 :,..,0 qpprignH Gamos. LTIEN SUACCIL indunlai arts resource units Prepared for the National Aeronautics and Space Administration by a committee of industrial uts educators under the direction of John L. Feirer, Western Michigan University, in connection with a conference conducted by the University of South Florida, with the cooperation of the Florida State Department of Education and NASA's Jo Im F. Kennedy Space Center. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D. C. 20546 April, 1967 tablle()ff Cartnb Preface 5 How This Document was Developed 5 Using This Bulletin 6 SECTION 1 Unit 1The Aerospace IndustryAn Overview 12 Unit 2Products and Materials 16 Unit 3Aerospace Occupations 19 SECTION 2 Unit 1Design and Drafting 36 Unit 2Metals 61 Unit 3Electricity-Electronics 81 Unit 4 Power 97 Unit 5Graphic Arts 108 Unit 6Plastics 114 Unit 7 Ceramics 123 Unit 8 Woods 132 SECTION 3 Newer Directions 142 SECTION 4 Appendix I Educational ServicesThe NASA Educational Programs Division 158 Appendix II Film List. 161 Appendix IIIConference Program and Participants, A Space Technology Conference for Industrial Arts Educators 170 ;reface INDUSTRIAL ARTS AND SPACE TECHNOLOGY Industrial arts has been defined as the study of tools, materials, processes, products, occupations, and related problems of America's industrial society. As such, the profession of industrial arts teach- ing necessarily concerns itself with those societal developments which have relevance to its area of study. America's space program is such a development. In the effort to increase mankind's knowl- edge of the heavens and the earth through the use of manned and unmanned spacecraft, America's space program has developed new tools, new materials, new processes, as well as new jobs, un- heard of 10 years ago. It has provided great impetus to accelerating advancements and developments in science and technology, and the resulting changes in patterns for living. Recognizing the nature, magnitude, and potential of these changes already effected and underway, a' group of industrial arts educators, representative of colleges and universities, state and local school departments, and the National Aeronautics and Space Administration designed this publication. It is being made ayailable to teachers, supervisors, curriculum makers, textbooks writers, and teachers of teachers to introduce these changes to shop and class- room teaching. HOW THIS DOCUMENT WAS DEVELOPED This document was prepared for the National Aeronautics and Space Administration by a representative committee of leaders in industrial arts education under the chairmanship of Dr. John L. Feirer, Western Michigan University. It was accomplished in connection with Cue three-day "Space Technology Conference for Industrial Arts Educa- tors" (program on pages 170-175) conducted by the University of South Florida in cooperation with the Florida State Department of Education and the NASA John F. Kennedy Space Center. Dr. Feirer's committee utilized the talenti of 85 Conference par- ticipants invited from the profession of induz*Aal arts teaching in state and local school departments and institutions of higher learning of Florida, Georgia, Puerto Rico and Virgin Islands. Following preliminary sessions of the committee, its members met with Conference participants in small group sessions, each comprising 10-15 representatives of one of the several teaching fields of industrial arts. The committee leaders and their affiliations were as follows: Dr. Thomas Brennan, Coordinator Dr. George Dit low, Professor Industrial Education Industrial Education Department West Virginia University Millersville State College Morgantown, West Virginia Millersville, Pennsylvania Dr. Ira H. Johnson, Professor Dr. John R. Lindbeck, Professor Industrial Arts Department Industrial Education Department Mankato State College Western Michigan University Mankato, Minnesota Kalamazoo, Michigan Mr. Warren Smith, Coordinator Technical Sciences Nova High School Fort Lauderdale, Florida In the three months following the Conference, this bulletin was prepared, compiled and edited. Since then the materials presented have been field tested in industrial arts classrooms and at teacher workshops at a number of schools and colleges throughout the country. Resources for the Committee and Conference were selected engineers, supervisors, technicians, and craftsmen from NASA and the space industries located at Cape Kennedy. Also available were selected NASA publications. The completed report represents a document which provides the teacher with specific suggestions on ways and means that space related elements may be fused into the industrial arts courses; some of the teaching ideas are in the form of units, some in the form of activities. Each teaching topic has a bibliography composed of specific NASA Technical Briefs, NASA Special Publications and commercially avail- able texts representative of the very latest developments in technology. USING THIS BULLETIN This bulletin is addressed to industrial arts teachers, supervisors, and teacher educators.It is designed as a reference manual that can be used at all levels of instruction in all areas of industrial arts. It should be noted, however, that it is not a course of study in space technology; and, therefore, not all learning r nits found in typical industrial arts programs are represented in Section II.It was decided that only those areas in which there was a direct aerospace application should be emphasized. This bulletin is designed to motivate and interest teachers and students in aerospace age education.It is not intended to- replace existing industrial arts courses. While all of the readers of this bulletin may not have an opportunty for firsthand inspection of the John F. Kennedy Space Center, the directors and teachers who were in attendance at the conference feel that, if some of the ideas presented here are integrated into industrial arts, interest and enthusiasm for industrial arts will increase greatly. The individual teacher can use as few or as many of the suggestions as he feels necessary to enrich his present program. The following are some suggested ways to make efficient use of this bulletin : 1. As a self-improvement program. Review the materials that are available from NASA (National Aeronautics and Space Admin- istration) including the services listed on pages 158 to 160. The teacher will note that there is a wide variety of technical litera- ture and audio-visual materials available. These materials can form the basis for developing a shop or laboratory library on space age activities, and in this process a teacher cannot fail to acquire a new appreciation for the value of industrial arts in space technology. The teacher may also arrang to have the Spacemobile and a NASA lecturer come to his school so all students can hear about and see some of the achievements of the space program. He may also ase any one of the excellent films that are available to introduce the subject. A good motivating device for introducing this material to industrial arts students is the film `.`The Big Challenge." This film is available on- loan from the center serving your state (see pages 161 to 169). Once the students have been motivated, the teacher can use much of the material in Section 2 as part of his regular teaching pro- cedure. The material on aerospace age applications can be used in individual lessons including demonstrations and lectures. Many of the ideas included are suggestions from classroom teachers who participated in the conference. The teacher may also develop a teaching unit similar to some of the samples included in Section 2. Section 3 includes many suggestions for teachers who are interested in the new frontiers of industrial arts. 2. As a school improvement.The industrial arts teacher can work with the science, mathematics, and guidance counselors to improve all of the programs. For example, this bulletincan be used along with the Occupational Outlook Handbook and the Dictionary of Occupational Titles to interest students in occupations directly and indirectly related to the aerospace industry. The school counselor could serve as the resource person for this part
Recommended publications
  • Interstellar Travel Or Even 1.3 Mlbs at Launch
    Terraforming Mars: By Aliens? Astronomy 330 •! Sometime movies are full of errors. •! But what can you do? Music: Rocket Man– Elton John Online ICES Question •! ICES forms are available online, so far 39/100 Are you going to fill out an ICES form before the students have completed it. deadline? •! I appreciate you filling them out! •! Please make sure to leave written comments. I a)! Yes, I did it already. find these comments the most useful, and typically b)! Yes, sometime today that’s where I make the most changes to the c)! Yes, this weekend course. d)! Yes, I promise to do it before the deadline of May6th! e)! No, I am way too lazy to spend 5 mins to help you or future students out. Final Final •! In this classroom, Fri, May 7th, 0800-1100. •! A normal-sized sheet of paper with notes on both •! Will consist of sides is allowed. –! 15 question on Exam 1 material. •! Exam 1and 2 and last year’s final are posted on –! 15 question on Exam 2 material. class website (not Compass). –! 30 questions from new material (Lect 20+). –! +4 extra credit questions •! I will post a review sheet Friday. •! A total of 105 points, i.e. 5 points of extra credit. •! Final Exam grade is based on all three sections. •! If Section 1/2 grade is higher than Exam 1/2 grade, then it will replace your Exam 1/2 grade. Final Papers Outline •! Final papers due at BEGINNING of discussion •! Rockets: how to get the most bang for the buck.
    [Show full text]
  • Engineering 8 Launch Vehicles
    Papers on the Lunar Settlement Engineering 8 : Launch Vehicles mass of each stage is 10% the fuel mass, 0. Introduction This paper since the larger lower stages will be accompanies number 03-01 on the more structurally efficient but must bear logistics of space access. It is intended the load of the upper stages. to present technical analysis of relevant concepts, specifically the expendable If the required velocity increment for multistage rocket for direct ascent, the direct ascent, without an intermediate single-stage reusable terrestrial orbiter, orbit, is taken as the sum of the escape two-stage reusable and partially reusable velocities of Terra and Luna, 13.6 km/s, configurations, the lunar rocket, and the the necessary mass ratio with exhaust space gun. At this early date, however, velocity 4.0 km/s is 30. This sets the nothing more than approximations and maximum delivered mass at 33 t, and general considerations can be furnished. indicates that several steps are required. While specific numerical values are As a little calculation will show, the indicated in certain places, it must be overall efficiency of a step rocket is understood clearly that few of these have improved by using low mass-ratios in any validity ; they are presented in order the lower steps. We may select a to indicate trends of expected behaviour. tristage configuration, with step mass ratios of 2, 3, and 5. 1. Expendable Rocket For the expendable rocket to be useful, it must The mass of the first step, then, is 550 t, be very large. Two factors are at work of which 500 t is fuel ; the second, 330 t, here : first, ceteris paribus , the larger with 300 t fuel ; and the third is the the rocket, the larger the useful mass lunar-landing stage, 120 t with 96 t fuel.
    [Show full text]
  • Aerocenecampusreader FINAL
    With Contributions by: Pete Adey ……………….............................Aaron Schuster, The Cosmonaut of the Erotic Future Sasha Engelmann……………………………………….The Cosmic Flight of the Aerocene Gemini Harriet Hawkins………………………………………………………………Imagine… Geoaesthetics Sam Hertz……………………………………………………………………………….The Floating Ear Bronislaw Szerszynski………………………………………………………………Planetary Mobilities Derek McCormack……………………..Sounding: Echoes and Thresholds of Atmospheric Media Andreas Philippopoulos-Mihalopoulos……………........................Withdrawing from Atmosphere Nick Shapiro……………………………………………………………Tim Choy, Air’s Substantiations And from the cosmos of the late Steven Vogel………………………………..Life in Moving Fluids Concept, Edit & Design: Sasha Engelmann and Karina Pragnell Cover Design and Drawings by Irin Siriwattanagul Aerocene Campus NOVEMBER 26, 2016 | EXHIBITION ROAD, LONDON Aerocene comes to Exhibition Road for a multidisciplinary artistic project co-produced by the members of the Exhibition Road Cultural Group, gathering together 17 prestigious cultural and scientific institutions in London, among them, the Serpentine Galleries, Imperial College London, the Natural History Museum, the Science Museum, the Royal Geographical Society, the Victoria and Albert Museum, and the Goethe Institute. How can we hack the Anthropocene to create the Aerocene? The first Aerocene Campus is an open invitation to explore, extend and imagine the Aerocene Epoch through the sculpture of the Aerocene Explorer. The Campus asks how community- driven practices with the Aerocene Explorer can inform environmental, social and mental ecologies in post-Anthropocenic worlds. On November 26th, experts from a wide range of disciplines will gather together for a full day of provocation, discussion, collaboration and 'hacking' to experiment with the Aerocene Explorer and to co-create the Aerocene epoch. To hack is to creatively overcome the limitations of a system, to improve or subvert the intentions of its original form in a spirit of playfulness and exploration.
    [Show full text]
  • This Third Edition Bibliography Lists Books and Teaching Aids Related To
    60:CUMENT RESUMB ED 027 215 SE 006 287 Aerospace Bibliography, Third Edition. National Aeronautics and Space Administration, Washingtan, D.C. Repor t No- EP -35 Pub Date (651 Note-68p. EDRS Price f1F-$0.50 HC-$3.50 Descriptors-*Aerospace Technok)gy, *Annotated Bibliographies, Astronomy, *Bibliographies, Physical Sciences, *Science Education, Technology Identifiers-National Aeronautics and Space Administration Thisthirdeditionbibliographylistsbooks and teaching aids related to aeronautics and space. Aeronautics titles are limited toaerospace-related research subjects, and books on astronomy to those direCtly related to space exploration. Also listed are pertinent references like pamphlets, films,film strips, booklets, charts, pictures, periodicals, and sources of in.formation on specific space subjects available from aerospace industry companies. Reading levels for each document are indicated according to primary, intermediate, upper elementary, secondary, and adult or college. (GR) 33' $ t 'k 4 ;(' " ; , othisit-erP-ie I l if= WIN IP , ., k a k ' II U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFF!CIAL OFFICE OF EDUCATION POSITION OR POLICY. 0 ,"'". Al 1011011104- 1,," 1. 1,=z;z0z2i Ent AEROSPACE BIBLIOGRAPHY THIRD EDITION Compiled for Educational Programs Division, Office of Public Affairs NATIONAL AERONAUTICS AND SPACE ADMINISTRATION by National Aerospace
    [Show full text]
  • Call for Papers Abstract Deadline 7 December 2015
    JANNAF INTERAGENCY PROPULSION COMMITTEE JOINT ARMY-NAVY-NASA-AIR FORCE 63rd JANNAF Propulsion Meeting Programmatic and Industrial Base Meeting 47th Combustion (CS) 35th Airbreathing Propulsion (APS) 35th Exhaust Plume and Signatures (EPSS) 29th Propulsion Systems Hazards (PSHS) JOINT SUBCOMMITTEE MEETING 16 - 20 May 2016 Announcement and Call For Papers Abstract Deadline 7 December 2015 Newport News, Virginia last updated 1/27/16 The May 2016 meeting of the Joint Army-Navy-NASA-Air SCOPE Force (JANNAF) will consist of the 63rd JANNAF Propulsion meeting; the Programmatic and Industrial Base (PIB) JANNAF Propulsion Meeting meeting; and the Joint Meeting of the 47th Combustion / The JANNAF Propulsion Meeting (JPM) encompasses research 35th Airbreathing Propulsion / 35th Exhaust Plume and and applications at the systems level. The JPM is held each Signatures / 29th Propulsion Systems Hazards Subcommittees. year in conjunction with standing JANNAF subcommittee Dr. Christine M. Michienzie with OSD (AT&L), MIBP, meetings on a rotating basis. The scope of the 63rd JPM in Alexandria, Virginia, is the meeting chair. This meeting will 2016 spans eight mission areas: Tactical Propulsion; Missile be held Monday through Friday, 16 - 20 May 2016, at the Defense/Strategic Propulsion; Propulsion Systems for Space Newport News Marriott at City Center in Newport News, Access; Gun and Gun-Launched Propulsion; Propulsion and Virginia. Please refer to page 4 for hotel and area information. Energetics Test Facilities; Sensors for Propulsion Measurement Applications;
    [Show full text]
  • DTIC) Technical Report Bibliography for Reports Responsive to a Search for Keyword/Subject Term: RADIO RELAY, 1943-1971
    Description of document: Defense Technical Information Center (DTIC) Technical Report Bibliography for reports responsive to a search for keyword/subject term: RADIO RELAY, 1943-1971 Requested date: 2013 Released date: 21-October-2013 Posted date: 14-April-2014 Source of document: Defense Technical Information Center (DTIC-R) ATTN: FOIA Requester Service Center 8725 John J. Kingman Road, Suite 0944 Ft. Belvoir, VA 22060-6218 The governmentattic.org web site (“the site”) is noncommercial and free to the public. The site and materials made available on the site, such as this file, are for reference only. The governmentattic.org web site and its principals have made every effort to make this information as complete and as accurate as possible, however, there may be mistakes and omissions, both typographical and in content. The governmentattic.org web site and its principals shall have neither liability nor responsibility to any person or entity with respect to any loss or damage caused, or alleged to have been caused, directly or indirectly, by the information provided on the governmentattic.org web site or in this file. The public records published on the site were obtained from government agencies using proper legal channels. Each document is identified as to the source. Any concerns about the contents of the site should be directed to the agency originating the document in question. GovernmentAttic.org is not responsible for the contents of documents published on the website. From: "Hamilton, Mike CIV DTIC R" Date: Oct 21, 2013 8:22:16 AM Subject: DTIC FOIA 2013-162 Good Morning Attached is information on your below FOIA request.
    [Show full text]
  • Inflatable Technology: Using Flexible Materials to Make Large Structures Douglas A
    Inflatable technology: using flexible materials to make large structures Douglas A. Litteken* NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX, USA 77058 ABSTRACT Space structures are one of the most critical components for any spacecraft, as they must provide the maximum amount of livable volume with the minimum amount of mass. Deployable structures can be used to gain additional space that would not normally fit under a launch vehicle shroud. This expansion capability allows it to be packed in a small launch volume for launch, and deploy into its fully open volume once in space. Inflatable, deployable structures in particular, have been investigated by NASA since the early 1950’s and used in a number of spaceflight applications. Inflatable satellites, booms, and antennas can be used in low-Earth orbit applications. Inflatable heatshields, decelerators, and airbags can be used for entry, descent and landing applications. Inflatable habitats, airlocks, and space stations can be used for in-space living spaces and surface exploration missions. Inflatable blimps and rovers can be used for advanced missions to other worlds. These applications are just a few of the possible uses for inflatable structures that will continued to be studied as we look to expand our presence throughout the solar system. Keywords: Deployable structures, inflatable structures 1. INTRODUCTION The dream of human exploration beyond our home planet has excited and inspired generations across the world. The dreams of taking vacations to the Moon, visiting cities on Mars, or traveling through black holes to discover new life in other galaxies have been described in fiction stories for decades.
    [Show full text]
  • To Orbit and Back Again: How the Space Shuttle Flew in Space Free Download
    TO ORBIT AND BACK AGAIN: HOW THE SPACE SHUTTLE FLEW IN SPACE FREE DOWNLOAD Davide Sivolella | 524 pages | 09 Sep 2013 | Springer-Verlag New York Inc. | 9781461409823 | English | New York, NY, United States To Orbit and Back Again: How the Space Shuttle Flew in Space (Springer… Details of how anomalous events were dealt with on individual missions are also provided, as are the recollections of those who built and flew the Shuttle. He involves here few in photographers on: electoral antitrust exceptionalism; teriparatide and significant experience; concept and matters; and s Futurism. Orbiting skyhooks Skyhook Momentum exchange tether. Soviet X-planes. This passion for astronautics led to bacheklor's and master's degrees in Aerospace Engineering from the Polytechnic of Turin Italy. Archived from the original on 26 June Technical material has been obtained from NASA as well as from other forums and specialists. The Rockwell X National Aero-Space Plane NASPbegun in the s, was an attempt to build a scramjet vehicle capable of operating like an aircraft and achieving orbit like the shuttle. InNASA originally planned to have the Gemini spacecraft land on a runway [18] with a Rogallo wing airfoilrather than an ocean landing under parachutes. Namespaces Article Talk. The spaceplane was also intended to carry cargo, with both upmass and downmass capacity. Search icon An illustration of a magnifying glass. Orbital spaceplanes are more like spacecraft, while sub-orbital spaceplanes are more like fixed-wing aircraft. Our configurations are tall Bodies and genotypes on which to See your new nationality. Space Policy. Details of how anomalous events were dealt with on individual missions are also provided, as are the recollections of those who built and flew the Shuttle.
    [Show full text]
  • Making-Space-For-Security-En-346.Pdf
    TABLE OF CONTENTS Editor's Note Kerstin VIGNARD ............................................................................................................. 1 Special Comment Colonel Chris A. HADFIELD .............................................................................................. 3 Making Space for Security? ‘Peaceful uses’ of outer space has permitted its militarization— does it also mean its weaponization? Johannes M. WOLFF......................................................................................................... 5 Monsters and shadows: left unchecked, American fears regarding threats to space assets will drive weaponization Theresa HITCHENS ........................................................................................................... 15 The world’s space systems Laurence NARDON .......................................................................................................... 33 Is a space weapons ban feasible? Thoughts on technology and verification of arms control in space Regina HAGEN and Jürgen SCHEFFRAN............................................................................ 41 Security without weapons in space: challenges and options Rebecca JOHNSON .......................................................................................................... 53 Resources on Outer Space Security compiled by Jon PARIS, with assistance of Melissa MOTT and Rachel WILLIAMS ............ 67 UNIDIR Focus .......................................................................................................................
    [Show full text]
  • Jet Propulsion Laboratory Publications Collection
    Jet Propulsion Laboratory Publications Collection Paul Silbermann 1999 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Historical Note ................................................................................................................ 1 Citations........................................................................................................................... 2 Series Organization.......................................................................................................... 2 Scope and Content Note ................................................................................................ 2 Names and Subjects ...................................................................................................... 3 Container Listing ............................................................................................................. 4 Series 1: Combined Bimonthly Summaries, 1947-1954........................................... 4 Series 2: 1- Prefix Publications, 1950-1952............................................................. 7 Series 3: 4- Prefix Publications, 1947-1949............................................................
    [Show full text]
  • The Space Race Documented Through Front Pages of Newspapers from Around North America
    The News Frontier The Space Race documented through front pages of newspapers from around North America Newspapers and patches generously donated to the McAuliffe-Shepard Discovery Center by Jerrid Kenney After the end of World War II, a new battle began: the Cold War. In the mid-20th century, the United States and the Soviet Union were each trying to prove they were better than the other. Both sides wanted to show the superiority of their technology, military, and, by extension, their political systems. Starting in the late 1950s, the battlefront reached space. The United States and the Soviet Union fought to first achieve milestones in space exploration—starting in 1957 with the Soviet Union’s launch of Sputnik I, continuing through the U.S.’s landing astronauts on the Moon in 1969, and ending with a handshake in space between American astronauts and Soviet cosmonauts in 1975. Witness the fight for extraterrestrial might by reading about the United States and the Soviet Union’s major feats of the Space Race, as recorded in American and Canadian newspapers in real time. The Space Race Over Time July 15-24, 1975 February 20, 1962 May 28, 1964 The Space Race comes October 4, 1957 April 12, 1961 July 20, 1969 John Glenn becomes NASA launches to an end with the Soviet Union Yuri Gagarin Neil Armstrong first American to unmanned Saturn I Apollo-Soyuz Test launches first becomes first becomes the first orbit the Earth rocket as first step Project, the in-orbit artificial satellite human in space human to walk on of the Apollo the Moon docking of U.S.
    [Show full text]
  • Space Resources for Teachers: Biology, Including Suggestions for Classroom Activities and Laboratory Experiments
    DOCUMENT RICSUMS ED 028 941 SE 006 548 By-Lee, Tom E.; And Others Space Resources for Teachers: Biology, Including Suggestions for Classroom Activities and Laboratory Experiments. California Univ., Berkeley. Spons Agency-National Aeronautics and Space Administration, Washington, D.C. Pub Date Jan 69 Note-231p. Available from-Government Printing Office, Washington, D.C. 20402 (S2.75) EDRS Price MF -S1.00 HC-S11.65 Descriptors-*AerospaceTechnology,AudiovisualAids,Bibliographies,Biology,Instruction, Laboratory Experiments, Resource Materials, Resource Units, Science Activities, Science Units,Secondary School Science Identifiers-National Aeronautics and Space Administration This compilation of resource units concerns the latest developments in space biology. Some of the topics included are oxygen consumption, temperature, radiation. rhythms, weightlessness, acceleration and vibration stress, toxicity, and sensory and perceptual problems. Many of the topics are interdisciplinary and relate biology. physiology, physics, and chemistry. Discussions of each topic include introductory paragraphs of background information, laboratory and class activities, study and discussion topics, and a useful bibliography. The studies and experiments suggested are directed at more than one student achievementlevel. Appendixed aids to the teacher indude (1) source lists of aerospace literature and research reports, (2) an annotated listing of pertinent films, and (3) lists of additional audiovisual resources. (DS) wok U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE
    [Show full text]