8Th Metro World Summit 201317-18 April
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taking a Safe Train Ride Home
TCT, Chengdu Metro Line 3 Taking a Safe Train Ride Home Riding on Chengdu Metro Line 3, you can reach various historic sites that are more than one thousand years old. The metro line's mission is to provide convenience for sightseeing and mitigate urban traffic issues. Apart from providing optimized transportation to Chengdu's residents and visitors, Chengdu Metro Line 3 also drives the market expansion of TCT's independently developed communications- based train control (CBTC) technology. AT A GLANCE BUSINESS CHALLENGE SOLUTION RESULT AT A GLANCE CBTC Becomes the Mainstream Technology “With metros taking the lead in adopting the CBTC system, Traffic Control Technology (TCT) is the first and the only high-tech company in China that has independently I believe in the future, high- developed the CBTC signaling system technology. Until recently, all TCT's projects had been limited to Beijing. Now, Chengdu Metro Line 3 has become the first metro line outside Beijing to have adopted TCT's CBTC speed trains, freight trains, technology. For TCT, this is big milestone as their domestic CBTC technology enjoys wider national attention. and other trains will also apply For passengers, the shift from a traditional control system to CBTC means shorter departure intervals between this system.” trains. With the traditional system, only one train at a time could enter a tunnel between stations, but now several trains can run at the same time in a tunnel with a safe distance between them. In terms of the huge traffic congestion, shorter departure intervals significantly increase the transport capacity of metro lines. -
Annual Report of METRO 2018/19
w ANNUALGESCHÄFTSBERICHT REPORT 2018/19 KonzernabschlussConsolidated financial der METRO statements AG of METRO AG WHOLE- SALESALE 360 METRO IN FIGURES Change € million 2017/181 2018/19 in % Key financial figures for continuing operations Sales development (like-for-like) % 1.3 2.1 – Sales development in local currency % 1.3 2.2 – Sales (net) 26,792 27,082 1.1 EBITDA excluding earnings contributions from real estate transactions 1,088 1,021 −6.1 Earnings contributions from real estate transactions 128 338 – EBITDA 1,216 1,359 11.8 EBIT 713 828 16.1 EBT (earnings before taxes) 576 709 23.1 Profit or loss for the period2 357 405 13.7 Earnings per share (basic = diluted) € 0.98 1.12 13.7 Cash flow from operating activities 766 796 3.9 Investments 565 499 −11.7 Net debt 3,102 2,858 −7.9 Employees (annual average by headcount) 104,912 101,654 −3.1 1 Previous year’s adjustment due to discontinued operations. 2 Attributable to METRO shareholders. € million 2017/18 2018/19 Change in % Key financial figures for continuing operations, incl. METRO China (outlook analysis) Sales development (like-for-like) % 1.3 2.4 – Sales development in local currency % 1.5 2.5 – Sales (net) 29,476 29,928 1.5 EBITDA excluding earnings contributions from real estate transactions 1,242 1,173 −5.5 EBITDA excluding earnings contributions from real estate transactions Development1 % 1.2 −4.2 – Profit or loss for the period2 443 523 18.0 Earnings per share (basic = diluted) € 1.22 1.44 18.0 Dividend per ordinary share € 0.70 0.703 – Dividend per preference share € 0.70 0.703 – 1 At constant exchange rates. -
Successful Expansion of the Intelligent Business Of
SUCCESSFUL EXPANSION OF A CONTRACT IN RESPECT OFTHE INTELLIGENT BUSINESS OF CHANGCHUN RAIL TRANSIT 29 February 2016 Press Release SUCCESSFUL EXPANSION OF THE INTELLIGENT BUSINESS OF CHANGCHUN RAIL TRANSIT (29 February 2016, Hong Kong) Technovator International Ltd. (“Technovator” or “the Group”, HKEx: 1206) is pleased to announce that the Group has recently successfully entered into a contract regarding the “construction of Integrated Supervision and Control System for Changchun rail transit line 1 Phase 1” (the “Changchun Project”). The Changchun rail transit line 1, with a total rail length of 40.65km. Pursuant to the Changchun Project, the Group will be responsible for overall integration of intelligent rail transit system such as systems design, software and hardware equipment, development and manufacturing, procurement, product supply, installation and commissioning, consisting of Integrated Supervision and Control System (ISCS), Building Automation System (BAS), and Access System, with the implementation of the Group’s proprietary ISCS platform. The contract value amounts to approximately RMB98.72 million and Changchun Project is scheduled for completion by the end of 2016. The Group’s overall competencies in the field of the Intelligent Rail Transit Business have been underscored by winning of the Changchun Project, which enabling the Group to pursue a sweeping business presence in Northeast China and facilitating its sustainable development in Changchun. There has been a very strong demand for safe and efficient forms of transportation attendant on the sizzling growth of the urban rail transit in recent years. As a leading integrated energy saving services provider, Technovator is engaged to propel the application of intelligent rail transit, and provide specialized solutions with focus on the variations in regional climate, customer demand and post-operation management. -
China Ex-Post Evaluation of Japanese ODA Loan Project
China Ex-Post Evaluation of Japanese ODA Loan Project Chongqing Urban Railway Construction Project External Evaluator: Kenichi Inazawa, Office Mikage, LLC 1. Project Description Map of the Project Area Chongqing Monorail Line 2 1.1 Background Under its policies of reform and openness China has been achieving economic growth averaging about 10% per year. On the other hand, along with the economic progress, urban development, and rising living standards brought about by the reforms and opening up, problems caused by the underdevelopment of urban infrastructure in major cities have surfaced. As a result, traffic congestion and air pollution were becoming increasingly serious. Chongqing City is located in the eastern part of the Sichuan basin on the upper reaches of the Chang River. In 1997 the city became the fourth directly-controlled municipality in China following Beijing, Shanghai and Tianjin. After Chongqing City became the directly-controlled municipality, the city began actively promoting introduction of foreign investment and becoming a driving force for economic development in inland regions of China. However, along with the economic development, traffic congestion became much worse in the central city areas1, impeding the functionality of the city, while air pollution increased due to exhaust gas from automobiles, leading to a worsening of the living environment. The situation reached a point where transportation via roads was being inhibited due to the terrain of Chongqing City and the condition of the existing city areas. The improvement of the urban environment was considered 1 The central part of Chongqing City is in a rugged mountainous area. It is divided in two by the Chang River and the Jialing River. -
Rail Transport in the World's Major Cities
Feature Evolution of Urban Railways (part 2) Rail Transport in The World’s Major Cities Takao Okamoto and Norihisa Tadakoshi Many of the world’s large cities grew in development, particularly with regard to American city; and Hong Kong, Seoul and conjunction with railways, and today, the following: Tokyo representing Asian cities. large cities cannot depend only on motor • The correlation between railways and vehicles for transportation. With worries urban growth over global environmental issues, public • The location of terminals for intercity London transportation systems are increasingly and intra-city transport seen as an important way to expand and • Examination of various public transit Located in southeast England near the revitalize large cities, while consuming systems, including non-infrastructure mouth of the River Thames, London less energy and other resources. • Strategic planning of rail networks expanded during the Industrial Revolution This article looks at public transportation based on urban development trends (1760–1850) and secured its dominance systems in some major cities of the world and future models as the heart of the British Empire during and identifies similarities and differences The cities selected for this comparative the Victorian era (1837–1901). It’s in areas such as history of development, study are: London as the first city to adapt population grew from about 500,000 in railway networks, and method of rail technology to public transport; Paris, the 17th century to 4.5 million by the end operation. Our aim is to explore the future Berlin and Moscow as three major of the 19th century. The modern relationship between urban and transport European cities; New York as a North- metropolis of Greater London consists of The London Railway Network King’s Cross/St.Pancras Paddington LCY Victoria Waterloo LHR R. -
Beijing Subway Map
Beijing Subway Map Ming Tombs North Changping Line Changping Xishankou 十三陵景区 昌平西山口 Changping Beishaowa 昌平 北邵洼 Changping Dongguan 昌平东关 Nanshao南邵 Daoxianghulu Yongfeng Shahe University Park Line 5 稻香湖路 永丰 沙河高教园 Bei'anhe Tiantongyuan North Nanfaxin Shimen Shunyi Line 16 北安河 Tundian Shahe沙河 天通苑北 南法信 石门 顺义 Wenyanglu Yongfeng South Fengbo 温阳路 屯佃 俸伯 Line 15 永丰南 Gonghuacheng Line 8 巩华城 Houshayu后沙峪 Xibeiwang西北旺 Yuzhilu Pingxifu Tiantongyuan 育知路 平西府 天通苑 Zhuxinzhuang Hualikan花梨坎 马连洼 朱辛庄 Malianwa Huilongguan Dongdajie Tiantongyuan South Life Science Park 回龙观东大街 China International Exhibition Center Huilongguan 天通苑南 Nongda'nanlu农大南路 生命科学园 Longze Line 13 Line 14 国展 龙泽 回龙观 Lishuiqiao Sunhe Huoying霍营 立水桥 Shan’gezhuang Terminal 2 Terminal 3 Xi’erqi西二旗 善各庄 孙河 T2航站楼 T3航站楼 Anheqiao North Line 4 Yuxin育新 Lishuiqiao South 安河桥北 Qinghe 立水桥南 Maquanying Beigongmen Yuanmingyuan Park Beiyuan Xiyuan 清河 Xixiaokou西小口 Beiyuanlu North 马泉营 北宫门 西苑 圆明园 South Gate of 北苑 Laiguangying来广营 Zhiwuyuan Shangdi Yongtaizhuang永泰庄 Forest Park 北苑路北 Cuigezhuang 植物园 上地 Lincuiqiao林萃桥 森林公园南门 Datunlu East Xiangshan East Gate of Peking University Qinghuadongluxikou Wangjing West Donghuqu东湖渠 崔各庄 香山 北京大学东门 清华东路西口 Anlilu安立路 大屯路东 Chapeng 望京西 Wan’an 茶棚 Western Suburban Line 万安 Zhongguancun Wudaokou Liudaokou Beishatan Olympic Green Guanzhuang Wangjing Wangjing East 中关村 五道口 六道口 北沙滩 奥林匹克公园 关庄 望京 望京东 Yiheyuanximen Line 15 Huixinxijie Beikou Olympic Sports Center 惠新西街北口 Futong阜通 颐和园西门 Haidian Huangzhuang Zhichunlu 奥体中心 Huixinxijie Nankou Shaoyaoju 海淀黄庄 知春路 惠新西街南口 芍药居 Beitucheng Wangjing South望京南 北土城 -
Why Some Airport-Rail Links Get Built and Others Do Not: the Role of Institutions, Equity and Financing
Why some airport-rail links get built and others do not: the role of institutions, equity and financing by Julia Nickel S.M. in Engineering Systems- Massachusetts Institute of Technology, 2010 Vordiplom in Wirtschaftsingenieurwesen- Universität Karlsruhe, 2007 Submitted to the Department of Political Science in partial fulfillment of the requirements for the degree of Master of Science in Political Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2011 © Massachusetts Institute of Technology 2011. All rights reserved. Author . Department of Political Science October 12, 2010 Certified by . Kenneth Oye Associate Professor of Political Science Thesis Supervisor Accepted by . Roger Peterson Arthur and Ruth Sloan Professor of Political Science Chair, Graduate Program Committee 1 Why some airport-rail links get built and others do not: the role of institutions, equity and financing by Julia Nickel Submitted to the Department of Political Science On October 12, 2010, in partial fulfillment of the Requirements for the Degree of Master of Science in Political Science Abstract The thesis seeks to provide an understanding of reasons for different outcomes of airport ground access projects. Five in-depth case studies (Hongkong, Tokyo-Narita, London- Heathrow, Chicago- O’Hare and Paris-Charles de Gaulle) and eight smaller case studies (Kuala Lumpur, Seoul, Shanghai-Pudong, Bangkok, Beijing, Rome- Fiumicino, Istanbul-Atatürk and Munich- Franz Josef Strauss) are conducted. The thesis builds on existing literature that compares airport-rail links by explicitly considering the influence of the institutional environment of an airport on its ground access situation and by paying special attention to recently opened dedicated airport expresses in Asia. -
Osprey Nest Queen Size Page 2 LC Cutting Correction
Template Layout Sheets Organizing, Bags, Foundation Papers, and Template Layout Sheets Sort the Template Layout Sheets as shown in the graphics below. Unit A, Temp 1 Unit A, Temp 1 Layout UNIT A TEMPLATE LAYOUT SHEET CUT 3" STRIP BACKGROUND FABRIC E E E ID ID ID S S S Please read through your original instructions before beginning W W W E E E Sheet. Place (2) each in Bag S S S TEMP TEMP TEMP S S S E E A-1 A-1 A-1 E W W W S S S I I I D D D E E E C TEMP C TEMP TEMP U U T T A-1 A-1 T A-1 #6, #7, #8, and #9 L L I the queen expansion set. The instructions included herein only I C C C N N U U U T T T T E E L L L I I I N N N E E replace applicable information in the pattern. E Unit A, Temp 2, UNIT A TEMPLATE LAYOUT SHEET Unit A, Temp 2 Layout CUT 3" STRIP BACKGROUND FABRIC S S S E E E The Queen Foundation Set includes the following Foundation Papers: W W W S S S ID ID ID E TEMP E TEMP E TEMP Sheet. Place (2) each in Bag A-2 A-2 A-2 E E E D D D I I TEMP I TEMP TEMP S S S A-2 A-2 A-2 W W W C E C E E S S S U C C U C U U U T T T T T T L L L L IN IN L IN I I N #6, #7, #8, and #9 E E N E E NP 202 (Log Cabin Full Blocks) ~ 10 Pages E NP 220 (Log Cabin Half Block with Unit A Geese) ~ 2 Pages NP 203 (Log Cabin Half Block with Unit B Geese) ~ 1 Page Unit B, Temp 1, ABRIC F BACKGROUND Unit B, Temp 1 Layout E E T SHEE YOUT LA TE TEMPLA A T UNI E D I D I D I S S STRIP 3" T CU S W W E W TP 101 (Template Layout Sheets for Log Cabins and Geese) ~ 2 Pages E S S E S TEMP TEMP TEMP S S S E E E 1 A- 1 A- 1 A- W W W S S S I I I D D D E E E C C Sheet. -
Annual Report 2013
Important Notes 4 (Ⅰ) Definitions and Significant Risk Warning 5 (Ⅱ) Company Profile 6 (Ⅲ) Accounting Data and Financial Indicators 9 (IV) Report of the Board of Directors 12 (V) Important Issues 43 (VI) Changes in Equity and Shareholders 53 (VII) Directors, supervisors and Senior management 59 (VIII) Corporate Governance 69 (IX) Internal Control 74 (X) Financial Report 75 (XI) Documents Available for Inspection 203 Neusoft Annual Report 2013 Dr. Liu Jiren Chairman Neusoft Corporation The world is changing faster than ever before. An increasing number of new policies, transformative technologies and new trend are constantly catalyzing innovative business models, emerging markets and new demands in recent years. With that big picture in mind, Neusoft has always been focusing on innovation and globalization. We encourage in- novation at all levels of our operations to drive transformation for better. Specifically, we have built a robust growth model driven by knowledge assets. These efforts have helped us not only overcome many challenges and ward off potential risks, but also build our new competitive advantages. Today, new technologies such as mobile Internet, cloud computing, big data and social media are overthrowing tra- ditional business models with new IT products/services and business patterns springing up. This stimulated new mar- ket demands and gradually broke industry barriers, and what followed by are increasingly growing cross-industry competition and cooperation. Over the past twenty-plus years, Neusoft has achieved a great-leap-forward growth through incremental innovation and transformation. In the future, we will integrate innovation into a daily routine, reengineering and strengthening our business capabilities through collaboration. -
China Railway Signal & Communication Corporation
Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. China Railway Signal & Communication Corporation Limited* 中國鐵路通信信號股份有限公司 (A joint stock limited liability company incorporated in the People’s Republic of China) (Stock Code: 3969) ANNOUNCEMENT ON BID-WINNING OF IMPORTANT PROJECTS IN THE RAIL TRANSIT MARKET This announcement is made by China Railway Signal & Communication Corporation Limited* (the “Company”) pursuant to Rules 13.09 and 13.10B of the Rules Governing the Listing of Securities on The Stock Exchange of Hong Kong Limited (the “Listing Rules”) and the Inside Information Provisions (as defined in the Listing Rules) under Part XIVA of the Securities and Futures Ordinance (Chapter 571 of the Laws of Hong Kong). From July to August 2020, the Company has won the bidding for a total of ten important projects in the rail transit market, among which, three are acquired from the railway market, namely four power integration and the related works for the CJLLXZH-2 tender section of the newly built Langfang East-New Airport intercity link (the “Phase-I Project for the Newly-built Intercity Link”) with a tender amount of RMB113 million, four power integration and the related works for the XJSD tender section of the newly built -
Anonymous Referee #1
Anonymous Referee #1 This manuscript is well written. I recommend it be published with a few minor edits. We thank the reviewer for their positive comments and suggestions. Please find below our replies and the related modifications to the manuscript. The page and line numbers refer to the version of the manuscript published on 5 ACPD. Section 2.2: Go into more depth how the footprints and the emissions inventory are combined to obtain atmospheric concentrations of CO. The text below has been added to the section 2.2 (P5, l3): “To do this, first we derive the sensitivities of the measured air masses to emissions occurring within a grid cell 10 (units [gm−3] / [gm−2s−1], i.e. sm−1) and then by multiplying the sensitivities with the emissions from the emission inventories we are able to calculate the modelled CO concentration (dimensionally, sm−1 × gm−2s−1 = gm−3). To convert the concertation to a volume mixing ratio we divide the modelled concentrations by the molar mass, divide again by the air density and multiply by 1 x 109.” Figure 4: Black box referred to in caption is not visible. 15 Figure 4 “black box” – that was a mistake in the caption. Caption for Figure 4 (P5) corrected to say: “Figure 4: The blue box represents the regional contributions from outside Beijing and the red box is the Beijing region. The map also shows the 2010 population census (people per pixel – WorldPop data)” Page 6, line 10: change the time resolution of 1 Hz to an actual time resolution (in hours, minutes, or seconds). -
Mitsubishi Electric and Zhuzhou CSR Times Electronic Win Order for Beijing Subway Railcar Equipment
FOR IMMEDIATE RELEASE No. 2496 Product Inquiries: Media Contact: Overseas Marketing Division, Public Utility Systems Group Public Relations Division Mitsubishi Electric Corporation Mitsubishi Electric Corporation Tel: +81-3-3218-1415 Tel: +81-3-3218-3380 [email protected] [email protected] http://global.mitsubishielectric.com/transportation/ http://global.mitsubishielectric.com/news/ Mitsubishi Electric and Zhuzhou CSR Times Electronic Win Order for Beijing Subway Railcar Equipment Tokyo, January 13, 2010 – Mitsubishi Electric Corporation (TOKYO: 6503) announced today that Mitsubishi Electric and Zhuzhou CSR Times Electronic Co., Ltd. have received orders from Beijing MTR Construction Administration Corporation for electric railcar equipment to be used on the Beijing Subway Changping Line. The order, worth approximately 3.6 billion yen, comprises variable voltage variable frequency (VVVF) inverters, traction motors, auxiliary power supplies, regenerative braking systems and other electric equipment for 27 six-coach trains. Deliveries will begin this May. The Changping Line is one of five new subway lines scheduled to start operating in Beijing this year. The 32.7-kilometer line running through the Changping district of northwest Beijing will have 9 stops between Xierqi and Ming Tombs Scenic Area stations. Mitsubishi Electric’s Itami Works will manufacture traction motors for the 162 coaches. Zhuzhou CSR Times Electronic will make the box frames and procure certain components. Zhuzhou Shiling Transportation Equipment Co., Ltd, a joint-venture between the two companies, will assemble all components and execute final testing. Mitsubishi Electric already has received a large number of orders for electric railcar equipment around the world. In China alone, orders received from city metros include products for the Beijing Subway lines 2 and 8; Tianjin Metro lines 1, 2 and 3; Guangzhou Metro lines 4 and 5; and Shenyang Metro Line 1.