Appendix A: Some Basic Circuit Theory

Total Page:16

File Type:pdf, Size:1020Kb

Appendix A: Some Basic Circuit Theory Appendix A: Some Basic Circuit Theory Voltage and Current Polarities and Conventions Unless we are dealing specifically with the flow of electrons through a vacuum tube, we will assume current flows from positive to negative. This is called conventional current flow. Conventional current flow is used by virtually all manufacturers today on transistor and IC data sheets, application notes, etc. As shown in Fig. A.1, voltage drops across components will be designated using curved arrows. Think of these arrows as voltmeters that sense the voltage across a given component. The point of the arrow is equivalent to the positive lead of a voltmeter. Currents will be represented with arrow heads drawn on the wires in which the current is flowing. For the resistor and the diode shown in Fig. A.1,if current is flowing the direction indicated, the current is positive, and the voltage dropped across the components will be positive. Linear Circuits Ideally, resistors, capacitors, inductors, voltage sources, and current sources are linear circuit elements. If you graph the current vs. voltage characteristic for a linear component you get a straight line, as shown for the resistor in Fig. A.1. One of the nice things about linear components is that we can use Ohm’s law (V ¼ IR) to relate I, V, and R. Because the plot of current vs. voltage is a straight line, we can pick any point on the line and get the same result for R ¼ V/I. Diodes, transistors, and tubes are all nonlinear devices. An example is the graph of current vs. voltage for a typical diode shown in Fig. A.1. We can’t use Ohm’s law to characterize nonlinear devices because the quotient V/I is not a constant. Even though circuits that contain diodes, transistors, and tubes are nonlinear, in many cases we can treat them as if they are approximately linear and obtain useful analysis results. D.J. Dailey, Electronics for Guitarists, DOI 10.1007/978-1-4614-4087-1, 385 # Springer Science+Business Media, LLC 2013 386 Appendix A: Some Basic Circuit Theory Fig. A.1 Linear (resistor) and nonlinear (diode) devices Series Circuits A typical series circuit is shown in Fig. A.2. All circuit elements (resistors and a battery in this case) carry the same current in a series circuit. The various voltage drops across the circuit elements can be determined using Ohm’s law and Kirchhoff’s voltage law. Note that I have oriented the voltage-sensing arrows pointing counterclockwise on the resistors so that the voltage drops across the resistors will be positive. I did this because I like to work with positive numbers but the arrows could have been oriented the other direction, resulting in negative voltage values. Kirchhoff’s Voltage Law Kirchhoff’s voltage law (KVL) says that the algebraic sum of all voltages around a closed loop is zero. The series circuit of Fig. A.2 forms a closed loop. If we assume there are no other resistors than those shown, we sum the voltage drops moving clockwise from the battery to obtain the KVL equation 0 ¼ Vin À V1 À V2 À V3 ÀÁÁÁÀVn Or, alternatively we could write Appendix A: Some Basic Circuit Theory 387 Fig. A.2 A series circuit Fig A.3 A parallel circuit Vin ¼ V1 þ V2 þ V3 þÁÁÁþVn The general rule is that we add voltages whose sensing arrows are pointed in the direction we travel around the loop. We subtract voltages whose sensing arrows point against the direction we have chosen. Parallel Circuits A typical parallel circuit is shown in Fig. A.3. In a parallel circuit, all elements have the same voltage across them. The voltage drops across all elements in a parallel circuit are equal. That is, V1 ¼ V2 ¼ V3 ¼ÁÁÁ¼Vn ¼ Vin The current flowing through a given element may be determined using Ohm’s law, Kirchhoff’s current law, or a combination of the two. 388 Appendix A: Some Basic Circuit Theory Fig. A.4 Example of a node with five branches Nodes A node is a point where two or more circuit elements are connected together. For example, in Fig. A.3, the entire top line of the schematic is a node—the top terminal of all of the resistors could be drawn connected at a single point or node. The circuit in Fig. A.3 has a total of two nodes. In Fig. A.2, each junction between resistors is a node, so this circuit has n + 1 nodes. Branches A branch is a path through which current can flow. The circuit in Fig. A.1 has one branch. That is, there is only one path through which current can flow. The circuit of Fig. A.2 has n + 1 branches, However, we could have started our numbering with IT renamed I1, in which case there would be n branches. Kirchhoff’s Current Law Kirchhoff’s current law (KCL) states that the algebraic sum of all currents entering and leaving a node is zero. A node with five branches extending from it is shown in Fig. A.4. You can arbitrarily choose the polarity of the current sensing arrows. For example, if we assume that arrows pointing to the node are positive, while those pointing out of the node are negative, the KCL equation for Fig. A.4 is 0 ¼ I1 À I2 þ I3 þ I4 À Ix Referring back to Fig. A.3, application of KCL tells us IT ¼ I1 þ I2 þ I3 þÁÁÁþIn Appendix A: Some Basic Circuit Theory 389 The Superposition Principle The principle of superposition is used to analyze linear circuits that contain multiple voltage and/or current sources. The idea behind superposition is that we can determine the response for each source acting individually, then add these responses to get the complete response. For example, to analyze the circuit in 0 Fig. A.5, we can start by “killing” current source I1 and finding the output Vo caused by voltage source V1 acting alone. An ideal current source has infinite internal resistance, so when we kill a current source it is simply replaced with an open circuit. Redrawing the circuit with source I1 killed as shown in Fig. A.5,we 0 can find Vo using the voltage divider relationship. 0 R2 V o ¼ V1 R1 þ R2 2kO ¼ 12 V 1kO þ 2kO ¼ 6V Next, we kill voltage source V1 and determine the output voltage caused by current source I1 acting alone. The internal resistance of an ideal voltage source is zero, so when we kill a voltage source we replace it with a short circuit. Redrawing the circuit with voltage source V1 killed we find R1||R2 ¼ 667 O, so the second component of the output voltage is 00 V o ¼ I1ðR1jjR2Þ ¼ 3 mA(1 kOjj2kOÞ ¼ð3mAÞð667 OÞ ¼ 2V Fig. A.5 Example of the application of superposition in circuit analysis 390 Appendix A: Some Basic Circuit Theory The net output voltage is the sum, or superposition of the two components. 0 00 Vo ¼ V o þ V o ¼ 6Vþ 2V ¼ 8V Useful Formulas Ohm’s law V V V ¼ IR I ¼ R ¼ R I V2 P ¼ IV P ¼ I2RP¼ R n series resistances Req ¼ R1 þ R2 þÁÁÁþRn n parallel resistances 1 R ¼ eq 1 þ 1 þÁÁÁþ 1 R1 R2 Rn Frequency and period 1 1 2p o f ¼ T ¼ o ¼ 2pf ¼ f ¼ T f T 2p ÀÁpffiffiffiffiffiffiffi Inductive and capacitive reactance j ¼ À1 1 Àj 1 1 X ¼ ff90 X ¼ X ¼ jjX ¼ C 2pfC C 2pfC C j2pfC C 2pfC XL ¼ 2pfLff90 XL ¼ j2pfLjj XL ¼ 2pfL Bipolar transistor relationships V VBE T V IC ¼ bIB IE ¼ IC þ IB re ¼ IC ffi ISe T ICQ Triode relationships m gm 3=2 gm ¼ mrP m ¼ rP ¼ IP ¼ kVðÞP þ mVG rP gm JFET relationships 2 2IDSS jjVGS gm0 ¼ ID ¼ IDSS 1 À VP VP Appendix B: Selected Tube Characteristic Curves Figures B.1, B.2, B.3, B.4, B.5, B.6, B.7, and B.8 D.J. Dailey, Electronics for Guitarists, DOI 10.1007/978-1-4614-4087-1, 391 # Springer Science+Business Media, LLC 2013 392 Appendix B: Selected Tube Characteristic Curves Fig. B.1 12AT7 plate and transconductance curves Appendix B: Selected Tube Characteristic Curves 393 Fig. B.2 12AU7 plate and transconductance curves 394 Appendix B: Selected Tube Characteristic Curves Fig. B.3 12AX7 plate and transconductance curves Appendix B: Selected Tube Characteristic Curves 395 Fig. B.4 6AN8 pentode and triode plate curves 396 Appendix B: Selected Tube Characteristic Curves Fig. B.5 6L6GC pentode and triode mode plate curves Appendix B: Selected Tube Characteristic Curves 397 Fig. B.6 6L6GC and EL34 triode mode transconductance curves 398 Appendix B: Selected Tube Characteristic Curves Fig. B.7 EL34 pentode and triode mode plate curves Appendix B: Selected Tube Characteristic Curves 399 Fig. B.8 EL84 pentode mode plate and transconductance curves Appendix C: Basic Vacuum Tube Operating Principles Diodes The diode is the simplest vacuum tube. Recall that the vacuum tube diode operates by thermionic emission of electrons from a heated cathode within the evacuated glass envelope of the tube, as shown in Fig. C.1. Reverse Bias When the anode is at a negative potential with respect to the cathode VAK 0V, the diode is said to be reverse biased, and the current flow through the tube is approximately zero. This occurs because the free electrons around the cathode are repelled by the negative potential at the anode, as shown in Fig. C.1a.
Recommended publications
  • Valve Biasing
    VALVE AMP BIASING Biased information How have valve amps survived over 30 years of change? Derek Rocco explains why they are still a vital ingredient in music making, and talks you through the mysteries of biasing N THE LAST DECADE WE HAVE a signal to the grid it causes a water as an electrical current, you alter the negative grid voltage by seen huge advances in current to flow from the cathode to will never be confused again. When replacing the resistor I technology which have the plate. The grid is also known as your tap is turned off you get no to gain the current draw required. profoundly changed the way we the control grid, as by varying the water flowing through. With your Cathode bias amplifiers have work. Despite the rise in voltage on the grid you can control amp if you have too much negative become very sought after. They solid-state and digital modelling how much current is passed from voltage on the grid you will stop have a sweet organic sound that technology, virtually every high- the cathode to the plate. This is the electrical current from flowing. has a rich harmonic sustain and profile guitarist and even recording known as the grid bias of your amp This is known as they produce a powerful studios still rely on good ol’ – the correct bias level is vital to the ’over-biased’ soundstage. Examples of these fashioned valves. operation and tone of the amplifier. and the amp are most of the original 1950’s By varying the negative grid will produce Fender tweed amps such as the What is a valve? bias the technician can correctly an unbearable Deluxe and, of course, the Hopefully, a brief explanation will set up your amp for maximum distortion at all legendary Vox AC30.
    [Show full text]
  • The EL34 Power Tube HI-'I
    The EL34 Power Tube HI-'I .... o.l"r A lp Musical Evaluations of a Classic Design .... A_I . 4.551 Single. Ended EL·84 Stereo Amp ~ _ .... ,���\� . -""" ".. - ...-., p.,.��",-, �. 1""""' -�,�.. � . oPf' ' ".".. ._ '" "'� .,_ "'�•• '" "'� ...- ' ,t\1".' ,w ' � "'\)U'�..,. ,\ 1\ ' ��-;---""\.\. ",.-" " ".,... "", ""�_ " tt"�" ,....-" ...........,...1"'" '�" ""t\1 _,.,.""" ....'" 'r·\ �'� . � ......,. �,,,. � ,..' ",...., \PJOl8'i .... �,�oPf',.,....;:.. O\ �,cl\ ., .... " , � ...,,.. AA �r- . · :::- ,,<,<, ,. ..""'"':k ...0'\1. � ':;: "",;: .. .._ " r ,...,.. _ "" " .-;.,,...""".... ",.... ......,.,.,,, -;;. ,... :;..,� _ """;.... -� . 0 """ " . ,,..,. ,t" ,,'" <""" , .-_,.;.;.''' � .. '''''''-o<f' _ ....;;; .,;::; , -- '" " ,.,...,.. "" .'" ::, ,t"� ��. ...,.,..,.;.;."1"" ''/'''' � _.� "" f"'� . � ' M'''" ' "- """",,; ,.of .,.,..� .. ...,. ' "' 1" '". '_1"""' . .. " ,,,,,,,,,,,,,,,_ f"""";""';..::: .,... " '�,;;.;:' ' ......,,..,..,. _-:: -__':1oPf' ::;;'", --''''"", ""","" ", ' �':::', � ' ""r; """"-"' .''''''''�}.. ,t\1 \ �·, � ot ,;: "" � ,.,. ---� , _.at" � t\JV" �� � 'i"'f'- " .::... .. .... �. , ,�,....,.' .....;. _ ...-:> ".... JC8'I\\ -, \�..- WOl\ """,.""''1"'"- �""'" � '-,�� 6<1\"""- ' ""'..,... � ...... � 6U'." �. - ,t\1 , . _ , "'" 1J>b\"� ��, oPf''' .,..-._ " "" .0. " ..... ���_���\t"�'".. ' ....... "" "",",. N ��:L [\l\'J � ��i y< • D T 0 • , 5 P A G • A N D N D u 5 T • y N • w 5 Beware of FakeNOS Tubes! CE Distribution US Distributor for Electronic Tubes VTV Issue # 1 6 JJ Over the last year or so, we have JJ Electronic,
    [Show full text]
  • VACUUM TUBE VALLEY Fall 1995 Price $6.50
    Pub/ish«lQuarterly Celebrating the History and QlIOlity of Vocllum Tube Te<lmology luue 2 Vo/LlI7U! I VACUUM TUBE VALLEY Fall 1995 Price $6.50 Magnum SE Amplifier Da\-c Wolze rec.:nrlydesigned and built an SE amp with power and punch. Page 17 ...... Tube Review: EL·34 In one of existence since 1953 and th(Omost popular audio tubes of all time, rhe EL-34 has many variarions and performance characteristics. Page 8 Heath W-6M Heathkit: Early Tube Hi-Fi years. In This Issue .. manufacturer of Heathkit was the largest d�c­ Ironic kits in the US, alone time, selling over ntbe bldustry News 350 different types of kts. Learn more aboUl Check OUt the latest happen gs i in in the the early days of Heath Hi-Fi. Page 3 world of vacuum tubes. Learn the results of a recent survey of tuhe dislfih­ mors and sellers conducted by VIV. MU/UlrdEL-34s Harbouroudines the latest Ilem and Eric Early Cinema Sound Views. Page 15 vrv examines an early \xre�ternElectric [heater sound system. Page 24 Guitar Amplifiers Learn about how to get the best guitar tone. Chaclie Kittleson interviews Terry Buddingh, Tube Amp Expert from GuiTdrPi4yer Magazine. Page 20 Heatb w-4AM Tube Matching: Get the best soutuisfrom your amp. Matched tubes arc essential for opti­ mum performance from push-pull amps. n John Atwood explai s tube matching techniques for the layman. Page 22 Vacuum Tube Valleyis published quarterly for electronic enthusiasts interested in the See (Jur newfiatures in this months colorfv1 past, present and fvture af yocuum tube electronics.
    [Show full text]
  • Transistor Biasing
    Module 2:BJT Biasing Quote of the day "Peace cannot be kept by force. It can only be achieved by understanding”. ― Albert Einstein DC Load line and Bias Point • DC Load Line – For a transistor a straight line drawn on transistor output characteristics. IC – For CE circuit, the load line is a graph of collector current I versus V for a fixed C CE IB + value of R and supply voltage V C CC + VCE – Load Line? VCC VCE I C RC VBE - - V V I R – From Figure VCE=? CE CC C C – If VBE =0 then IC=0, VCE = VCC plot this point on characteristics(A). – Now assume that ICRC = VCC, i.e. IC = VCC /RC then VCE =0. Plot this point on characteristics(B). – Join points A and B by a straight line. DC Load line contd.. VCE VCC I C RC VV IC CC CE IC RC V CC B IC(sat) RC DC load line VVCE(off ) CC V A CE Example 1. Plot the dc load line for the circuit shown in Fig. Then, find the values of VCE for IC = 1, 2, 5 mA respectively. VVIRCE CC C C VCE 10 for I c 0 10 I 10mA c 110 3 IC (mA) VCE (V) 1 9 2 8 5 5 4 Example 2. For the circuit shown and Plot of the dc load line in Fig. find the values of IC for VCE = 0V and VCE for IC = 0. VVIRCE CC C C 5 I C 4.54mA V CC15V For the previous circuit shown observe the Plot of the dc load line with Rc=4.8 K find the values of IC for VCE = 0V and VCE for IC = 0.
    [Show full text]
  • Shults Robert D 196308 Ms 10
    AN INVESTIGATION OF THE INFLUENCE OF CIRCUIT PARAMETERS ON THE OUTPUT WAVESHAPE OF A TUNNEL DIODE OSCILLATOR A THESIS Presented to The Faculty of the Graduate Division by Robert David Shults In Partial Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering Georgia Institute of Technology June, I963 AN INVESTIGATION OF THE INFLUENCE OF CIRCUIT PARAMETERS ON THE OUTPUT WAVESHAPE OF A TUNNEL DIODE OSCILLATOR Approved: —VY -w/T //'- Dr. W. B.l/Jonesj UJr. (Chairman) _A a t~l — Dry 3* L. Hammond, Jr. V ^^ __—^ '-" ^^ *• Br> J. T. Wang * Date Approved by Chairman: //l&U (A* l/j^Z) In presenting the dissertation as a partial, fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Institution shall make it available for inspection and circulation in accordance witn its regulations governing materials of this type. I agree -chat permission to copy from, or to publish from, this dissertation may be granted by the professor under whose direction it was written^ or, in his absence, by the dean of the Graduate Division when luch copying or publication is solely for scholarly purposes ftad does not involve potential financial gain. It is under­ stood that any copying from, or publication of, this disser­ tation which involves potential financial gain will not be allowed without written permission. _/2^ d- ii ACKNOWLEDGMEBTTS The author wishes to thank his thesis advisor, Dr. W. B„ Jones, Jr., for his suggestion of the problem and for his continued guidance and encouragement during the course of the investigation.
    [Show full text]
  • Transistor Circuits
    Transistor Circuits Learning Outcomes This chapter deals with a variety of circuits involving semiconductor devices. These will include bias and stabilisation for transistors, and small-signal a.c. amplifi er circuits using both BJTs and FETs. The use of both of these devices as an electronic switch is also considered. On completion of this chapter you should be able to: 1 Understand the need for correct biasing for a transistor, and perform calculations to obtain suitable circuit components to achieve this effect. 2 Understand the operation of small-signal amplifi ers and carry out calculations to select suitable circuit components, and to predict the amplifi er gain fi gure(s). 3 Understand how a transistor may be used as an electronic switch, and carry out simple calculations for this type of circuit. 1 Transistor Bias In order to use a transistor as an amplifying element it needs to be biased correctly. Although d.c. signals may be amplifi ed, the amplifi cation of a.c. signals is more common. However, the bias is provided by d.c. conditions. Consider a common emitter connected BJT and its input characteristic as illustrated in Fig. 1 . The inclusion of resistor RC is not required at this stage, but would be present in any practical amplifi er circuit, so is shown merely for completeness. This resistor is called the collector load resistor. With the switch in position ‘ 1 ’ the value of forward bias V BEQ has been chosen such that it coincides with the centre of the linear portion of the input characteristic. This point on the characteristic is identifi ed by the letter Q, because, without any a.c.
    [Show full text]
  • Amplifier En.Pdf
    Bipolar Junction Transistor Amplifiers Semiconductor Elements 1 © 2010,EE141 Доц.д-р. T.Василева What is an Amplifier? An amplifier is a circuit that can increase the peak-to-peak voltage, current, or power of a signal. It allows a small signal to control a much larger, high-powered one. Definitions of voltage, current and power gain coefficients are also given in figure. Lowercase italic letters indicate ac voltage and alternating currents. 2 © 2010,EE141 Доц.д-р. T.Василева 1 Amplifier Configurations There are three configurations of a BJT amplifier circuit: common- emitter (CE), common-collector (CC) and common-base (CB). The configuration is named for the electrode that is common for input and output networks. The CE is the most widely used for amplifiers because it has the best combination of current gain and voltage gain. In CE the input and output voltage are 180° out of phase, called an inversion. 3 © 2010,EE141 Доц.д-р. T.Василева Transistor Biasing Circuit with fixed base current For the transistor to operate properly as an amplifier, the base-emitter junction should be forward-biased and the base-collector junction – reverse-biased. This is called forward-reverse bias. The three dc voltages for the biased transistor are the emitter voltage UE, the collector voltage UC and the base voltage UB. These voltages are measured with respect to ground. 4 © 2010,EE141 Доц.д-р. T.Василева 2 Voltage-Divider Biasing (VDB) Voltage divider Circuit with fixed base voltage. Iдел >> IB The voltage-divider bias (VDB) configuration uses only a single dc source to provide forward-reverse bias to the transistor.
    [Show full text]
  • The Venerable Triode
    The Venerable Triode The very first gain device, the vacuum tube Triode, is still made after more than a hundred years, and while it has been largely replaced by other tubes and the many transistor types, it still remains popular in special industry and audio applications. I have some thoughts on why the Triode remains special for audio amplifiers (apart from sentimental value) that I would like to share. But first, a quick tutorial about Triodes: The earliest Triode was Lee De Forest's 1906 “Audion”. Over a hundred years development has resulted in many Triodes, large and small. The basic design has remained much the same. An evacuated container, usually glass, holds three signal connections, seen in the drawing as the Cathode, Grid and Plate (the Plate is also referred to as the Anode). In addition you see an internal heater, similar to a light bulb filament, which is used to heat the Cathode. Triode operation is simple. Electrons have what's known as “negative electrostatic charge”, and it is understood that “like” charges physically repel each other while opposite charges attract. The Plate is positively charged relative to the Cathode by a battery or other voltage source, and the electrons in the Cathode are attracted to the Plate, but are prevented by a natural tendency to hang out inside the Cathode and avoid the vacuum. This is where the heater comes in. When you make the Cathode very hot, these electrons start jumping around, and many of them have enough energy to leave the surface of the Cathode.
    [Show full text]
  • Lab 5 Assignment
    EE 462: Laboratory Assignment 5 Biasing N- channel MOSFET Transistor by Dr. A.V. Radun and Dr. K.D. Donohue (2/21/07) Updated Spring 2008 by Stephen Maloney Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 I. Instructional Objectives • Analyze the metal oxide semiconductor (MOS) field effect transistor (FET) (MOSFET) using a DC load line • Design a circuit to set a DC operating point for a MOSFET • Measure the operating points in a DC biased FET circuit • Become more familiar with programming in LabVIEW (See Horenstein 5.2, 7.3.1, and 7.3.3) II. Background Transistors are nonlinear devices; however, over certain operating regions they can be approximated with linear models. To ensure a transistor operates in its linear region, a DC level is added to its input signal. The design of this DC level is referred to as biasing the transistor. The DC current and voltage values are referred to as the transistor’s DC operating point (or its bias point) (or its quiescent point). Once a transistor is biased in a linear region, small changes for the input currents and voltages around the bias point will cause the outputs to change in a linearly proportional manner (approximately). It is assumed that the variation of the transistor's currents and voltages are small enough such that they do not move the system into nonlinear operation regions (triode region or cutoff). The simplest common source MOSFET amplifier biasing scheme is shown in Fig. 1. Since only the DC operating point is of interest right now, the time varying part of the input signal is omitted.
    [Show full text]
  • Diodes Lesson #6 Chapter 3
    Diodes Lesson #6 Chapter 3 BME 372 Electronics I – 180 J.Schesser Diodes • Typical Diode VI Characteristics – Forward Bias Region i – Reverse Bias Region d – Reverse Breakdown Region + - vd – Forward bias Threshold 5 i d 4 3 2 1 v d 0 -7-5-3-11357 -1 Reverse -2 breakdown Reverse bias Forward bias region -3 region region -4 -5 VI stands for Voltage Current BME 372 Electronics I – 181 J.Schesser Zener Diodes • Operated in the breakdown region. • Used for maintain a constant output voltage BME 372 Electronics I – 182 J.Schesser Load Line Analysis • Let’s see how to use a diode in a circuit. R Load Line 39 i D amps 35 + + 31 iD 27 VSS vD 23 -- -- 19 15 11 7 3 • Use KVL for this circuit -1 -0. -0. -0. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 3 2 1 v D volts Vss = RiD + vD • This equation is plotted on the same graph as the diode VI characteristics. BME 372 Electronics I – 183 J.Schesser Load Line Analysis i D amps Vss = RiD + vD 39 Operating Point Vss =1.6V, R=50kΩ 35 Q-point vD=0; 31 27 Load Line iD= Vss / R 23 Highest Voltage =32amps 19 vD=Vss Highest Current 15 =1.6V; 11 7 iD=0 3 -1 -0. -0. -0. 0 0.10.20.30.40.50.60.70.80.91 1.11.21.31.41.51.61.71.8 3 2 1 BME 372 Electronics I – 184 J.Schesserv D volts Ideal Diode • Basically, a switch – Forward Bias: any current allowed, diode on – Reverse Bias: zero current, diode off 5 – No reverse breakdown region i d 4 3 2 Diode on Diode off 1 v d 0 -7-5-3-11357 -1 -2 -3 -4 -5 BME 372 Electronics I – 185 J.Schesser How do we Analysis a Circuit with an Ideal Diode • For a real diode we use load line (graphical analysis) • For an ideal diode, we use a deductive method: 1.
    [Show full text]
  • Yellow Jackets Dimensions Sheet
    TUBE CONVERTERS Yellow Jackets® tube converters allow EL84 power tubes to be used in place of the most common guitar amp power tubes including 6L6, EL34, 6V6, 7027, 6550 and 7591. Most Yellow Jackets® screen No provide a substantial output power grid Connection reduction and a “self-bias” Class A 9 1 No EL84 configuration for the EL84 so that no Connection control bias adjustment is required. Yellow 8 2 grid Jackets® are like getting a whole new amp. plate 7 3 cathode + suppressor grid Yellow Jackets® Types No 6 4 Connection 5 filament YJS p. 2 filament YJSHORT p. 3 YJC p. 3 YJ20 p. 4 YJUNI p. 4 1 9 YJ7591 p. 4 YJR p. 5 1 8 screen control grid 4 5 grid plate 3 6 No Connection 2 7 filament filament No 1 8 cathode Connection + suppressor grid 1 Why would I want to convert to EL84's using Yellow Jackets®? Every power tube type offers a different characteristic sound and feel. EL84's have a very tight and focused sound which has become world renown by their use in the British VOX™ AC30 guitar amplifiers. Additionally, most Yellow Jackets® converters will produce a substantial maximum power reduction (50% to 90%) making it easier to find that sweet, warm mix of preamp and power amp distortion at a lower volume. Yellow Jackets also convert the power tube bias to “self-bias” Class A so that no bias adjustment is necessary. You can switch back and forth between EL84's and your amplifier’s original power tubes without rebiasing.
    [Show full text]
  • Transistor Biasing
    Transistor Biasing Transistor Biasing is the process of setting a transistors DC operating voltage or current conditions to the correct level so that any AC input signal can be amplified correctly by the transistor Transistor Biasing- S.Gayathri Priya 1 Need for Biasing A transistors steady state of operation depends a great deal on its base current, collector voltage, and collector current and therefore, if a transistor is to operate as a linear amplifier, it must be properly biased to have a suitable operating point. Establishing the correct operating point requires the proper selection of bias resistors and load resistors to provide the appropriate input current and collector voltage conditions. Transistor Biasing- S.Gayathri Priya 2 Q Point The correct biasing point for a bipolar transistor, either NPN or PNP, generally lies somewhere between the two extremes of operation with respect to it being either “fully-ON” or “fully- OFF” along its load line. This central operating point is called the “Quiescent Operating Point”, or Q-point for short. Transistor Biasing- S.Gayathri Priya 3 BJT Biasing methods The various types of biasing methods are: • Fixed Bias • Collector to base bias • Voltage divider bias Transistor Biasing- S.Gayathri Priya 4 Fixed Bias The transistors base current, IB remains constant for given values of Vcc, and therefore the transistors operating point must also remain fixed.Hence referred as fixed biasing Transistor Biasing- S.Gayathri Priya 5 Fixed Bias This two resistor biasing This type of transistor network is used to establish biasing arrangement is also the initial operating region of beta dependent biasing as the transistor using a fixed the steady-state condition of current bias.
    [Show full text]