NV Musk Deer

Total Page:16

File Type:pdf, Size:1020Kb

NV Musk Deer Sullivan et al., eds., 2011, Fossil Record 3. New Mexico Museum of Natural History and Science, Bulletin 53. 610 SYSTEMATICS OF THE MUSK DEER (ARTIODACTYLA: MOSCHIDAE: BLASTOMERYCINAE) FROM THE MIOCENE OF NEVADA DONALD R. PROTHERO Department of Geology, Occidental College, Los Angeles, CA 90041 Abstract—The North American musk deer (family Moschidae, subfamily Blastomerycinae) were an important element of many faunas during the Miocene. They were recently revised by Prothero (2008), who reduced dozens of named species to only 8 species distributed among 6 genera. Two samples from early-middle Miocene faunas of Nevada, however, were not assessed in the 2008 revision. These include the type series of Blastomeryx mollis Merriam, 1911, from the early Barstovian (early middle Miocene) Virgin Valley and High Rock faunas, and specimens from the late Hemingfordian (late early Miocene) Massacre Lake fauna that Morea (1981) thought represented a new genus and 1 or 2 new species. These specimens are re-examined in light of the improved sample size and taxonomy of other Miocene blastomerycines, and it is clear that neither study was based on inadequate comparisons with enough specimens. Based on the modern taxonomy of blastomerycines, these Nevada samples are assigned to Problastomeryx primus (Matthew, 1908), a common primitive early-middle Miocene blastomerycid in North America. Blastomeryx mollis Merriam, 1911 is rendered a junior synonym. INTRODUCTION mens were photographed with a Nikon 5700 digital camera, and edited in Photoshop. Cope (1874) described the first known fossils of North American Institutional abbreviations: AMNH = American Museum of musk deer. He based the taxon Blastomeryx gemmifer on a fragmentary Natural History, New York; F:AM = Frick Collection, AMNH; UCMP jaw with an m3 from the Barstovian of Colorado. Originally, he thought = University of California Museum of Paleontology, Berkeley; UCR = it was a small ruminant, possibly a primitive merycodont pronghorn. University of California, Riverside, vertebrate fossil collection (now But when Matthew (1908) described more complete material of curated at UCMP). Blastomeryx (now Problastomeryx) primus with enlarged upper canine tusks, it became clear that Blastomeryx was a cervoid of some kind. By SYSTEMATIC PALEONTOLOGY 1926, Matthew had described Machaeromeryx and noted its similarities Blastomeryx mollis Merriam, 1911 to musk deer, but did not formally transfer the group to the family Moschidae. Subsequent authors (reviewed by Prothero, 2008, p. 207) Type specimens: UCMP 11564, left ramus with p3-m3 (Fig. 1); assigned the blastomerycines to either the palaeomerycids (i.e., the North co-type, UCMP 11567, ramus with p4-m3; both from the lower Virgin American dromomerycines) or to various cervoid groups. Finally, Webb Valley beds (Merriam, 1911, fig. 57). and Taylor (1980) formally assigned the blastomerycines to the Referred material: From the Virgin Valley area (early Moschidae, and this assignment was followed by McKenna and Bell Barstovian), UCMP locality 1065: UCMP 11565, isolated m3; UCMP (1997, p. 421) and Prothero (2008). Due to this long-standing taxonomic 10661, dentary fragment with teeth; UCMP 11541, isolated tooth; confusion, a large number of blastomerycine specimens (especially jaws UCMP 11566, dentary fragment; UCMP 11665, maxilla with P2-3. and teeth with no diagnostic cranial appendages or large canines) were From the High Rock Canyon localities (early Barstovian), UCMP local- often confused with palaeomerycids, such as the dromomerycines, which ity 1107: UCMP 12609, jaw fragment with p3 and the alveolus of p2 are very similar in dental morphology to blastomerycines, but are very (figured in Merriam, 1911, fig. 58); UCMP 12607, jaw fragment. different in cranial features. In addition, the Berkeley online catalog refers UCMP 24301, a At the time of my blastomerycine revision (Prothero, 2008), I had horn core, to Blastomeryx mollis, which was collected by Chester Stock not yet seen the University of California material of blastomerycines in 1920 and identified by Ruben Stirton in 1944. However, this cannot be from the Miocene of Nevada (both UC Museum of Paleontology and correct since musk deer don’t have horns or antlers. It is instead prob- former UC Riverside collections) , so I commented (p. 210), “In addi- ably referable to one of the dromomerycids reported from the Virgin tion, there are numerous UCMP specimens that have not yet been stud- Valley beds by Merriam (1911). ied, but will probably prove to be B. gemmifer. Some are from the Virgin Discussion: Merriam (1911, p. 278-279) proposed the taxon Valley beds (e.g., UCMP 40998, 41013, 41020) and the High Rock Blastomeryx mollis based on a holotype specimen (UCMP 11564) con- Canyon localities (e.g., UCMP 12607, 12609, 24301), which are from sisting of a left mandibular fragment with p3-m3 from the “lower Virgin the early Barstovian of northwest Nevada.” Valley beds, Virgin Valley, Nevada,” collected in 1909 (Fig. 1). Merriam Since that time, I have studied these specimens of Miocene musk (1911) never illustrated the primary type specimen, UCMP 11564. deer and borrowed some of the material to make direct side-by-side Instead, he illustrated (1911, figs. 56-58, p. 279) the co-type, UCMP comparisons with the much larger and more complete collections in the 11567, a ramus with p4-m3, and two other referred specimens: UCMP AMNH. It is now possible to make some determinations about the 11575, an isolated m3; and UCMP 12609, a jaw fragment with p3 and taxonomic status of these poorly understood taxa. the alveolus of p2 (the latter from High Rock Canyon). As a diagnosis, he wrote: “in the slightly greater length of the tooth row, relatively larger METHODS size of the premolars or smaller size of the m3, and the absence of p1 immediately anterior to p2 the Nevada form differs from B. olcotti. From In January 2009, I examined specimens from several collections B. primus it differs in the oval form of p4, in a slightly longer tooth row, and made detailed measurements to determine whether the stated size and probably in the anteroposterior diameter of the premolars” (p. 279). comparisons in the literature were backed up by metric data. All metric Merriam (1911) mostly compared the material to Blastomeryx data, statistics and plots were generated in Excel spreadsheets. Speci- 611 FIGURE 1. Primary type specimen of “Blastomeryx mollis,” UCMP 11564, in A, lateral and B, crown views. Photos by P. Holroyd, courtesy UCMP. primus Matthew 1908, and Blastomeryx olcotti Matthew 1908, both of useful. The supposed loss of p1 (probably a retained dp1, as in many which are now considered synonyms of Problastomeryx primus by mammals) has proven to be highly variable across the ungulates, and no Prothero (2008, p. 212). As Stirton (1944, p. 641) noted, the large size, longer serves as a useful character (Prothero, 2005; Prothero and Sanchez, Palaeomeryx folds, unreduced premolars, and prominent protocones on 2008). The actual condition of the p1 in B. mollis is unknown, since the P2-3 suggest the specimens belong to a primitive taxon with relatively type material is too incomplete to determine its presence or absence. unreduced premolars and Palaeomeryx folds. However, Stirton suggested Merriam (1911) could only infer that the p1 was not immediately in that it be assigned to Parablastomeryx gregorii, a large Clarendonian front of the p2, but it was either separated by a diastema or absent. The taxon, which makes less sense than an assignment to the late Heming- “triangular form” of the p4 in B. mollis versus the “oval form” of p4 in P. fordian-Barstovian taxon Problastomeryx primus. For example, the length primus is also highly variable across the specimens when one examines of the tooth row and relatively unreduced premolar row (Fig. 2) places the much larger collections of musk deer in the AMNH collections. UCMP 11564 (the primary holotype) in the midst of the cluster of P. Thus, there is no reason to regard Merriam’s “Blastomeryx mollis” primus specimens or possibly within B. gemmifer, but outside the size as anything other than a junior synonym of Problastomeryx primus cluster of the much larger P. gregorii, or the much smaller P. advena. (Matthew, 1908). Likewise, Merriam’s (1911) comment about the small size of the m3 is The taxonomic status of the late not borne out by measurements of more specimens (Fig. 3). In size, the Hemingfordian Massacre Lake Blastomerycinae m3 overlaps not only with P. primus but also with P. advena and B. gemmifer, so this character is not very diagnostic. In an unpublished UCR doctoral dissertation, Morea (1981) ana- The other characters that Merriam (1911) mentioned are not very lyzed the late Hemingfordian Massacre Lake fauna (UCMP locality 612 dissertations in their databases. Since this paper analyzes the taxonomic status of the early-middle Miocene musk deer of western Nevada, it is appropriate to examine Morea’s unpublished taxonomy and see if it is justified and should be formally published, or whether it is invalid. Morea (1981, p. 180-188) provided detailed descriptions of all the UCR material (now in the UCMP) he referred to his new genus and made numerous comparisons with the UCMP material from the Virgin Valley. Unfortunately, however, he apparently did not have the time or resources to compare his material with the much better collections in the AMNH. Such comparisons might have been difficult in any case because the taxonomy of blastomerycines has been a mess since the 1930s, with dozens of invalid taxa that were sorted out by the revision of Prothero (1998). In addition, Morea seemed to confuse these specimens with palaeomerycids and make inappropriate comparisons to material from an entirely unrelated family, a common problem before Webb and Taylor (1980) clarified the differences between Moschidae and the aletomerycine and dromomerycine Palaeomerycidae. Thus, Morea’s comparisons and diagnoses break down when the much larger collections of the AMNH (mostly from Great Plains localities worked by the Frick Laboratory, FIGURE 2.
Recommended publications
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Short Title: Ecological Properties of Ruminal Microbiota
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 December 2020 doi:10.20944/preprints202012.0628.v1 CHARACTERISTICS OF RUMINAL MICROBIAL COMMUNITY: EVOLUTIONARY AND ECOLOGICAL PERSPECTIVES AMLAN KUMAR PATRA* Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Belgachia, K.B. Sarani 37, Kolkata 700037, India *Corresponding author. Email address: [email protected] (A.K. Patra) Short title: Ecological properties of ruminal microbiota 0 © 2020 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 December 2020 doi:10.20944/preprints202012.0628.v1 CHARACTERISTICS OF RUMINAL MICROBIAL COMMUNITY: EVOLUTIONARY AND ECOLOGICAL PERSPECTIVES Abstract Ruminants perhaps appeared about 50 million years ago (Ma). Five ruminant families had been extinct and about 200 species in 6 ruminant families are living today. The first ruminant family probably was small omnivore without functional ruminal microbiota to digest fiber. Subsequently, other ruminant families evolved around 18-23 Ma along with woodlands and grasslands. Probably, ruminants started to consume selective and highly nutritious plant leaves and grasses similar to concentrates. By 5-11 Ma, grasslands expanded and some ruminants used more grass in their diets with comparatively low nutritive values and high fibers. Historically, humans have domesticated 9 ruminant species that are mostly utilizer of low quality forages for human benefits. Thus, the non-functional rumen microbiota to predominantly concentrate fermenting microbiota, followed by predominantly fiber digesting microbiota had evolved for mutual complementary benefits of holobiont over the million years. The core microbiome of ruminant species seems the resultant of hologenome interaction in an evolutionary unit.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Species Were Accidentally Lost,But Future Shipments Will Probably
    59.9(728) Article XXXIV.- MAMMALS FROM NICARAGUA. BY J. A. ALLEN. During the last two years the Museum has received several collections of birds and mammals from Nicaragua, made by Mr. William B. Richardson, who for many years was in the employ of Messrs. Salvin and Godman as an ornithological collector in Mexico and Central America. The mammals thus far received comprise about 400 specimens, representing nearly 60 species, of which about one-fourth appear to be undescribed. This is perhaps not surprising, in view of the fact that very few mammals have been previously received from Nicaragua. The most important of Mr. Richardson's discoveries are a new and very distinct species of Bassaricyon, and a new species of spiney rat, allied to the Ecuadorian Echimys gymnurus Thomas, and representing a hitherto unrecognized genus. The collection contains also several other species which are quite differentt from any previously known. Mr. Richardson's collecting trips have covered a wide extent of country. From his home at Matagalpa, in the central part of Nicaragua, he visited the highlands to the northward and northwestward, and also the Pacific coast; eastward his explorations extended from Lake Nicaragua to the vicinity of the Atlantic coast. The principal points at which collections were made are as follows: Matagalpa, altitude about 3000 feet. San Rafael del Norte, altitude about 5000 feet. Ocotal, altitude about 4500 feet. Chinandega, on the Pacific slope, about 700 feet. Chontales, lowlands east of Lake Nicaragua, altitude about 500 to 1000 feet. Tuma and Lavala, east of Matagalpa, on the Atlantic slope, below 1000 feet.
    [Show full text]
  • MALE GENITAL ORGANS and ACCESSORY GLANDS of the LESSER MOUSE DEER, TRAGULUS Fa VAN/CUS
    MALE GENITAL ORGANS AND ACCESSORY GLANDS OF THE LESSER MOUSE DEER, TRAGULUS fA VAN/CUS M. K. VIDYADARAN, R. S. K. SHARMA, S. SUMITA, I. ZULKIFLI, AND A. RAZEEM-MAZLAN Faculty of Biomedical and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia (MKV), Faculty of Veterinary Medicine and Animal Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia (RSKS, SS, /Z), Downloaded from https://academic.oup.com/jmammal/article/80/1/199/844673 by guest on 01 October 2021 Department of Wildlife and National Parks, Zoo Melaka, 75450 Melaka, Malaysia (ARM) Gross anatomical features of the male genital organs and accessory genital glands of the lesser mouse deer (Tragulus javanicus) are described. The long fibroelastic penis lacks a prominent glans and is coiled at its free end to form two and one-half turns. Near the tight coils of the penis, on the right ventrolateral aspect, lies a V-shaped ventral process. The scrotum is prominent, unpigmented, and devoid of hair and is attached close to the body, high in the perineal region. The ovoid, obliquely oriented testes carry a large cauda and caput epididymis. Accessory genital glands consist of paired, lobulated, club-shaped vesic­ ular glands, and a pair of ovoid bulbourethral glands. A well-defined prostate gland was not observed on the surface of the pelvic urethra. Many features of the male genital organs of T. javanicus are pleisomorphic, being retained from suiod ancestors of the Artiodactyla. Key words: Tragulus javanicus, male genital organs, accessory genital glands, reproduc­ tion, anatomy, Malaysia The lesser mouse deer (Tragulus javan­ gulidae, and Bovidae (Webb and Taylor, icus), although a ruminant, possesses cer­ 1980).
    [Show full text]
  • Phylogenetic Relationships and Evolutionary History of the Dental Pattern of Cainotheriidae
    Palaeontologia Electronica palaeo-electronica.org A new Cainotherioidea (Mammalia, Artiodactyla) from Palembert (Quercy, SW France): Phylogenetic relationships and evolutionary history of the dental pattern of Cainotheriidae Romain Weppe, Cécile Blondel, Monique Vianey-Liaud, Thierry Pélissié, and Maëva Judith Orliac ABSTRACT Cainotheriidae are small artiodactyls restricted to Western Europe deposits from the late Eocene to the middle Miocene. From their first occurrence in the fossil record, cainotheriids show a highly derived molar morphology compared to other endemic European artiodactyls, called the “Cainotherium plan”, and the modalities of the emer- gence of this family are still poorly understood. Cainotherioid dental material from the Quercy area (Palembert, France; MP18-MP19) is described in this work and referred to Oxacron courtoisii and to a new “cainotherioid” species. The latter shows an intermedi- ate morphology between the “robiacinid” and the “derived cainotheriid” types. This allows for a better understanding of the evolution of the dental pattern of cainotheriids, and identifies the enlargement and lingual migration of the paraconule of the upper molars as a key driver. A phylogenetic analysis, based on dental characters, retrieves the new taxon as the sister group to the clade including Cainotheriinae and Oxacron- inae. The new taxon represents the earliest offshoot of Cainotheriidae. Romain Weppe. Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France. [email protected] Cécile Blondel. Laboratoire Paléontologie Évolution Paléoécosystèmes Paléoprimatologie: UMR 7262, Bât. B35 TSA 51106, 6 rue M. Brunet, 86073 Poitiers Cedex 9, France. [email protected] Monique Vianey-Liaud.
    [Show full text]
  • New Remains of Primitive Ruminants from Thailand: Evidence of the Early
    ZSC071.fm Page 231 Thursday, September 13, 2001 6:12 PM New0Blackwell Science, Ltd remains of primitive ruminants from Thailand: evidence of the early evolution of the Ruminantia in Asia GRÉGOIRE MÉTAIS, YAOWALAK CHAIMANEE, JEAN-JACQUES JAEGER & STÉPHANE DUCROCQ Accepted: 23 June 2001 Métais, G., Chaimanee, Y., Jaeger, J.-J. & Ducrocq S. (2001). New remains of primitive rumi- nants from Thailand: evidence of the early evolution of the Ruminantia in Asia. — Zoologica Scripta, 30, 231–248. A new tragulid, Archaeotragulus krabiensis, gen. n. et sp. n., is described from the late Eocene Krabi Basin (south Thailand). It represents the oldest occurrence of the family which was pre- viously unknown prior to the Miocene. Archaeotragulus displays a mixture of primitive and derived characters, together with the M structure on the trigonid, which appears to be the main dental autapomorphy of the family. We also report the occurrence at Krabi of a new Lophiomerycid, Krabimeryx primitivus, gen. n. et sp. n., which displays affinities with Chinese representatives of the family, particularly Lophiomeryx. The familial status of Iberomeryx is dis- cussed and a set of characters is proposed to define both Tragulidae and Lophiomerycidae. Results of phylogenetic analysis show that tragulids are monophyletic and appear nested within the lophiomerycids. The occurrence of Tragulidae and Lophiomerycidae in the upper Eocene of south-east Asia enhances the hypothesis that ruminants originated in Asia, but it also challenges the taxonomic status of traguloids within the Ruminantia. Grégoire Métais, Institut des Sciences de l’Evolution, UMR 5554 CNRS, Case 064, Université de Montpellier II, 34095 Montpellier cedex 5, France.
    [Show full text]
  • First Bone-Cracking Dog Coprolites Provide New Insight
    RESEARCH ARTICLE First bone-cracking dog coprolites provide new insight into bone consumption in Borophagus and their unique ecological niche Xiaoming Wang1,2,3*, Stuart C White4, Mairin Balisi1,3, Jacob Biewer5,6, Julia Sankey6, Dennis Garber1, Z Jack Tseng1,2,7 1Department of Vertebrate Paleontology, Natural History Museum of Los Angeles County, Los Angeles, United States; 2Department of Vertebrate Paleontology, American Museum of Natural History, New York, United States; 3Department of Ecology and Evolutionary Biology, University of California, Los Angeles, United States; 4School of Dentistry, University of California, Los Angeles, United States; 5Department of Geological Sciences, California State University, Fullerton, United States; 6Department of Geology, California State University Stanislaus, Turlock, United States; 7Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, United States Abstract Borophagine canids have long been hypothesized to be North American ecological ‘avatars’ of living hyenas in Africa and Asia, but direct fossil evidence of hyena-like bone consumption is hitherto unknown. We report rare coprolites (fossilized feces) of Borophagus parvus from the late Miocene of California and, for the first time, describe unambiguous evidence that these predatory canids ingested large amounts of bone. Surface morphology, micro-CT analyses, and contextual information reveal (1) droppings in concentrations signifying scent-marking behavior, similar to latrines used by living social carnivorans; (2) routine consumption of skeletons; *For correspondence: (3) undissolved bones inside coprolites indicating gastrointestinal similarity to modern striped and [email protected] brown hyenas; (4) B. parvus body weight of ~24 kg, reaching sizes of obligatory large-prey hunters; ~ Competing interests: The and (5) prey size ranging 35–100 kg.
    [Show full text]
  • Ontogenetic Allometry of the Postcranial Skeleton of the Giraffe (Giraffa Camelopardalis), with Application to Giraffe Life History, Evolution and Palaeontology
    Ontogenetic allometry of the postcranial skeleton of the giraffe (Giraffa camelopardalis), with application to giraffe life history, evolution and palaeontology By Sybrand Jacobus van Sittert Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in the Department of Production Animal Studies Faculty of Veterinary Science University of Pretoria Supervisor: Prof Graham Mitchell Former supervisor (deceased): Prof John D Skinner Date submitted: October 2015 i Declaration I, Sybrand Jacobus van Sittert, declare that the thesis, which I hereby submit for the degree Doctor of Philosophy at the University of Pretoria is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution. October 2015 ii Acknowledgements Including a list of people to whom I am grateful to in the acknowledgement section hardly does justice to the respective persons: A thesis is, in all honestly, only comprehensively read by very few people. Nevertheless, it occurred to me that even when I roughly skim through a thesis or dissertation for bits of information, I am always drawn into the acknowledgements. I suppose it is the only section where one can get a glimpse into the life of the researcher in an otherwise rather ‘cold’ academic work. Therefore, although not a large platform to say ‘thank you’, I wish to convey to everyone listed here that you are in the warmest part of my heart … and probably the most read part of my thesis. Prof Graham Mitchell for his patience with me, his guidance, enthusiasm and confidence. I consider myself lucky and honoured to have had you as a supervisor.
    [Show full text]
  • Paleontological Institute, Russian a Cademy of Sciences
    Å À . V i s l o b o k o v a a n d  . À . T r o f i m o v Pal eontol ogi cal I nstitute, R ussi an A cadem y of Sciences C ont en t s V oL 3 6, Su p p L 5 , 2 0 02 T he su p p l em en t i s p u b l i sh ed o n l y i n E n g l i sh b y M A I K " N au k a i I n t er p er i o d i c a ' ( R u ssi a) . P a l eo n to l o g i c a l J o u r n a l I S S N 0 0 3 1- 0 30 1. w m o o u c mo x ñí ëðòÅê 1 S43 1 ÒÍ Å H I S T O R Y O F ST U D Y I N G A R C H A E O M E R 1X À Ì > T H E M A I N P R O B L E M S O F P H Y L O G E N Y O F T H E À Ê Ï Î Ð À Ñ ÒÚ× .À $43 1 CHAPTER 2 TAX ONOM IC REV IEW OF THE ARCHAEOMERYCIDAE CHAPTER 3 S44 1 OSTEOL OGY À1×?) OD ONTOL OGY OF ARCHAEOMERYX S44 1 SKUL L S44 1 CRA NIAL BONES S44 8 FACIA L BONES S455 DENT S ON S46 1 DIA ST EM ATA S465 ENA M EL ULTRA STRUCTURE S465 V ERTEBRA L COL UM N S466 S472 FOREL IM B BONES S472 HIND L IM B BONES S4 83 C H A PT E R 4 ì î è í î í ë÷ñ ò þ û ë ò.
    [Show full text]
  • AN AMERICAN FOSSIL GIRAFFE Giraffa Nebrascensis, Sp. Nov
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Bulletin of the University of Nebraska State Museum, University of Nebraska State Museum 1925 AN AMERICAN FOSSIL GIRAFFE irG affa nebrascensis, sp. nov. W. D. Matthew E. H. Barbour Follow this and additional works at: http://digitalcommons.unl.edu/museumbulletin Part of the Entomology Commons, Geology Commons, Geomorphology Commons, Other Ecology and Evolutionary Biology Commons, Paleobiology Commons, Paleontology Commons, and the Sedimentology Commons This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Bulletin of the University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BULLETIN 4 VOLUME 1 APRIL 1925 THE NEBRASKA STATE MUSEUM ERWIN H. BARBOUR, Director AN AMERICAN FOSSIL GIRAFFE Giraffa nebrascensis, sp. nov. By W. D. MATTHEW E. H. BARBOUR A fragment of the lower jaw of a large fossil mammal with two well-worn teeth was dug up in June 1918, at a depth of 20 feet, while digging a cess pool at Bradshaw, York County, Nebraska. This unique specimen, accessioned 7-7-18, was brought to the Nebraska State Museum by A. Archie Dorsey, and was donated by C. B. Palmet, both of Bradshaw. It undoubtedly occurred in loess, which is thickly as well. as extensively de­ veloped in this region. It is a ruminant jaw, the teeth preserved being P4 and m 1 • The characteristic pattern of the premolar excludes refer­ ence to the Bovidae, and leaves the choice between the Gi­ raffidae, Pa~aeomerycidae, and certain large Cervidae.
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]