Paleontological Institute, Russian a Cademy of Sciences

Total Page:16

File Type:pdf, Size:1020Kb

Paleontological Institute, Russian a Cademy of Sciences Å À . V i s l o b o k o v a a n d  . À . T r o f i m o v Pal eontol ogi cal I nstitute, R ussi an A cadem y of Sciences C ont en t s V oL 3 6, Su p p L 5 , 2 0 02 T he su p p l em en t i s p u b l i sh ed o n l y i n E n g l i sh b y M A I K " N au k a i I n t er p er i o d i c a ' ( R u ssi a) . P a l eo n to l o g i c a l J o u r n a l I S S N 0 0 3 1- 0 30 1. w m o o u c mo x ñí ëðòÅê 1 S43 1 ÒÍ Å H I S T O R Y O F ST U D Y I N G A R C H A E O M E R 1X À Ì > T H E M A I N P R O B L E M S O F P H Y L O G E N Y O F T H E À Ê Ï Î Ð À Ñ ÒÚ× .À $43 1 CHAPTER 2 TAX ONOM IC REV IEW OF THE ARCHAEOMERYCIDAE CHAPTER 3 S44 1 OSTEOL OGY À1×?) OD ONTOL OGY OF ARCHAEOMERYX S44 1 SKUL L S44 1 CRA NIAL BONES S44 8 FACIA L BONES S455 DENT S ON S46 1 DIA ST EM ATA S465 ENA M EL ULTRA STRUCTURE S465 V ERTEBRA L COL UM N S466 S472 FOREL IM B BONES S472 HIND L IM B BONES S4 83 C H A PT E R 4 ì î è í î í ë÷ñ ò þ û ë ò. A NA LY SIS AND RECONSTRUCTION O F T H E Ì Î Ð Å O F L I F E O F À Ê Ñ Í À Å Î Ì Å Ê ÓÕ S494 M O R P H O F U N C T I O N A L F E A T U R E S O F SK U L L A N D P O S T C R A N I A L S K E L E T O N $ 494 R E C O N ST R U C T I O N O F À ÐÐÅ À Ê À Ì Ñ Å A N D Ì Î Ð Å O F L I F E S504 C H A P T E R 5 S506 T H E R O L E O F À ß Ñ Í À Å Î Ì Å ß ÓÕ I N T H E E V O L U T I O N O F T H E A R T I O D A C T Y L A A R C H A E O M E R YX Û Æ E A R L Y E U T H E R I A N S S506 A R C H A E O M E R YX Õ ß 0 E A R L Y U N G U L A T E S S50 8 A R C H A E 0 M E R 1X È Æ D I C H O B U N O I D S S509 Ò Í Å M A I N T R E N D S A N D PA I T E R N S O F R U M I N A N T E V O L U T I O N C O N C L U SI O N S S5 19 SU M M A R Y S5ãî A C K N O W L E D G M E N T S S5ãî R E F E R E N C E S S5ã 1 Dedicated to the memory of Wladimir Kowalevsky (1842— 1 883), the great founder of evolutionary paleotheriology "It can be proposed that some small species of Eocene ungulates can show us relationships about which now we have even ï î presumption." W .Î . K owalevsk v ( 1873 —1 8 7 ~ ~ Paleontological Journal, Vol. 36, Suppl. 5, 2002, pp. S429–S522. Original Russian Text Copyright © 2002 by Vislobokova, Trofimov. English Translation Copyright © 2002 by MAIK “Nauka /Interperiodica” (Russia). Abstract—The morphology of the skull and postcranial skeleton of the primitive ruminant artiodactyl Archae- omeryx optatus Matthew et Granger, 1925 from the Middle Eocene Shara Murun Formation of the Ula Usu locality in Inner Mongolia of China is described in detail. In addition to the type collection housed at the Amer- ican Museum of Natural History, extensive fossil material collected by the Joint Soviet–Chinese Paleontologi- cal Expedition in 1959 and stored at the Paleontological Institute of the Russian Academy of Sciences is stud- ied. The material of the type collection, including, among other fossils, one complete articulated and two frag- mentary skeletons, is supplemented by 14 additional skeletons. The appearance and ecology of Archaeomeryx are specified. It is shown that, in morphology and ecology, this animal was close to primitive eutherians. New mor- phological evidence of the early evolutionary stages of the suborder Ruminantia and the order Artiodactyla and comparisons with other primitive artiodactyls and ungulates show that the order Artiodactyla undoubtedly appeared much earlier than was registered in the fossil record and that its roots perhaps go back to the Late Cre- taceous. This conclusion supports the hypothesis first proposed by W. Kowalevsky in the 19th century. The adap- tatiogenesis and the major principles of macroevolutionary processes are traced based on Ruminantia evolution. INTRODUCTION Archaeomeryx is a unique extinct artiodactyl of the branches, which became extinct during the course of infraorder Tragulina that can be a key to understanding evolution. The key species (such as Archaeomeryx), the evolution and adaptatiogenesis of one of the major which occupy the basal position in large evolutionary eutherian branches. branches and have their descendants in the Recent fau- The study of Archaeomeryx is very important not nas, usually fall out of fossil record or are represented only for a better understanding of the early stages in the by rather fragmentary material. The study of such spe- evolution of the Ruminantia and for studying the evolu- cies is essential to the understanding of trends and the tion of the infraorder Pecora, which are among the principal patterns of evolution. dominant groups of modern mammals, but also for the Notwithstanding the fact that Archaeomeryx is usu- solution to a very difficult problem of the origin and ally involved in the consideration of the origin and rela- early evolution of the order Artiodactyla. Moreover, the tionships of ruminants, the evolutionary significance of study of this animal is of great importance for resolving this genus has been underestimated for a long time. such problems of general biology as the main trends Therefore, a detailed description of Archaeomeryx has and patterns of evolutionary developments of living not yet been performed. Today, almost 75 years after its creatures. first finding and more than 40 years after its second Archaeomeryx represented by a series of almost finding, we intend to improve this situation. complete skeletons attracted the attention of paleontolo- After the study performed by Colbert (1941), it was gists from its first fossil records found by an expedition generally accepted that Archaeomeryx was rather simi- of the American Museum of Natural History in the lar in structure and ecology to Recent chevrotains, in 1920s in the Middle Eocene Ula Usu locality, northern particular, the mouse deer of the genus Tragulus. Chev- China (Matthew and Granger, 1925a; Colbert, 1941; rotains are usually regarded as living fossils (see, e.g., Webb and Taylor, 1980; etc.). From the very beginning, Janis, 1984). Even the first researchers recognized the this genus has aroused exceptional interest because of primitive and unusual structure of chevrotains, the its relatively early age, the superb fossil material, and as smallest extant ruminants, which are more similar in a probable ancestral type for higher ruminants (Pecora) appearance to rodents than to deer or antelope. How- (Matthew and Granger, 1925a). ever, as compared to Archaeomeryx, the small and Currently, the data on the morphology and ecology primitive living chevrotains look like the acme of per- of Archaeomeryx and its role in the evolution of mam- fection. mals are essentially enlarged due to the study of an The main purposes of the present work are (1) to extremely abundant collection stored at the Paleonto- describe in detail the osteology and odontology of logical Institute of the Russian Academy of Sciences. Archaeomeryx, (2) to perform morphofunctional analy- These fossils were obtained by the Joint Soviet–Chi- sis of the main structures of this animal, (3) and to clar- nese Expedition during intensive excavations in the Ula ify the role of Archaeomeryx in the evolution of the sub- Usu locality in 1959. order Ruminantia and the order Artiodactyla. The finding of Archaeomeryx, extremely well pre- We analyzed the adaptatiogenesis of the earliest served by nature and belonging to one of the main ruminants, the relationships of archaeomerycids and streams of mammal evolution, is a very rare event. Pale- other primitive members of the order Artiodactyla, the ontologists usually deal with species that represent side relationships of archaeomerycids with certain early S429 S430 VISLOBOKOVA, TROFIMOV eutherians and the most primitive members of the American researchers (Matthew and Granger, 1925a; grandorder Ungulata.
Recommended publications
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • MALE GENITAL ORGANS and ACCESSORY GLANDS of the LESSER MOUSE DEER, TRAGULUS Fa VAN/CUS
    MALE GENITAL ORGANS AND ACCESSORY GLANDS OF THE LESSER MOUSE DEER, TRAGULUS fA VAN/CUS M. K. VIDYADARAN, R. S. K. SHARMA, S. SUMITA, I. ZULKIFLI, AND A. RAZEEM-MAZLAN Faculty of Biomedical and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia (MKV), Faculty of Veterinary Medicine and Animal Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia (RSKS, SS, /Z), Downloaded from https://academic.oup.com/jmammal/article/80/1/199/844673 by guest on 01 October 2021 Department of Wildlife and National Parks, Zoo Melaka, 75450 Melaka, Malaysia (ARM) Gross anatomical features of the male genital organs and accessory genital glands of the lesser mouse deer (Tragulus javanicus) are described. The long fibroelastic penis lacks a prominent glans and is coiled at its free end to form two and one-half turns. Near the tight coils of the penis, on the right ventrolateral aspect, lies a V-shaped ventral process. The scrotum is prominent, unpigmented, and devoid of hair and is attached close to the body, high in the perineal region. The ovoid, obliquely oriented testes carry a large cauda and caput epididymis. Accessory genital glands consist of paired, lobulated, club-shaped vesic­ ular glands, and a pair of ovoid bulbourethral glands. A well-defined prostate gland was not observed on the surface of the pelvic urethra. Many features of the male genital organs of T. javanicus are pleisomorphic, being retained from suiod ancestors of the Artiodactyla. Key words: Tragulus javanicus, male genital organs, accessory genital glands, reproduc­ tion, anatomy, Malaysia The lesser mouse deer (Tragulus javan­ gulidae, and Bovidae (Webb and Taylor, icus), although a ruminant, possesses cer­ 1980).
    [Show full text]
  • Phylogenetic Relationships and Evolutionary History of the Dental Pattern of Cainotheriidae
    Palaeontologia Electronica palaeo-electronica.org A new Cainotherioidea (Mammalia, Artiodactyla) from Palembert (Quercy, SW France): Phylogenetic relationships and evolutionary history of the dental pattern of Cainotheriidae Romain Weppe, Cécile Blondel, Monique Vianey-Liaud, Thierry Pélissié, and Maëva Judith Orliac ABSTRACT Cainotheriidae are small artiodactyls restricted to Western Europe deposits from the late Eocene to the middle Miocene. From their first occurrence in the fossil record, cainotheriids show a highly derived molar morphology compared to other endemic European artiodactyls, called the “Cainotherium plan”, and the modalities of the emer- gence of this family are still poorly understood. Cainotherioid dental material from the Quercy area (Palembert, France; MP18-MP19) is described in this work and referred to Oxacron courtoisii and to a new “cainotherioid” species. The latter shows an intermedi- ate morphology between the “robiacinid” and the “derived cainotheriid” types. This allows for a better understanding of the evolution of the dental pattern of cainotheriids, and identifies the enlargement and lingual migration of the paraconule of the upper molars as a key driver. A phylogenetic analysis, based on dental characters, retrieves the new taxon as the sister group to the clade including Cainotheriinae and Oxacron- inae. The new taxon represents the earliest offshoot of Cainotheriidae. Romain Weppe. Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France. [email protected] Cécile Blondel. Laboratoire Paléontologie Évolution Paléoécosystèmes Paléoprimatologie: UMR 7262, Bât. B35 TSA 51106, 6 rue M. Brunet, 86073 Poitiers Cedex 9, France. [email protected] Monique Vianey-Liaud.
    [Show full text]
  • New Remains of Primitive Ruminants from Thailand: Evidence of the Early
    ZSC071.fm Page 231 Thursday, September 13, 2001 6:12 PM New0Blackwell Science, Ltd remains of primitive ruminants from Thailand: evidence of the early evolution of the Ruminantia in Asia GRÉGOIRE MÉTAIS, YAOWALAK CHAIMANEE, JEAN-JACQUES JAEGER & STÉPHANE DUCROCQ Accepted: 23 June 2001 Métais, G., Chaimanee, Y., Jaeger, J.-J. & Ducrocq S. (2001). New remains of primitive rumi- nants from Thailand: evidence of the early evolution of the Ruminantia in Asia. — Zoologica Scripta, 30, 231–248. A new tragulid, Archaeotragulus krabiensis, gen. n. et sp. n., is described from the late Eocene Krabi Basin (south Thailand). It represents the oldest occurrence of the family which was pre- viously unknown prior to the Miocene. Archaeotragulus displays a mixture of primitive and derived characters, together with the M structure on the trigonid, which appears to be the main dental autapomorphy of the family. We also report the occurrence at Krabi of a new Lophiomerycid, Krabimeryx primitivus, gen. n. et sp. n., which displays affinities with Chinese representatives of the family, particularly Lophiomeryx. The familial status of Iberomeryx is dis- cussed and a set of characters is proposed to define both Tragulidae and Lophiomerycidae. Results of phylogenetic analysis show that tragulids are monophyletic and appear nested within the lophiomerycids. The occurrence of Tragulidae and Lophiomerycidae in the upper Eocene of south-east Asia enhances the hypothesis that ruminants originated in Asia, but it also challenges the taxonomic status of traguloids within the Ruminantia. Grégoire Métais, Institut des Sciences de l’Evolution, UMR 5554 CNRS, Case 064, Université de Montpellier II, 34095 Montpellier cedex 5, France.
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]
  • National Park Service Paleontological Research
    169 NPS Fossil National Park Service Resources Paleontological Research Edited by Vincent L. Santucci and Lindsay McClelland Technical Report NPS/NRGRD/GRDTR-98/01 United States Department of the Interior•National Park Service•Geological Resource Division 167 To the Volunteers and Interns of the National Park Service iii 168 TECHNICAL REPORT NPS/NRGRD/GRDTR-98/1 Copies of this report are available from the editors. Geological Resources Division 12795 West Alameda Parkway Academy Place, Room 480 Lakewood, CO 80227 Please refer to: National Park Service D-1308 (October 1998). Cover Illustration Life-reconstruction of Triassic bee nests in a conifer, Araucarioxylon arizonicum. NATIONAL PARK SERVICE PALEONTOLOGICAL RESEARCH EDITED BY VINCENT L. SANTUCCI FOSSIL BUTTE NATIONAL MONUMNET P.O. BOX 592 KEMMERER, WY 83101 AND LINDSAY MCCLELLAND NATIONAL PARK SERVICE ROOM 3229–MAIN INTERIOR 1849 C STREET, N.W. WASHINGTON, D.C. 20240–0001 Technical Report NPS/NRGRD/GRDTR-98/01 October 1998 FORMATTING AND TECHNICAL REVIEW BY ARVID AASE FOSSIL BUTTE NATIONAL MONUMENT P. O . B OX 592 KEMMERER, WY 83101 164 165 CONTENTS INTRODUCTION ...............................................................................................................................................................................iii AGATE FOSSIL BEDS NATIONAL MONUMENT Additions and Comments on the Fossil Birds of Agate Fossil Beds National Monument, Sioux County, Nebraska Robert M. Chandler ..........................................................................................................................................................................
    [Show full text]
  • Molecular Paleoscience: Systems Biology from the Past
    MOLECULAR PALEOSCIENCE: SYSTEMS BIOLOGY FROM THE PAST By STEVEN A. BENNER, SLIM O. SASSI, and ERIC A. GAUCHER, Foundation for Applied Molecular Evolution, 1115 NW 4th Street, Gainesville, FL 32601 CONTENTS I. Introduction A. Role for History in Molecular Biology B. Evolutionary Analysis and the ‘‘Just So’’ Story C. Biomolecular Resurrections as a Way of Adding to an Evolutionary Narrative II. Practicing Experimental Paleobiochemistry A. Building a Model for the Evolution of a Protein Family 1. Homology, Alignments, and Matrices 2. Trees and Outgroups 3. Correlating the Molecular and Paleontological Records B. Hierarchy of Models for Modeling Ancestral Protein Sequences 1. Assuming That the Historical Reality Arose from the Minimum Number of Amino Acid Replacements 2. Allowing the Possibility That the History Actually Had More Than the Minimum Number of Changes Required 3. Adding a Third Sequence 4. Relative Merits of Maximum Likelihood Versus Maximum Parsimony Methods for Inferring Ancestral Sequences C. Computational Methods D. How Not to Draw Inferences About Ancestral States III. Ambiguity in the Historical Models A. Sources of Ambiguity in the Reconstructions B. Managing Ambiguity 1. Hierarchical Models of Inference 2. Collecting More Sequences Advances in Enzymology and Related Areas of Molecular Biology, Volume 75: Protein Evolution Edited by Eric J. Toone Copyright # 2007 John Wiley & Sons, Inc. 1 2 STEVEN A. BENNER, SLIM O. SASSI, AND ERIC A. GAUCHER 3. Selecting Sites Considered to Be Important and Ignoring Ambiguity Elsewhere 4. Synthesizing Multiple Candidate Ancestral Proteins That Cover, or Sample, the Ambiguity C. Extent to Which Ambiguity Defeats the Paleogenetic Paradigm IV. Examples A. Ribonucleases from Mammals: From Ecology to Medicine 1.
    [Show full text]
  • NV Musk Deer
    Sullivan et al., eds., 2011, Fossil Record 3. New Mexico Museum of Natural History and Science, Bulletin 53. 610 SYSTEMATICS OF THE MUSK DEER (ARTIODACTYLA: MOSCHIDAE: BLASTOMERYCINAE) FROM THE MIOCENE OF NEVADA DONALD R. PROTHERO Department of Geology, Occidental College, Los Angeles, CA 90041 Abstract—The North American musk deer (family Moschidae, subfamily Blastomerycinae) were an important element of many faunas during the Miocene. They were recently revised by Prothero (2008), who reduced dozens of named species to only 8 species distributed among 6 genera. Two samples from early-middle Miocene faunas of Nevada, however, were not assessed in the 2008 revision. These include the type series of Blastomeryx mollis Merriam, 1911, from the early Barstovian (early middle Miocene) Virgin Valley and High Rock faunas, and specimens from the late Hemingfordian (late early Miocene) Massacre Lake fauna that Morea (1981) thought represented a new genus and 1 or 2 new species. These specimens are re-examined in light of the improved sample size and taxonomy of other Miocene blastomerycines, and it is clear that neither study was based on inadequate comparisons with enough specimens. Based on the modern taxonomy of blastomerycines, these Nevada samples are assigned to Problastomeryx primus (Matthew, 1908), a common primitive early-middle Miocene blastomerycid in North America. Blastomeryx mollis Merriam, 1911 is rendered a junior synonym. INTRODUCTION mens were photographed with a Nikon 5700 digital camera, and edited in Photoshop. Cope (1874) described the first known fossils of North American Institutional abbreviations: AMNH = American Museum of musk deer. He based the taxon Blastomeryx gemmifer on a fragmentary Natural History, New York; F:AM = Frick Collection, AMNH; UCMP jaw with an m3 from the Barstovian of Colorado.
    [Show full text]
  • Ruminant Phylogenetics: a Reproductive Biological Perspective 1 Ruminant Phylogenetics: a Reproductive Biological Perspective
    Ruminant phylogenetics: a reproductive biological perspective 1 Ruminant phylogenetics: A reproductive biological perspective William J. Silvia Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, USA 40546 Summary Phylogenetics is the study of evolutionary relationships among species. Phylogenies are based on the comparison of large numbers of characteristics among species. Traditionally, the field of phylogenetics was dominated by paleontologists so the characteristics studied were structural, often skeletal. The field of phylogenetics was revolutionized in the 1980s as scientists began using molecular data, first amino acid, then nucleotide sequences. This led to the inclusion of more characteristics and many more extant species in these analyses. We now have very well characterized phylogenies for most major groups of mammals, including the ruminants (Ruminantia, a suborder within Artiodactyla). The ruminants are traditionally divided into six families: Tragulidae (mouse deer), Moschidae (musk deer), Cervidae (true deer), Antilocapridae (pronghorn), Giraffidae (giraffes and okapis) and Bovidae (horned ruminants). Despite extensive research, some phylogenetic relationships within the Ruminantia have not been completely resolved. For example, the precise relationships among the six ruminant families is not clear. The relationship of cattle (Bos taurus) to other large bovids (gaurs, bison, yaks, etc.) remains to be determined. Ultimately, more extensive characterization and comparison of ruminant genomes will define these relationships. In the mean time, we may be able to use reproductive characteristics to help clarify some of the unresolved phylogenetic relationships. Reproductive characteristics can vary greatly among species. Much of this variation is recently evolved, making it particularly useful in defining relationships among closely related species or groups.
    [Show full text]
  • AMERICAN MUSEUM NOVITATES Published by Number 1135 the AMERICAN MUSEUM of NATURAL HISTORY August 7, 1941 New York City
    AMERICAN MUSEUM NOVITATES Published by Number 1135 THE AMERICAN MUSEUM OF NATURAL HISTORY August 7, 1941 New York City THE OSTEOLOGY AND RELATIONSHIPS OF ARCHAEOMERYX, AN ANCESTRAL RUMINANT' BY EDWIN H. COLBERT PAGE INTRODUCTION ....................................................................... 1 MATERIALS UPON WHICH THE PRESENT STUDY IS BASED. 2 A REVIEW OF THE OSTEOLOGY OF Archaeomeryx optatus................................... 2 Analysis of the Diagnostic Characters of Archaeomeryx.................................. 2 The Comparative Osteology of Archaeomeryx.......................................... 3 The Skull....................................................................... 4 The Dentition.. 4 The Axial Skeleton ....................... 6 The Appendicular Skeleton. 7 The Fore-limb................................................................. 7 The Hind-limb................................................................ 7 The Relationships of Archaeomeryx................................................. 8 Tables of Measurements, Ratios and Indices........................................... 12 GENERAL DIscUssIoN ................................................................. 14 The Classification and Phylogeny of the Ruminants.................................... 14 CONCLUSIONS........................................................................ 22 BIBLIOGRAPHY ....................................................................... 23 INTRODUCTION The genus Archaeomeryx was first de- and fibular shafts are more primitive
    [Show full text]
  • MOUSE DEER (MOSCHIOLA INDICA) – II EDITION Mouse Deer (Moschiolaok Indica ): II Edition
    NATIONALNATIONAL STUDBOOK STUDBOOK OF MOUSE DEER (MOSCHIOLA INDICA) – II EDITION Mouse Deer (MoschiolaOK indica ): II Edition NATIONAL STUDBOOK OF MOUSE DEER (MOSCHIOLA INDICA) – II EDITION NATIONAL STUDBOOK OF MOUSE DEER (MOSCHIOLA INDICA) – II EDITION National Studbook of Mouse Deer (Moschiola indica) II Edition Part of the Central Zoo Authority sponsored project titled “Development and Maintenance of Studbooks for Selected Endangered Species in Indian Zoos” awarded to the Wildlife Institute of India vide sanction order: Central Zoo Authority letter no. 9-2/2012-CZA(NA)/418 dated 7th March 2012 PROJECT TEAM Dr. Parag Nigam Principal Investigator Dr. Anupam Srivastav Project Consultant Ms. Neema Sangmo Lama Research Assistant Photo Credits: © S. Goswami Copyright © WII, Dehradun, and CZA, New Delhi, 2018 __________________________________________________________________________________ This report may be quoted freely but the source must be acknowledged and cited as: Wildlife Institute of India (2018). National Studbook of Mouse Deer (Moschiola indica): II Edition. Wildlife Institute of India, Dehradun and Central Zoo Authority, New Delhi. TR. No 2018/42 pages:138. NATIONAL STUDBOOK OF MOUSE DEER (MOSCHIOLA INDICA) – II EDITION NATIONAL STUDBOOK OF MOUSE DEER (MOSCHIOLA INDICA) – II EDITION FOREWORD Reduction is size of available habitats through fragmentation and degradation in association with intense poaching pressure are attributed for the decline in Mouse Deer populations in their natural habitats. This has led to initiation of ex-situ conservation efforts for the species in Indian Zoos. Effectiveness of these efforts through scientific management practices ensure long-term demographic stability and genetic viability of the captive population. Pedigree records contained in studbooks forms the basis for this effort.
    [Show full text]
  • Nearly Neutral Evolutionary Distance a New Dating Tool and Its Applications
    Research Collection Doctoral Thesis Nearly neutral evolutionary distance a new dating tool and its applications Author(s): Caraco, Matthias Daniel Publication Date: 2002 Permanent Link: https://doi.org/10.3929/ethz-a-004377606 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH No. 14437 Nearly Neutral Evolutionary Distance: A new dating tool and its applications A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the degree of Doctor of Natural Sciences presented by MATTHIAS DANIEL CARACO dipl. chem. ETH born February 14, 1968 citizen of Basel, Basel-Stadt accepted on the recommendation of Prof. G. Folkers, examiner Prof. S. A. Benner, co-examiner 2002 1 Acknowledgments I would like to thank • My Boss Steven Benner for giving me the opportunity to develop new skills and for the help he provided me in realizing this work. • My dear wife Sophie for her patience and love that helped me finally finish this work after all. • EraGen Biosciences Inc. for their generosity to let me use their data, software and infrastructure. • Steve Chamberlin and Sridharg Govindarajan for their help when I really needed it. • Barbara and René for supporting me all these years. • Corsin for the generosity to harbor me every year. 11 Abstract The development of a tool that can correlate the change in genomic sequences with ge¬ ological time is the central goal of this dissertation work. Here, a very narrow sample of silent substitution in coding regions of genes has been examined.
    [Show full text]