Aerocenecampusreader FINAL

Total Page:16

File Type:pdf, Size:1020Kb

Aerocenecampusreader FINAL With Contributions by: Pete Adey ……………….............................Aaron Schuster, The Cosmonaut of the Erotic Future Sasha Engelmann……………………………………….The Cosmic Flight of the Aerocene Gemini Harriet Hawkins………………………………………………………………Imagine… Geoaesthetics Sam Hertz……………………………………………………………………………….The Floating Ear Bronislaw Szerszynski………………………………………………………………Planetary Mobilities Derek McCormack……………………..Sounding: Echoes and Thresholds of Atmospheric Media Andreas Philippopoulos-Mihalopoulos……………........................Withdrawing from Atmosphere Nick Shapiro……………………………………………………………Tim Choy, Air’s Substantiations And from the cosmos of the late Steven Vogel………………………………..Life in Moving Fluids Concept, Edit & Design: Sasha Engelmann and Karina Pragnell Cover Design and Drawings by Irin Siriwattanagul Aerocene Campus NOVEMBER 26, 2016 | EXHIBITION ROAD, LONDON Aerocene comes to Exhibition Road for a multidisciplinary artistic project co-produced by the members of the Exhibition Road Cultural Group, gathering together 17 prestigious cultural and scientific institutions in London, among them, the Serpentine Galleries, Imperial College London, the Natural History Museum, the Science Museum, the Royal Geographical Society, the Victoria and Albert Museum, and the Goethe Institute. How can we hack the Anthropocene to create the Aerocene? The first Aerocene Campus is an open invitation to explore, extend and imagine the Aerocene Epoch through the sculpture of the Aerocene Explorer. The Campus asks how community- driven practices with the Aerocene Explorer can inform environmental, social and mental ecologies in post-Anthropocenic worlds. On November 26th, experts from a wide range of disciplines will gather together for a full day of provocation, discussion, collaboration and 'hacking' to experiment with the Aerocene Explorer and to co-create the Aerocene epoch. To hack is to creatively overcome the limitations of a system, to improve or subvert the intentions of its original form in a spirit of playfulness and exploration. Which geopolitical, social, legal and philosophical "hacks' do we need in order to enter the Aerocene? With this central question, the Aerocene Campus calls upon researchers, scientists, students and activists to address three key Aerocene challenges: Free Flight, Life in the Air and Sounding. These three topics will be introduced on Saturday morning by a panel of experts, provocateurs, reporters and communicators. The campus participants will then select the hacking session which would like to join for the remainder of the day. In the evening, a reporter from each session will present the results for a final large group discussion. A group of highly technical hackers that have responded to the open call for Aerocene Hack 2 will join the Campus for the introduction and the first working session. Since technical hacks must be supported by the multifaceted worlds in which they exist, we hope these conversations will spark cross disciplinary dialogue between Aerocene Hack 2 and Aerocene Campus participants. Aerocene Hack 2 will continue through Sunday, November 27. Aerocene Campus Challenges The Aerocene Explorer, a tethered-flight sculpture currently in beta version, will enable anyone to launch their own personal exploration of the atmosphere. Aerocene Explorer has been developed by Studio Saraceno and a community of collaborators. Each Aerocene Explorer starter kit comes with a small camera, live streaming appliance and sensing devices to record air temperature, humidity, and air pressure. The Explorer allows participants to take aerial photographs and videos, and to collect meteorological data using non-intrusive, emissions-free scientific exploration tools. All the kit's contents are secured in a backpack to ensure portability and comfort when out in the field. The exploration has just begun. The current state of the Aerocene Explorer will be presented by Sven Steudte and members of Studio Tomás Saraceno on the morning of Saturday November 26th. I. FREE FLIGHT Challenge: The challenge of the Free Flight hacking session is to enable the Aerocene Explorer to fly free. In its current state, the Aerocene Explorer is usually attached to a rope anchored to the ground. It flies to a max altitude of 300 metres (the exact height depending on the weather, location and prevailing restrictions). One of the major challenges of the free-flight tests (for example: Gemini 1, 2, 3) is to locate the position of the Explorer’s landing. This is vital for retrieving the footage, collecting data and equipment that the Aerocene Explorer carries. Many Aerocene team members and researchers are collaborating on forecasting the Aerocene Explorer’s future flights’ trajectories. However, the next step is to expand and nuance these tools to simulate the paths of Aerocene Explorers more accurately, and to provide better user engagement options. The Free Flight hack will expand on the Aerocene Hack 1 organised with the Exhibition Road institutions and external collaborators, such as MIT EAPS. Campus Questions: There are many obstacles to Aerocene Explorer free flight in an anthropocenic era of aviation control and surveillance. How might these structures be surmounted legally, socially and politically? Which petitions, manifestos, commissions and actions are necessary? Aerocene Explorer Free Flight breaks conventional notions of borders and passage. How can today's modes of travel and Aerocene Free Flight coexist? This hack invites practitioners from a variety of disciplines, including design, law, sociology, finance and political theory to engage with the challenge of Free Flight in the Aerocene. Here is a brief glimpse into the last free flight of Aerocene Explorer. II. LIFE IN THE AIR Challenge: In its current design, the Aerocene Explorer carries a series of devices of photography, live streaming, and assessing temperature differences, humidity, and altitude among other factors. The Aerocene residency on Exhibition Road brings an opportunity to develop these sensors further and invent new ones for a better understanding of the airborne ecosystems in different atmospheric strata. Exploring “life in the air” encompasses one of the exciting new directions for collaboration between Aerocene and scientific research on aerial life. With the guidance of experts from the Natural History Museum, hacking groups will design new experiments for enhancing our understanding of aerial biodiversity, and how such biodiversity may be impacted by changing climatic factors. This hack offers working groups the opportunity to adapt the Aerocene Explorer design to accommodate new sampling instruments and technologies, and to target regions of the troposphere and stratosphere, and interconnectivity with the environment at large. Campus Questions: What is "life in the air" and how can we recognize it? What would it mean to respond ethically to such life in the Aerocene, and over which scales, times and horizons could we attend to it? What is the relation between life in the air and life on Earth? How can we summon a novel collective attention in atmospheric life that breaks from the extractive and polluting logics of the Anthropocene to shape the Aerocene? In these endeavors, critical hacking from humanities, biological and philosophical scholars on what counts as life, death, element, molecule and material is relevant and urgently required. III. SOUNDING Challenge: The Sounding hacking session aims to identify applications of sensing, sounding and aerial communication capacities for Aerocene flights and research practices. "Sounding" is the measurement of the physical properties of the atmosphere using surface, airborne or orbiting instruments. The earliest scientific balloon campaigns such as GHOST (although using helium-filled balloons) were experiments in “sounding” the atmosphere of the southern hemisphere through the transmission and reception of signals from unmanned, long-distance stratospheric balloon flights. Whilst the origin of the term "Sounding" has no direct relationship to the sounds of the atmosphere, massive atmospheric events (weather systems, meteorite entry) can be detected or heard at great distances through the propagation of low frequency infrasound. We can also speculate how sonification might provide new insights or a different sensory experience of atmospheric data. The Aerocene Explorer can extend such research through collaboration between atmospheric scientists, Aerocene sculptures, and communities of citizen scientists and aero-acoustic hackers. Campus Questions: What does the stratosphere sound like? This question might be interpreted in a meteorological or acoustic sense. The key inspirations for various sounding experiments with Aerocene Explorer sculptures might be located in atmospheric science and fluid dynamics as well as musicality, choreography and composition. In addition to modifications to Aerocene Explorers flights, what would need to happen "on the ground" to shift cultural imaginaries of atmosphere as a more-than-visual space and medium? The Aerocene Sounding hacking session invites atmospheric scientists, musicians, music technologists, engineers and social scientists to hack sensory and sonic exploration of the atmosphere. * * * Aerocene’s residency at the Goethe-Institut London as part of the Exhibition Road Commission has been made possible thanks to the support of members of the Exhibition Road Cultural Group, Arts Council England, South Kensington Estates and our Founding Patrons: Francesca von Habsburg, Maja Hoffmann
Recommended publications
  • Rcosmo: R Package for Analysis of Spherical, Healpix and Cosmological Data Arxiv:1907.05648V1 [Stat.CO] 12 Jul 2019
    CONTRIBUTED RESEARCH ARTICLE 1 rcosmo: R Package for Analysis of Spherical, HEALPix and Cosmological Data Daniel Fryer, Ming Li, Andriy Olenko Abstract The analysis of spatial observations on a sphere is important in areas such as geosciences, physics and embryo research, just to name a few. The purpose of the package rcosmo is to conduct efficient information processing, visualisation, manipulation and spatial statistical analysis of Cosmic Microwave Background (CMB) radiation and other spherical data. The package was developed for spherical data stored in the Hierarchical Equal Area isoLatitude Pixelation (Healpix) representation. rcosmo has more than 100 different functions. Most of them initially were developed for CMB, but also can be used for other spherical data as rcosmo contains tools for transforming spherical data in cartesian and geographic coordinates into the HEALPix representation. We give a general description of the package and illustrate some important functionalities and benchmarks. Introduction Directional statistics deals with data observed at a set of spatial directions, which are usually positioned on the surface of the unit sphere or star-shaped random particles. Spherical methods are important research tools in geospatial, biological, palaeomagnetic and astrostatistical analysis, just to name a few. The books (Fisher et al., 1987; Mardia and Jupp, 2009) provide comprehensive overviews of classical practical spherical statistical methods. Various stochastic and statistical inference modelling issues are covered in (Yadrenko, 1983; Marinucci and Peccati, 2011). The CRAN Task View Spatial shows several packages for Earth-referenced data mapping and analysis. All currently available R packages for spherical data can be classified in three broad groups. The first group provides various functions for working with geographic and spherical coordinate systems and their visualizations.
    [Show full text]
  • From Stargazing to Space Travel Our Brief History Into Space
    From Stargazing to Space Travel Our brief history into space Science in the News Elaine Garcia Angela She November 4th, 2015 Why do we care? Gives us perspective • What did our forefathers think of the Heavens? • Why did they think that? • How did theories change throughout time? Gives us purpose • Mystery drives inquiry and discovery. Important Lessons were Learned and will Continue to be Discovered! Keywords Astrologyl – The study and interpretation of the movements and positions of celestial bodies in relation to Earth and Earthly affairs. Astronomy – The study of physical objects in space: gas, dust, stars, planets, moons, comets, and other non-Earthly mass and phenomena. • Astrophysics – The study of the physical nature and energy of cosmic mass. • Cosmology – A branch of study that theorizes about the origin and nature of the universe. Outline 1. Star Gazing • Theories about why, where, and how 2. Star Studying • Technology to study the unknown 3. Star Reaching • Demo on space exploration Outline 1. Star Gazing • Theories about why, where, and how 2. Star Studying • Technology to study the unknown 3. Star Reaching • Demo on space exploration What are stars’ purpose? Are they the actions, moods, or warnings of celestial beings? Star Worship Is their existence independent and separated from Earth’s existence and purpose? Star Navigation and Measurement Millennia of Lessons 570 BC 384 BC 276 BC 1600 O 1750+ BC 427 BC 310 BC 90 1700 Millennia of Lessons The earliest records of astronomical observations and mathematics. 1750+ BC Greek Rule Zeus King of Gods Hera Queen of Gods Poseidon God of the Sea Hades God of the Underworld Helios The Sun God Ares God of War Aphrodite Goddess of Love Eros God of Love Athena Goddess of Wisdom Hephaestus God of Fire/Forge Wikicommons.com What season is it? Zodiac surrounds the Earth, noting the Seasons Wikicommons.com Millennia of Lessons The earliest records of astronomical observations and mathematics.
    [Show full text]
  • Rhodri Evans
    Rhodri Evans The Cosmic Microwave Background How It Changed Our Understanding of the Universe Astronomers’ Universe More information about this series at http://www.springer.com/series/6960 Rhodri Evans The Cosmic Microwave Background How It Changed Our Understanding of the Universe 123 Rhodri Evans School of Physics & Astronomy Cardiff University Cardiff United Kingdom ISSN 1614-659X ISSN 2197-6651 (electronic) ISBN 978-3-319-09927-9 ISBN 978-3-319-09928-6 (eBook) DOI 10.1007/978-3-319-09928-6 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: : 2014957530 © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
    [Show full text]
  • Measuring Inflation with CLASS
    Measuring Inflation with CLASS by Dominik Gothe A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy. July 2015 Baltimore, Maryland c Dominik Gothe All rights reserved Abstract Using the Cosmology Large Angular Scale Surveyor (CLASS), we will measure the po- larization of the Cosmic Microwave Background (CMB) to constrain inflationary theory. The gravitational waves generated during the inflationary epoch imprinted specific polar- ization patterns – quantifiable by tensor-to-scalar ratio r – onto the CMB, which CLASS is designed to detect. Furthermore, we will be able to make assertions about the energy scale during inflation by discovering the features of the polarization power spectrum, providing a probe into physics of energy scales not conceivable in particle-accelerator physics. CLASS is a unique ground based experiment with extensive consideration given to mitigating sys- tematic uncertainties. A brief introduction into inflationary cosmology and review of current scientific results will be presented in the light of the upcoming measurements with the newly built CLASS de- tector. I will detail some of my technical contribution to the construction of this telescope. I have conducted my research under the advise of Prof. Bennett. Additionally the thesis was reviewed by Prof. Marriage, Prof. Kamionkowski, Prof. Chuss, and Prof. Strobel. ii Acknowledgments I would like to thank my wife, friends, members of the Johns Hopkins community, my mentors, teachers, supervisors, and dissertation committee. The CLASS project receives support from the National Science Foundation Division of Astronomical Sciences under Grant Numbers 0959349 and 1429236. iii Contents I Physics of the Origin of the Universe 1 1 Introduction to the Big Bang Framework .
    [Show full text]
  • This Third Edition Bibliography Lists Books and Teaching Aids Related To
    60:CUMENT RESUMB ED 027 215 SE 006 287 Aerospace Bibliography, Third Edition. National Aeronautics and Space Administration, Washingtan, D.C. Repor t No- EP -35 Pub Date (651 Note-68p. EDRS Price f1F-$0.50 HC-$3.50 Descriptors-*Aerospace Technok)gy, *Annotated Bibliographies, Astronomy, *Bibliographies, Physical Sciences, *Science Education, Technology Identifiers-National Aeronautics and Space Administration Thisthirdeditionbibliographylistsbooks and teaching aids related to aeronautics and space. Aeronautics titles are limited toaerospace-related research subjects, and books on astronomy to those direCtly related to space exploration. Also listed are pertinent references like pamphlets, films,film strips, booklets, charts, pictures, periodicals, and sources of in.formation on specific space subjects available from aerospace industry companies. Reading levels for each document are indicated according to primary, intermediate, upper elementary, secondary, and adult or college. (GR) 33' $ t 'k 4 ;(' " ; , othisit-erP-ie I l if= WIN IP , ., k a k ' II U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFF!CIAL OFFICE OF EDUCATION POSITION OR POLICY. 0 ,"'". Al 1011011104- 1,," 1. 1,=z;z0z2i Ent AEROSPACE BIBLIOGRAPHY THIRD EDITION Compiled for Educational Programs Division, Office of Public Affairs NATIONAL AERONAUTICS AND SPACE ADMINISTRATION by National Aerospace
    [Show full text]
  • MONMOUTH County
    NJ DEP - Historic Preservation Office Page 1 of 20 New Jersey and National Registers of Historic Places Last Update: 9/28/2021 MONMOUTH County Asbury Park City MONMOUTH County Arbutus Cottage (ID#5455) 508 Fourth Avenue Aberdeen Township NR: 8/18/2015 (NR Reference #: 15000003) Freehold and Atlantic Highlands Railroad Historic District (ID#4835) SR: 12/16/2014 Railroad right-of-way from Monmouth, Matawan Borough to Monmouth, (a.k.a. Stephen Crane House, Florence Hotel) Freehold Borough SHPO Opinion: 6/30/2008 Asbury Park Casino and Carousel (ID#1951) See Main Entry / Filed Location: Lake Avenue at the Boardwalk MONMOUTH County, Matawan Borough COE: 1/11/1990 Asbury Park Convention Hall (ID#1952) Garden State Parkway Historic District (ID#3874) Ocean Avenue Entire Garden State Parkway right-of-way NR: 3/2/1979 (NR Reference #: 79001512) SHPO Opinion: 10/12/2001 SR: 12/28/1978 See Main Entry / Filed Location: CAPE_MAY County, Lower Township Asbury Park Post Office (ID#1953) 801 Bangs Avenue New York and Long Branch Railroad Historic District (ID#4354) SR: 1/31/1986 DOE: 6/21/1984 SHPO Opinion: 8/20/2004 (Thematic Nomination of Significant Post Offices) See Main Entry / Filed Location: MIDDLESEX County, Perth Amboy City Asbury Park Railroad Station (ID#1954) 111 Main Street Allenhurst Borough SHPO Opinion: 10/24/1977 (Demolished c. 1978) Allenhurst Residential Historic District (ID#4963) Roughly Bounded by the Atlantic Ocean, Main Street, Cedar Grove Asbury Park Commercial Historic District (ID#3992) Avenue, Hume Street and Elberon Avenue Roughly bounded by 500, 600, 700 bloks., of Bond St., Cookman & NR: 6/18/2010 (NR Reference #: 10000353) Mattison Aves.
    [Show full text]
  • Refueling the Magic Furnace: Kilonova 2017 Rewrites the Story of Element Origins
    Refueling the Magic Furnace: Kilonova 2017 Rewrites the Story of Element Origins Barry Wood University of Houston Abstract For more than half a century, we have understood element creation in the stars—described in Marcus Chown’s colorful image as “the magic furnace.” From 1958 until 2017, supernova explosions were thought to be the primary site of element creation above Iron, No. 26 on the Periodic Table. This assumption was radically overturned with the August 17, 2017, arrival of signals from a catastrophic collision of neutron stars. This paper traces the history of element-creation science leading to the striking discoveries attending “Kilonova 2017” that now call for a rewriting of the nucleosynthesis chapter of Big History. Correspondence | Barry Wood, [email protected] Citation | Wood, B. (2018) Refueling the Magic Furnace: Kilonova 2017 Rewrites the Story of Element Origins. Journal of Big History, II(3); 1 - 15. DOI | http://dx.doi.org/10.22339/jbh.v2i3.2300 Introduction Beginning at 24 Hertz, it gradually rose over 100 Pangea had recently broken up . North America and seconds to several hundred Hertz—indicating the Europe were slowly drifting apart inspiraling of two massive bodies about to detonate . the Himalayas had not yet appeared . tropical in a cataclysmic collision. Following 3,000 cycles, the jungles harbored enormous predatory dinosaurs that GW signal came to an abrupt end at 12:41:04.4 UTC would roam the earth for another 65 million years . (Coordinated Universal Time). Almost immediately mammals the size of housecats kept to the shadows . (1.74 seconds later) a two-second gamma-ray burst .
    [Show full text]
  • Thesis Is Submited in Partial Fulfilment of the Requirements for the Award of the Degree of Doctor of Philosophy of the University of Portsmouth
    Techniques for Cosmological Analysis of Next Generation Low to Mid-Frequency Radio Data Michael Tarr Department of Technology THE THESIS IS SUBMITED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF PORTSMOUTH May 2018 Declaration Whilst registered as a candidate for the above degree, I have not been registered for any other research award. The results and conclusions embodied in this thesis are the work of the named candidate and have not been submitted for any other academic award. This dissertation contains 51,523 words not including appendices, bibliography, footnotes, tables and equations, and has 68 figures. Michael Tarr May 2018 Acknowledgements First, I would like to give my most sincere thanks to David. It goes without saying that I can not imagine having completed this work without you. Your enthusiasm and belief in me has been a constant source of motivation from day one to the eleventh hour. You are an inspiration and model of a perfect superior. I cannot overstate how much I appchiate your effort, and I am eternally grateful. My love and thanks also to my parents, who have provided nothing but loving support, despite all my whims and phases. I can only hope it was all worth it to find something I have finally stuck with. Thanks should also go to Xan and Matthew, for taking precious time away from their own research to indulge my pet machine learning project. I owe you both and hope to always be friends. Rebecca1, save the final thanks for you.
    [Show full text]
  • DTIC) Technical Report Bibliography for Reports Responsive to a Search for Keyword/Subject Term: RADIO RELAY, 1943-1971
    Description of document: Defense Technical Information Center (DTIC) Technical Report Bibliography for reports responsive to a search for keyword/subject term: RADIO RELAY, 1943-1971 Requested date: 2013 Released date: 21-October-2013 Posted date: 14-April-2014 Source of document: Defense Technical Information Center (DTIC-R) ATTN: FOIA Requester Service Center 8725 John J. Kingman Road, Suite 0944 Ft. Belvoir, VA 22060-6218 The governmentattic.org web site (“the site”) is noncommercial and free to the public. The site and materials made available on the site, such as this file, are for reference only. The governmentattic.org web site and its principals have made every effort to make this information as complete and as accurate as possible, however, there may be mistakes and omissions, both typographical and in content. The governmentattic.org web site and its principals shall have neither liability nor responsibility to any person or entity with respect to any loss or damage caused, or alleged to have been caused, directly or indirectly, by the information provided on the governmentattic.org web site or in this file. The public records published on the site were obtained from government agencies using proper legal channels. Each document is identified as to the source. Any concerns about the contents of the site should be directed to the agency originating the document in question. GovernmentAttic.org is not responsible for the contents of documents published on the website. From: "Hamilton, Mike CIV DTIC R" Date: Oct 21, 2013 8:22:16 AM Subject: DTIC FOIA 2013-162 Good Morning Attached is information on your below FOIA request.
    [Show full text]
  • Inflatable Technology: Using Flexible Materials to Make Large Structures Douglas A
    Inflatable technology: using flexible materials to make large structures Douglas A. Litteken* NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX, USA 77058 ABSTRACT Space structures are one of the most critical components for any spacecraft, as they must provide the maximum amount of livable volume with the minimum amount of mass. Deployable structures can be used to gain additional space that would not normally fit under a launch vehicle shroud. This expansion capability allows it to be packed in a small launch volume for launch, and deploy into its fully open volume once in space. Inflatable, deployable structures in particular, have been investigated by NASA since the early 1950’s and used in a number of spaceflight applications. Inflatable satellites, booms, and antennas can be used in low-Earth orbit applications. Inflatable heatshields, decelerators, and airbags can be used for entry, descent and landing applications. Inflatable habitats, airlocks, and space stations can be used for in-space living spaces and surface exploration missions. Inflatable blimps and rovers can be used for advanced missions to other worlds. These applications are just a few of the possible uses for inflatable structures that will continued to be studied as we look to expand our presence throughout the solar system. Keywords: Deployable structures, inflatable structures 1. INTRODUCTION The dream of human exploration beyond our home planet has excited and inspired generations across the world. The dreams of taking vacations to the Moon, visiting cities on Mars, or traveling through black holes to discover new life in other galaxies have been described in fiction stories for decades.
    [Show full text]
  • The Evolution of the Universe
    The Evolution of the Universe edited by David L. Alles Western Washington University e-mail: [email protected] Last Updated 2013-7-14 Note: In PDF format most of the images in this web paper can be enlarged for greater detail. 1 “If being educated means having an informed sense of time and place, then it is essential for a person to be familiar with the scientific aspects of the universe and know something of its origin and structure.” Project 2061, American Association for the Advancement of Science ---------------------------- "The effort to understand the universe is one of the very few things that lifts human life a little above the level of farce, and gives it some of the grace of tragedy."—Steven Weinberg Steven Weinberg is winner of the Nobel Prize in Physics in 1979, and author of the book "The First Three Minutes". 2 Introduction Science at the beginning of the twenty-first century can make some bold, yet simple observations: 1) the universe has evolved; 2) we are a result of that evolution. “We are the first generation of human beings to glimpse the sweep of cosmic history, from the universe's fiery origin in the Big Bang to the silent, stately flight of galaxies through the intergalactic night.” (National Research Council) Order in the Universe Cosmology is the study of the evolution of the universe from its first moments to the present. In cosmology the most fundamental question we can ask is: Does our universe have intelligible regularities that we can understand—is it ordered? This question lies at the heart of the scientific revolution beginning in the sixteenth century.
    [Show full text]
  • Jet Propulsion Laboratory Publications Collection
    Jet Propulsion Laboratory Publications Collection Paul Silbermann 1999 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Historical Note ................................................................................................................ 1 Citations........................................................................................................................... 2 Series Organization.......................................................................................................... 2 Scope and Content Note ................................................................................................ 2 Names and Subjects ...................................................................................................... 3 Container Listing ............................................................................................................. 4 Series 1: Combined Bimonthly Summaries, 1947-1954........................................... 4 Series 2: 1- Prefix Publications, 1950-1952............................................................. 7 Series 3: 4- Prefix Publications, 1947-1949............................................................
    [Show full text]