Call for Papers Abstract Deadline 7 December 2015

Total Page:16

File Type:pdf, Size:1020Kb

Call for Papers Abstract Deadline 7 December 2015 JANNAF INTERAGENCY PROPULSION COMMITTEE JOINT ARMY-NAVY-NASA-AIR FORCE 63rd JANNAF Propulsion Meeting Programmatic and Industrial Base Meeting 47th Combustion (CS) 35th Airbreathing Propulsion (APS) 35th Exhaust Plume and Signatures (EPSS) 29th Propulsion Systems Hazards (PSHS) JOINT SUBCOMMITTEE MEETING 16 - 20 May 2016 Announcement and Call For Papers Abstract Deadline 7 December 2015 Newport News, Virginia last updated 1/27/16 The May 2016 meeting of the Joint Army-Navy-NASA-Air SCOPE Force (JANNAF) will consist of the 63rd JANNAF Propulsion meeting; the Programmatic and Industrial Base (PIB) JANNAF Propulsion Meeting meeting; and the Joint Meeting of the 47th Combustion / The JANNAF Propulsion Meeting (JPM) encompasses research 35th Airbreathing Propulsion / 35th Exhaust Plume and and applications at the systems level. The JPM is held each Signatures / 29th Propulsion Systems Hazards Subcommittees. year in conjunction with standing JANNAF subcommittee Dr. Christine M. Michienzie with OSD (AT&L), MIBP, meetings on a rotating basis. The scope of the 63rd JPM in Alexandria, Virginia, is the meeting chair. This meeting will 2016 spans eight mission areas: Tactical Propulsion; Missile be held Monday through Friday, 16 - 20 May 2016, at the Defense/Strategic Propulsion; Propulsion Systems for Space Newport News Marriott at City Center in Newport News, Access; Gun and Gun-Launched Propulsion; Propulsion and Virginia. Please refer to page 4 for hotel and area information. Energetics Test Facilities; Sensors for Propulsion Measurement Applications; System-wide Application of Additive ATTENDANCE REQUIREMENTS Manufacturing for Propulsion Applications; and Improvised / The overall security level of the meeting is Secret. Unclassified Homemade Explosives. sessions will be held at the Newport News Marriott at City In conjunction with the JPM, the standing JANNAF Center in Newport News, VA; classified sessions will be held at subcommittees for Combustion, Airbreathing Propulsion, NASA Langley Research Center, located in Hampton, Virginia, Exhaust Plume and Signatures, and Propulsion Systems approximately a fifteen minute drive from the hotel. Attendance, Hazards will also hold their biennial meeting (held every applicable to presenters as well, is restricted to qualified U.S. 18 months). To learn more about the scope of the standing citizens. No foreign nationals will be permitted to attend. JANNAF subcommittee meetings, please visit the meeting ALL non-government attendees (which includes contractors, website at https://www.jannaf.org/mtgs/May2016/pages/index. consultants and universities) attending this meeting must: html. 1. Be working on a current government contract or Programmatic and Industrial Base certified by a Sponsoring Government Official The JANNAF Programmatic and Industrial Base (PIB) 2. Provide their organization’s DD 2345 Certification Committee was created with the approval of the updated Number for receipt of militarily-critical technical data JANNAF Charter by the Department of Defense and the DD 2345: For additional information, contact the Joint National Aeronautics and Space Administration in 2014. Certification Program Office (JCP) at 1-800-352-3572 or As stated in the Charter, the “Programmatic and industrial visit their Web site at www.dlis.dla.mil/jcp/. base areas of interest include integrated program plans and key decision points; industrial base assessments; risks To attend the classified sessions, attendees must also possess and opportunities with respect to skills, knowledge, and a personal security clearance of at least Secret with a need- to-know in the areas of rocket, missile, space, aircraft, or gun propulsion. Table of Contents ALL Attendees: To register, you must have a JANNAF Secure Attendance Requirements ……………………………… 2 Portal account. Please visit the Registration page of the Meeting Purpose and Scope ……………………………… 2 meeting website for additional information and important Abstract Submittal Instructions …………………………… 3 links. All presenters do need to register and pay the registration fee. Author Timeline ………………………………………… 4 Questions concerning attendance eligibility should be directed to the JHU-CADRE Facility Security Officer, Mary Gannaway, Hotel and Area Information ……………………………… 4 at (410) 992-7304, ext. 211. Subcommittee / Mission Area Chart ……………………… 5 PURPOSE JANNAF Propulsion Meeting Mission Areas …………… 6 - 9 The purpose of the JANNAF Interagency Propulsion Combustion Subcommittee Mission Areas …………… 10 - 13 Committee is to coordinate fundamental research, exploratory Airbreathing Propulsion Subcommittee Mission Areas 13 - 15 development, and advanced development programs; Exhaust Plume and Signatures Mission Areas ………… 16 - 17 standardize procedures and nomenclature; promote and facilitate the exchange of technical information; and Propulsion Systems Hazards Mission Areas …………… 17 - 18 accomplish problem solving in areas of joint agency interest Workshops / Specialist Sessions ………………………… 19 on propulsion systems used in missiles, rockets, boosters, spaceplane, spacecraft, satellites, and guns. JANNAF JANNAF Awards Program / Nominations …………… 19 - 20 subcommittees focus their resources on technical issues of Upcoming JANNAF Meetings …………………………… 20 interest to the JANNAF agencies. 2 JPM / PIB / CS / APS / EPSS / PSHS Announcement and Call for Papers experience; identification of commonality, innovative • Please submit using the Abstract Submittal Form, which acquisition, and partnership opportunities; integrated can be downloaded from the May meeting website. assessments to identify rocket propulsion industrial base (RPIB) rationalization opportunities; special actions from • Obtain management approval on the abstract form to senior agency, department, or Executive Office of the President ensure availability of resources for your participation in (EOP) leadership; and information provided to decision the meeting and confirm that the presenting author is a makers for either situational awareness or policy decisions.” qualified U.S citizen. Combustion Subcommittee • Many organizations require abstracts to be processed The Combustion Subcommittee (CS) covers analytical through an approval system prior to submission. This modeling and experimental research on chemical combustion process takes additional time, so authors should plan phenomena for solid, liquid, hybrid, and airbreathing missile, accordingly and begin the process early in an effort to space, underwater, and gun propulsion systems. meet the abstract deadline date. Airbreathing Propulsion Subcommittee • Remember, you must be a qualified U.S. Citizen to attend The Airbreathing Propulsion Subcommittee (APS) addresses and present at this meeting. No foreign nationals are technical problems and issues associated with turbojet, ramjet, permitted to attend. scramjet, and combined- or mixed-cycle engines. • The deadline date for submission of completed Abstract Exhaust Plume and Signatures Subcommittee Submittal Forms to CADRE is 7 December 2015. The Exhaust Plume and Signatures Subcommittee (EPSS) CADRE accepts only electronic submission of abstracts addresses the phenomena associated with the exhaust from and papers. Abstracts must be submitted on the Abstract rockets, ramjets, space, gun propulsion systems, and Electro- Submittal Form: Optical/Infrared (EO/IR) signature community. • Via email to: [email protected]; (Distribution A only); Propulsion Systems Hazards Subcommittee OR The Propulsion Systems Hazards Subcommittee (PSHS) • Uploaded to CADRE’s secure server as follows: examines potential hazards associated with missile, space, and 1. Go to https://webdatabase.cpia.jhu.edu/docorg/ gun propulsion systems. program/cgi-bin/Login.pl ABSTRACT SUBMITTAL INSTRUCTIONS 2. Choose Infobase: JANNAF Mtg Abstract Uploads • The technical areas to be addressed are defined in this 3. Type in User Name: Abstract announcement. Individuals who wish to submit an abstract should carefully review the areas and complete 4. Type in Password [contact CADRE (410) 992-7302 or and submit the electronic Abstract Submittal Form posted 7300 for current password]. on the May meeting website. 5. Click the “Login” button. • The submission of an abstract represents an agreement to submit a final paper for publication by 18 April 2016, 7. Click on “May 2016 JANNAF Meeting”; choose “Add attend the meeting, and deliver a 30-minute presentation. Document” (to the left of the page) Your presentation will be heard by all qualified individuals within industry, government, and university organizations. If 8. Complete the “Add Document” form, being sure to your paper cannot be presented to all qualified attendees, it Title your Document, select “Upload from Client”, cannot be presented in this program without specific approval click the “Browse” button and navigate to where you have saved your completed Abstract Submittal Form from members of the JANNAF Executive Committee. on your computer. Select the file and click “Open”. • Submit only unclassified abstracts. Abstracts will not be Choose the appropriate file format (MS Word or PDF) under Document Type, and click on “Apply”. published and will only be used by the program committee members for paper selection purposes. 9. Email [email protected] to notify that the file has been successfully uploaded. • Limit the abstract to 250-300 words and exclude tables and figures. State the objective of the work. Describe the scope, method of approach, and any new advances in the state Remember, the deadline to submit
Recommended publications
  • Interstellar Travel Or Even 1.3 Mlbs at Launch
    Terraforming Mars: By Aliens? Astronomy 330 •! Sometime movies are full of errors. •! But what can you do? Music: Rocket Man– Elton John Online ICES Question •! ICES forms are available online, so far 39/100 Are you going to fill out an ICES form before the students have completed it. deadline? •! I appreciate you filling them out! •! Please make sure to leave written comments. I a)! Yes, I did it already. find these comments the most useful, and typically b)! Yes, sometime today that’s where I make the most changes to the c)! Yes, this weekend course. d)! Yes, I promise to do it before the deadline of May6th! e)! No, I am way too lazy to spend 5 mins to help you or future students out. Final Final •! In this classroom, Fri, May 7th, 0800-1100. •! A normal-sized sheet of paper with notes on both •! Will consist of sides is allowed. –! 15 question on Exam 1 material. •! Exam 1and 2 and last year’s final are posted on –! 15 question on Exam 2 material. class website (not Compass). –! 30 questions from new material (Lect 20+). –! +4 extra credit questions •! I will post a review sheet Friday. •! A total of 105 points, i.e. 5 points of extra credit. •! Final Exam grade is based on all three sections. •! If Section 1/2 grade is higher than Exam 1/2 grade, then it will replace your Exam 1/2 grade. Final Papers Outline •! Final papers due at BEGINNING of discussion •! Rockets: how to get the most bang for the buck.
    [Show full text]
  • Engineering 8 Launch Vehicles
    Papers on the Lunar Settlement Engineering 8 : Launch Vehicles mass of each stage is 10% the fuel mass, 0. Introduction This paper since the larger lower stages will be accompanies number 03-01 on the more structurally efficient but must bear logistics of space access. It is intended the load of the upper stages. to present technical analysis of relevant concepts, specifically the expendable If the required velocity increment for multistage rocket for direct ascent, the direct ascent, without an intermediate single-stage reusable terrestrial orbiter, orbit, is taken as the sum of the escape two-stage reusable and partially reusable velocities of Terra and Luna, 13.6 km/s, configurations, the lunar rocket, and the the necessary mass ratio with exhaust space gun. At this early date, however, velocity 4.0 km/s is 30. This sets the nothing more than approximations and maximum delivered mass at 33 t, and general considerations can be furnished. indicates that several steps are required. While specific numerical values are As a little calculation will show, the indicated in certain places, it must be overall efficiency of a step rocket is understood clearly that few of these have improved by using low mass-ratios in any validity ; they are presented in order the lower steps. We may select a to indicate trends of expected behaviour. tristage configuration, with step mass ratios of 2, 3, and 5. 1. Expendable Rocket For the expendable rocket to be useful, it must The mass of the first step, then, is 550 t, be very large. Two factors are at work of which 500 t is fuel ; the second, 330 t, here : first, ceteris paribus , the larger with 300 t fuel ; and the third is the the rocket, the larger the useful mass lunar-landing stage, 120 t with 96 t fuel.
    [Show full text]
  • This Third Edition Bibliography Lists Books and Teaching Aids Related To
    60:CUMENT RESUMB ED 027 215 SE 006 287 Aerospace Bibliography, Third Edition. National Aeronautics and Space Administration, Washingtan, D.C. Repor t No- EP -35 Pub Date (651 Note-68p. EDRS Price f1F-$0.50 HC-$3.50 Descriptors-*Aerospace Technok)gy, *Annotated Bibliographies, Astronomy, *Bibliographies, Physical Sciences, *Science Education, Technology Identifiers-National Aeronautics and Space Administration Thisthirdeditionbibliographylistsbooks and teaching aids related to aeronautics and space. Aeronautics titles are limited toaerospace-related research subjects, and books on astronomy to those direCtly related to space exploration. Also listed are pertinent references like pamphlets, films,film strips, booklets, charts, pictures, periodicals, and sources of in.formation on specific space subjects available from aerospace industry companies. Reading levels for each document are indicated according to primary, intermediate, upper elementary, secondary, and adult or college. (GR) 33' $ t 'k 4 ;(' " ; , othisit-erP-ie I l if= WIN IP , ., k a k ' II U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFF!CIAL OFFICE OF EDUCATION POSITION OR POLICY. 0 ,"'". Al 1011011104- 1,," 1. 1,=z;z0z2i Ent AEROSPACE BIBLIOGRAPHY THIRD EDITION Compiled for Educational Programs Division, Office of Public Affairs NATIONAL AERONAUTICS AND SPACE ADMINISTRATION by National Aerospace
    [Show full text]
  • To Orbit and Back Again: How the Space Shuttle Flew in Space Free Download
    TO ORBIT AND BACK AGAIN: HOW THE SPACE SHUTTLE FLEW IN SPACE FREE DOWNLOAD Davide Sivolella | 524 pages | 09 Sep 2013 | Springer-Verlag New York Inc. | 9781461409823 | English | New York, NY, United States To Orbit and Back Again: How the Space Shuttle Flew in Space (Springer… Details of how anomalous events were dealt with on individual missions are also provided, as are the recollections of those who built and flew the Shuttle. He involves here few in photographers on: electoral antitrust exceptionalism; teriparatide and significant experience; concept and matters; and s Futurism. Orbiting skyhooks Skyhook Momentum exchange tether. Soviet X-planes. This passion for astronautics led to bacheklor's and master's degrees in Aerospace Engineering from the Polytechnic of Turin Italy. Archived from the original on 26 June Technical material has been obtained from NASA as well as from other forums and specialists. The Rockwell X National Aero-Space Plane NASPbegun in the s, was an attempt to build a scramjet vehicle capable of operating like an aircraft and achieving orbit like the shuttle. InNASA originally planned to have the Gemini spacecraft land on a runway [18] with a Rogallo wing airfoilrather than an ocean landing under parachutes. Namespaces Article Talk. The spaceplane was also intended to carry cargo, with both upmass and downmass capacity. Search icon An illustration of a magnifying glass. Orbital spaceplanes are more like spacecraft, while sub-orbital spaceplanes are more like fixed-wing aircraft. Our configurations are tall Bodies and genotypes on which to See your new nationality. Space Policy. Details of how anomalous events were dealt with on individual missions are also provided, as are the recollections of those who built and flew the Shuttle.
    [Show full text]
  • Making-Space-For-Security-En-346.Pdf
    TABLE OF CONTENTS Editor's Note Kerstin VIGNARD ............................................................................................................. 1 Special Comment Colonel Chris A. HADFIELD .............................................................................................. 3 Making Space for Security? ‘Peaceful uses’ of outer space has permitted its militarization— does it also mean its weaponization? Johannes M. WOLFF......................................................................................................... 5 Monsters and shadows: left unchecked, American fears regarding threats to space assets will drive weaponization Theresa HITCHENS ........................................................................................................... 15 The world’s space systems Laurence NARDON .......................................................................................................... 33 Is a space weapons ban feasible? Thoughts on technology and verification of arms control in space Regina HAGEN and Jürgen SCHEFFRAN............................................................................ 41 Security without weapons in space: challenges and options Rebecca JOHNSON .......................................................................................................... 53 Resources on Outer Space Security compiled by Jon PARIS, with assistance of Melissa MOTT and Rachel WILLIAMS ............ 67 UNIDIR Focus .......................................................................................................................
    [Show full text]
  • The Space Race Documented Through Front Pages of Newspapers from Around North America
    The News Frontier The Space Race documented through front pages of newspapers from around North America Newspapers and patches generously donated to the McAuliffe-Shepard Discovery Center by Jerrid Kenney After the end of World War II, a new battle began: the Cold War. In the mid-20th century, the United States and the Soviet Union were each trying to prove they were better than the other. Both sides wanted to show the superiority of their technology, military, and, by extension, their political systems. Starting in the late 1950s, the battlefront reached space. The United States and the Soviet Union fought to first achieve milestones in space exploration—starting in 1957 with the Soviet Union’s launch of Sputnik I, continuing through the U.S.’s landing astronauts on the Moon in 1969, and ending with a handshake in space between American astronauts and Soviet cosmonauts in 1975. Witness the fight for extraterrestrial might by reading about the United States and the Soviet Union’s major feats of the Space Race, as recorded in American and Canadian newspapers in real time. The Space Race Over Time July 15-24, 1975 February 20, 1962 May 28, 1964 The Space Race comes October 4, 1957 April 12, 1961 July 20, 1969 John Glenn becomes NASA launches to an end with the Soviet Union Yuri Gagarin Neil Armstrong first American to unmanned Saturn I Apollo-Soyuz Test launches first becomes first becomes the first orbit the Earth rocket as first step Project, the in-orbit artificial satellite human in space human to walk on of the Apollo the Moon docking of U.S.
    [Show full text]
  • Space Resources for Teachers: Biology, Including Suggestions for Classroom Activities and Laboratory Experiments
    DOCUMENT RICSUMS ED 028 941 SE 006 548 By-Lee, Tom E.; And Others Space Resources for Teachers: Biology, Including Suggestions for Classroom Activities and Laboratory Experiments. California Univ., Berkeley. Spons Agency-National Aeronautics and Space Administration, Washington, D.C. Pub Date Jan 69 Note-231p. Available from-Government Printing Office, Washington, D.C. 20402 (S2.75) EDRS Price MF -S1.00 HC-S11.65 Descriptors-*AerospaceTechnology,AudiovisualAids,Bibliographies,Biology,Instruction, Laboratory Experiments, Resource Materials, Resource Units, Science Activities, Science Units,Secondary School Science Identifiers-National Aeronautics and Space Administration This compilation of resource units concerns the latest developments in space biology. Some of the topics included are oxygen consumption, temperature, radiation. rhythms, weightlessness, acceleration and vibration stress, toxicity, and sensory and perceptual problems. Many of the topics are interdisciplinary and relate biology. physiology, physics, and chemistry. Discussions of each topic include introductory paragraphs of background information, laboratory and class activities, study and discussion topics, and a useful bibliography. The studies and experiments suggested are directed at more than one student achievementlevel. Appendixed aids to the teacher indude (1) source lists of aerospace literature and research reports, (2) an annotated listing of pertinent films, and (3) lists of additional audiovisual resources. (DS) wok U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE
    [Show full text]
  • Feasibility Study for Multiply Reusable Space Launch System
    Feasibility Study For Multiply Reusable Space Launch System. Mikhail V. Shubov University of MA Lowell One University Ave, Lowell, MA 01854 E-mail: [email protected] Contents 1 Introduction 3 2 State of Art and Proposed Orbital Delivery Systems 5 2.1 HistoricalLaunchCosts. ..... 5 2.2 LaunchCostReduction . .. .. .. .. .. .. .. ... 6 2.3 SingleStagetoOrbit(SSTO)Concept . ....... 7 2.4 Non-RocketSpaceLaunch . ... 7 3 Multiply Reusable Launch System – Purpose and Concept 9 3.1 EarlyStagesofSolarSystemColonization . .......... 9 3.2 The Concept of Multiply Reusable Launch System Consistingof MPDS and MPTO 10 4 Rocket Motion and Propulsion 11 4.1 RocketFlightPhysics.. .. .. .. .. .. .. .. .... 11 4.1.1 RocketMotion ................................ 12 4.1.2 Lossesof v ................................. 15 △ 4.2 LiquidRocketEngines ............................. ... 16 4.2.1 Enginespecifications . .. 16 4.2.2 Combustionchambertemperature . .... 17 4.3 LiquidRocketFuelsandOxidizers . ....... 18 arXiv:2107.13513v1 [physics.soc-ph] 19 Apr 2021 4.3.1 CryogenicPropellantforMPDSEngines . ..... 18 4.3.2 HypergolicPropellantforMPTOEngines . ...... 19 4.4 PropellantCost .................................. .. 21 4.4.1 MPDSPropellant–$188PerTonAverage. .... 21 4.4.2 MPTOPropellant–$2,000PerTonAverage . .... 23 1 4.4.3 OrbitalLaunchFuelBill . .. 24 5 Rocket Parameters and Performance 25 5.1 MidpointDeliverySystem(MPDS) . ..... 25 5.1.1 MainparametersofMPDSstages . .. 26 5.1.2 PerformanceandtimetableofMPDSstages . ...... 27 5.2 MidpointtoOrbitDeliverySystem(MPTO)
    [Show full text]
  • Gives an Overview of the Aerospace Industry, Its Products, Hardware
    . DOCUMENT RESUME ED 026 273 SE 006 268 By-Feirer, John L. Space Resources for the High School Industrial Arts Resource Units. Spons Agency-National Aeronautics and Space Administration, Washington, D.C. Report No-EP-44 Pub Date Apr 67 Note- 1 74p. EDRS Price MF-$0.75 HC-$8.80 Descriptors-*Aerospace Technology, Bibliographies, earth Science,Films,*IndustrialArts,Instructional i Materials, *Secondary School Science, *Teaching Guides Identifiers-National Aeronautics and Space Administration This guide is intended for industrial arts teachers, supervisors, and teacher educators at all levels of instruction for use as a supplement to their courses. The eight units which are included are all directly applicable to aerospace technology. The primary purpose of the guide is to motivate and interest students and teachers in aerospace age education. The booklet is comprised of four sections. Section One gives an overview of the aerospace industry,itsproducts, hardware, and occupations. Section Two contains eight units of student activities related to aerospace applications. Section Three is entitled "Newer Directions." Section Four is an appendix of educational services offered by the National Aeronautics and Space Administration, filmlists, and a lisst of participants ata space technology conference. (BC) r , -e-1, -.?,-. 4 :,..,0 qpprignH Gamos. LTIEN SUACCIL indunlai arts resource units Prepared for the National Aeronautics and Space Administration by a committee of industrial uts educators under the direction of John L. Feirer, Western Michigan University, in connection with a conference conducted by the University of South Florida, with the cooperation of the Florida State Department of Education and NASA's Jo Im F.
    [Show full text]
  • Mass Beam Propulsion, an Overview
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303682465 Mass beam propulsion, an overview Article · January 2015 CITATIONS READS 0 260 2 authors, including: Adam Crowl Icarus Interstellar 22 PUBLICATIONS 22 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Galactic Surveys View project BFR to Titan View project All content following this page was uploaded by Adam Crowl on 21 August 2018. The user has requested enhancement of the downloaded file. Mass BeamJBIS, Propulsion, Vol. 68, Anpp.?-?, Overview 2015 MASS BEAM PROPULSION, AN OVERVIEW GERALD D. NORDLEY1 AND ADAM JAMES CROWL2 1. 1238 Prescott Avenue, Sunnyvale, CA 94089, USA. 2. 4 Ulmarra Crescent, Strathpine 4500, Queensland, Australia Email: [email protected] An alternative to rockets is to push spacecraft with a reflected beam. The advantage is that it leaves most of the propulsion system mass at rest. Use of mass beams, as opposed to photons, allows great efficiency by adjusting the beam velocity so the reflected mass is left near zero velocity relative to the source. There is no intrinsic limit to the proper frame map velocity that can be achieved. To make a propulsion system, subsystems need to be developed to acquire propulsive energy, accelerate the mass into a collimated beam, insure that the mass reaches the spacecraft and reflect the mass. A number of approaches to these requirements have been proposed and are summarized here. Generally no new scientific discoveries or breakthroughs are needed. These concepts are supported by ongoing progress in robotics, in nanometre scale technologies and in those technologies needed to use of space resources for the automated manufacture of space-based solar power facilities.
    [Show full text]
  • Film Catalog. John F. Kennedy Space Center. 1987. INSTITUTION National Aeronautics and Space Administration, Washington, D.C
    DOCUMENT RESUME ED 300 277 SE 050 129 TITLE Film Catalog. John F. Kennedy Space Center. 1987. INSTITUTION National Aeronautics and Space Administration, Washington, D.C. PUB DATE 87 NOTE 108p.; Photographs and some small print may not reproduce well. PUB TYPE Reference Materials - Directories/Catalogs (132) EDRS PRICE MF01/PC05 Plus Postage. DESCRIPTORS *Aerospace Education; *Aerospace Technology; Astronomy; Earth Science; Elementary School Science; Elementary Secondary Education; *Film Libraries; *Films; Instructional Materials; Satellites (Aerospace); Science Education; Science History; *Secondary School Science; Space Exploration; Space Sciences; Teaching Guides; Teaching Methods IDENTIFIERS *National Aeronautics and,tSpace Administration ABSTRACT Teachers from the United States and several other countries have access to the film library system of the National Aeronautics and Space Administration (NASA). This catalog contains the titles and abstracts for over 150 fi]ms that are available from NASA on topics regarding space flight, meteorology, astronomy, NASA programs, satellites, research, safety, technology, and earth sciences. Ordering and usage information are also included. A lesson guide is provided in the appendix to accompany 37 of these films. Each guide lists objectives, important vocabulary, preparatory activities, follow up activities, evaluation ideas, related information sources, and ideas for presenting the lesson. (CW) ******** ******** ************* ******* *** ********************** * ****** *** * Reproductions supplied by EDRS are the best that can be made * * from the original document. * f National Aeronautics. and Space Administration U.S. DEPARTMENT (Mice of Educational OF EDUCATION Research and Improvement E VCATIONAL RESOURCES INFORMATION / CENTER (ERIC) his document hasbeen reproduced eceived from the person as 4originating st. or organization O Minor changes have reoroduction Qualitybeen made to improve Points of view°, opinions meet do not necessanlystared in this claw OEM position or poky.represent official Film Catalog John F.
    [Show full text]
  • Directed Energy Weapons (Dews): a Bibliography
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Dudley Knox Library Publications Bibliographies 2005-10 Directed Energy Weapons (DEWs): A Bibliography Marlatt, Greta E. http://hdl.handle.net/10945/6980 DIRECTED ENERGY WEAPONS (DEWs): A BIBLIOGRAPHY Compiled by Greta E. Marlatt Dudley Knox Library Naval Postgraduate School Updated and Revised October 2005 This Bibliography is also available at http://www.nps.edu/Library/Research%20Tools/Bibliographies/index.html DIRECTED ENERGY WEAPONS (DEWs): A BIBLIOGRAPHY Complied by Greta E. Marlatt Dudley Knox Library Naval Postgraduate School Updated and Revised October 2005 PAGE INTENTIONALLY LEFT BLANK Table of Contents DIRECTED ENERGY WEAPONS GENERAL ................................... 5 PERIODICALS ................................................................................ 5 BOOKS ......................................................................................... 32 HIGH POWER MICROWAVES ...................................................... 114 PERIODICALS ............................................................................ 114 BOOKS ....................................................................................... 115 ELETROMAGNETIC PULSE (EMP) .............................................. 117 PERIODICALS ............................................................................ 117 BOOKS ......................................................................................
    [Show full text]