Abstracts from the Human Genome Meeting 2018 Yokohama, Japan, 12-15 March 2018

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts from the Human Genome Meeting 2018 Yokohama, Japan, 12-15 March 2018 Human Genomics 2018, 12(Suppl 1):9 https://doi.org/10.1186/s40246-018-0138-6 MEETINGABSTRACTS Open Access Abstracts from the Human Genome Meeting 2018 Yokohama, Japan, 12-15 March 2018 Published: 09 March 2018 A1 is an intermediate between the genomic DNA and proteins, in TCGA whole-exome sequencing data reveals mutational principle, RNA sequencing (RNA-seq) should be able to reveal the in- parameters in distinguishing potential cancer drivers formation about the genome (e.g., mutations, including single nu- Daniel Wai-Hung Ho1,2 and Irene Oi-Lin Ng1,2 cleotide polymorphism (SNPs)) and the final products (i.e., proteins). 1Department of Pathology, The University of Hong Kong, Hong Kong, Although RNA should serve as exact copies of genomic DNA, in real- Hong Kong; 2State Key Laboratory for Liver Research, The University of ity, RNA can be modified by a variety of enzymes, which results in Hong Kong, Hong Kong, Hong Kong the addition of 5′-cap and poly A tails as well as various forms of Human Genomics 2018, 12(Suppl 1):A1 RNA modifications (e.g., RNA editing). To study these multiple pro- cesses simultaneously, we created a computational pipeline to Background maximize the extraction of information from RNA -seq data. In this With huge amount of genome-wide mutational data generated by pipeline, not only do we measure expression levels of RNA (i.e., cancer genomic sequencing studies, distinguishing cancer drivers genes and isoforms), we further detect A-to-I RNA editing sites and from the vast majority of passengers is important. Existing cancer clusters of editing or “editing islands” using our previously intro- driver prediction methods capture specific mutational aspects in dis- duced tool RNAEditor (John, Brief Bioinform, 2016; Stellos, Nat Med, criminating potential cancer drivers. We explore the possibility of al- 2016)) as well as circular RNAs (circRNAs) (Boeckel, Circ Res, 2015; terative way in doing the task. Militello, Brief Bioinform, 2017), which arise from the backsplicing of Methods exons and/or introns. Our pipeline is implemented in the Snakemake We noted mutational parameters (functional mutation ratio, mutation as workflow management system that confers numerous benefits, frequency and sample mutation recurrence) vary differently among such as easy parallelization on HPC-clusters and cloud computing en- mutant genes of different sizes. This led us to develop our novel al- vironments, advanced error detection, and automatically deleting gorithm (Mutant Gene Ranker - MuGeR), incorporating the compari- intermediate files. Through the detailed analysis for A-to-I RNA edit- son of multiple mutational parameters of target gene against the ing events that result in adenosine (A) to inosine (I) conversion in corresponding background derived from a specific subset of genes RNA but not in genomic DNA, which can be identified as guanine (G) using a sliding window approach, to estimate the likelihood of target as replacement of A in RNA-seq sequencing reads, it is possible to genes for being potential cancer drivers. We applied our MuGeR al- correctly infer the actual mutations in the human genome, which dif- gorithm on the The Cancer Genome Atlas (TCGA) datasets. fers from the reference genome used as template for RNA-seq data Results analysis. These mutations should represent the individuality of Empirical data on the TCGA datasets and comparison with the humans. In this meeting, we would like to share our computational prioritization results of 4 other existing tools (MuSiC, MuSig, TUSON pipeline for the further analysis of RNA-seq data and integrating the explorer and DOTS-Finder) suggested satisfactory performance of our additional extracted information for use in personalized medicine, es- MuGeR algorithm. More importantly, we demonstrated the existence pecially related to cardiovascular disease (“Cardiovascular Personal- of specific pattern for mutational parameters across cancers. ized and Precision Medicine”). Conclusions Empirical data verified the usefulness of our MuGeR algorithm in A3 identifying potential cancer drivers. Moreover, our in-depth appraisal Versatile instrument for single cell analysis and complex tissue of TCGA liver hepatocellular carcinoma datasets further highlighted microdissection the frequent mutational dysregulation of ubiquitin-related proteaso- Stanislav L. Karsten, Zhongcai Ma, Lili C. Kudo mal degradation in driving hepatocarcinogenesis. NeuroInDx, Inc., 20725 S Western Ave, Ste 100, Torrance, CA 90501, USA Human Genomics 2018, 12(Suppl 1):A3 A2 Maximizing the information extraction of RNA-seq data for Collection of specific cells or subanatomical regions from complex achieving personalized medicine heterogeneous tissues is a prerequisite step for understanding com- Tyler Weirick and Shizuka Uchida plex molecular mechanisms underlying health and disease. Single Cardiovascular Innovation Institute, University of Louisville, Louisville, KY cell analysis (SCA) has become an essential part of cutting edge bio- 40202, United States medical research. There are commercially available single cell collec- Human Genomics 2018, 12(Suppl 1):A2 tion and tissue microdissection technologies including laser based systems, and cell sorting instruments. However, these platforms are Through the efforts of large-scale sequencing projects around the typically sample specific, complex and expensive making integration world (e.g., ENCODE, FANTOM), we have learned that 90% of human within standard lab workflows difficult. Moreover, part of SCA is the genome is transcribed as RNA, yet only a minor portion of these investigation of single cell adhesion properties that is a key in sub- RNAs encode for proteins. Similarly, the processes affecting RNA and strate mediated cell behavior essential for understanding cellular functions of RNA have become increasingly complex. Given that RNA properties in health and disease. There are approaches for single cell © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Human Genomics 2018, 12(Suppl 1):9 Page 2 of 53 adhesion measurements including atomic force microscopy, optical microdeletions are enriched in high GC and simple repeats regions. tweezers, and micropipette/capillary aspiration. Unfortunately, none Interestingly, as opposed to duplications, the microdeletions muta- of the existing instruments provide concurrent single cell acquisition tion rates are higher in late replication regions. Next, we show that and adhesion force measurement prior to its preparation for the the smaller microdeletions (<300bp) prefer microhomology sizes be- downstream analysis (e.g. NGS). Based on our vacuum impulse based tween 2 and 3 bp (>30%) around the breakpoint, suggesting nonho- cell and tissue acquisition technology (UP8797644) we have devel- mologous end joining (NHEJ); whereas the larger microdeletions oped a universal platform for single cell acquisition and analysis. De- prefer microhomology length of 4bp (21%), followed by 1bp (19%). veloped system collects individual cells from any adherent cultures Finally, the GC richness and microhomologies underlying the junc- grown in standard cell culture dishes in as small as 15 nl volume, tions of the microdeletions are consistent with the possibility that compatible with downstream SCA and NGS. The system may be used the microdeletions were generated by mechanisms that also produce with a wide range of inverted microscopes, and the cells of interest extrachromosomal circles of DNA called microDNAs. In summary, the can be identified based on morphology, location or labeling, includ- curated set of high quality microdeletions will enhance studies in un- ing fluorescence. Here, individual cells were collected from human derstanding their mutational mechanism, as well as to understand neuroblastoma SH-SY5Y, CHO, 3T3 and neural progenitor cell cul- their disease association and functional impact. tures. Collected single cells were dispensed immediately into individ- ual wells for clonal expansion. Clonal expansion for 7 days of these A5 single cells revealed minimal effect on cellular viability (up to 99% when compared to dilution controls). Moreover, trypan blue assay Genome-wide association study for resistant hypertension in a Japanese population demonstrated survival rates similar with the re-cultivation studies. In 1,2 1 3 3 addition, we extended the use of our technology for single cell adhe- Keiko Yamazaki , Yasuo Takahashi , Yukako Katsura , Yayoi Nishida , Yoichiro Kamatani4,5, Michiaki Kubo6, Satoshi Asai1,3 sion strength measurement. Adhesion strength for individual cells 1 from several cell cultures was measured using a sensor incorporated Division of Genomic Epidemiology and Clinical Trials, Clinical Trials in the collection assembly. Measurement of cell adhesion force was Research Center, Nihon University School of Medicine, Tokyo, Japan; 2Laboratory for Genotyping Development, Center for Integrative Medical performed based on the capillary aspiration techniques reported
Recommended publications
  • An Alu Element-Based Model of Human Genome Instability George Wyndham Cook, Jr
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2013 An Alu element-based model of human genome instability George Wyndham Cook, Jr. Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Cook, Jr., George Wyndham, "An Alu element-based model of human genome instability" (2013). LSU Doctoral Dissertations. 2090. https://digitalcommons.lsu.edu/gradschool_dissertations/2090 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. AN ALU ELEMENT-BASED MODEL OF HUMAN GENOME INSTABILITY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by George Wyndham Cook, Jr. B.S., University of Arkansas, 1975 May 2013 TABLE OF CONTENTS LIST OF TABLES ...................................................................................................... iii LIST OF FIGURES .................................................................................................... iv LIST OF ABBREVIATIONS ......................................................................................
    [Show full text]
  • Histone H2A Bbd (H2AFB2) (NM 001017991) Human Recombinant Protein Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP323551 Histone H2A Bbd (H2AFB2) (NM_001017991) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human H2A histone family, member B2 (H2AFB2) Species: Human Expression Host: HEK293T Tag: C-Myc/DDK Predicted MW: 12.5 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Preparation: Recombinant protein was captured through anti-DDK affinity column followed by conventional chromatography steps. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_001017991 Locus ID: 474381 UniProt ID: P0C5Z0 RefSeq Size: 594 Cytogenetics: Xq28 RefSeq ORF: 345 Synonyms: H2A.Bbd; H2AB3; H2AFB2 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Histone H2A Bbd (H2AFB2) (NM_001017991) Human Recombinant Protein – TP323551 Summary: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Nucleosomes consist of approximately 146 bp of DNA wrapped around a histone octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4).
    [Show full text]
  • Network Assessment of Demethylation Treatment in Melanoma: Differential Transcriptome-Methylome and Antigen Profile Signatures
    RESEARCH ARTICLE Network assessment of demethylation treatment in melanoma: Differential transcriptome-methylome and antigen profile signatures Zhijie Jiang1☯, Caterina Cinti2☯, Monia Taranta2, Elisabetta Mattioli3,4, Elisa Schena3,5, Sakshi Singh2, Rimpi Khurana1, Giovanna Lattanzi3,4, Nicholas F. Tsinoremas1,6, 1 Enrico CapobiancoID * a1111111111 1 Center for Computational Science, University of Miami, Miami, FL, United States of America, 2 Institute of Clinical Physiology, CNR, Siena, Italy, 3 CNR Institute of Molecular Genetics, Bologna, Italy, 4 IRCCS Rizzoli a1111111111 Orthopedic Institute, Bologna, Italy, 5 Endocrinology Unit, Department of Medical & Surgical Sciences, Alma a1111111111 Mater Studiorum University of Bologna, S Orsola-Malpighi Hospital, Bologna, Italy, 6 Department of a1111111111 Medicine, University of Miami, Miami, FL, United States of America a1111111111 ☯ These authors contributed equally to this work. * [email protected] OPEN ACCESS Abstract Citation: Jiang Z, Cinti C, Taranta M, Mattioli E, Schena E, Singh S, et al. (2018) Network assessment of demethylation treatment in Background melanoma: Differential transcriptome-methylome and antigen profile signatures. PLoS ONE 13(11): In melanoma, like in other cancers, both genetic alterations and epigenetic underlie the met- e0206686. https://doi.org/10.1371/journal. astatic process. These effects are usually measured by changes in both methylome and pone.0206686 transcriptome profiles, whose cross-correlation remains uncertain. We aimed to assess at Editor: Roger Chammas, Universidade de Sao systems scale the significance of epigenetic treatment in melanoma cells with different met- Paulo, BRAZIL astatic potential. Received: June 20, 2018 Accepted: October 17, 2018 Methods and findings Published: November 28, 2018 Treatment by DAC demethylation with 5-Aza-2'-deoxycytidine of two melanoma cell lines Copyright: © 2018 Jiang et al.
    [Show full text]
  • H2A.B Facilitates Transcription Elongation at Methylated Cpg Loci
    Downloaded from genome.cshlp.org on October 27, 2017 - Published by Cold Spring Harbor Laboratory Press Research H2A.B facilitates transcription elongation at methylated CpG loci Yibin Chen,1 Qiang Chen,1 Richard C. McEachin,2 James D. Cavalcoli,2 and Xiaochun Yu1,3 1Division of Molecular Medicine and Genetics, Department of Internal Medicine, 2Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA H2A.B is a unique histone H2A variant that only exists in mammals. Here we found that H2A.B is ubiquitously expressed in major organs. Genome-wide analysis of H2A.B in mouse ES cells shows that H2A.B is associated with methylated DNA in gene body regions. Moreover, H2A.B-enriched gene loci are actively transcribed. One typical example is that H2A.B is enriched in a set of differentially methylated regions at imprinted loci and facilitates transcription elongation. These results suggest that H2A.B positively regulates transcription elongation by overcoming DNA methylation in the tran- scribed region. It provides a novel mechanism by which transcription is regulated at DNA hypermethylated regions. [Supplemental material is available for this article.] Histones are nuclear proteins in eukaryotes that package genomic 2004; Eirin-Lopez et al. 2008; Ishibashi et al. 2010; Soboleva et al. DNA into structural units called nucleosomes (Andrews and Luger 2012; Tolstorukov et al. 2012). 2011). A nucleosome consists of a histone octamer with two copies Although H2A.B has been well characterized in vitro, the each of four core histones that are wrapped with ;146 bp of function and localization of H2A.B in the genome are still unclear.
    [Show full text]
  • Histone H2A Bbd (H2AFB2) (NM 001017991) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RG223551 Histone H2A Bbd (H2AFB2) (NM_001017991) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: Histone H2A Bbd (H2AFB2) (NM_001017991) Human Tagged ORF Clone Tag: TurboGFP Symbol: H2AB2 Synonyms: H2A.Bbd; H2AB3; H2AFB2 Vector: pCMV6-AC-GFP (PS100010) E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RG223551 representing NM_001017991 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGCCGAGGAGGAGGAGACGCCGAGGGTCCTCCGGTGCTGGCGGCCGGGGGCGGACCTGCTCTCGCACCG TCCGAGCGGAGCTTTCGTTTTCAGTGAGCCAGGTGGAGCGCAGTCTACGGGAGGGCCACTACGCTCAGCG CCTGAGTCGCACGGCGCCGGTCTACCTCGCTGCGGTTATTGAGTACCTGACGGCCAAGGTCCTGGAGCTG GCGGGCAACGAGGCCCAGAACAGCGGAGAGCGGAACATCACTCCCCTGCTGCTGGACATGGTGGTTCACA ACGACAGGCTACTGAGCACCCTTTTCAACACGACCACCATCTCTCAAGTGGCCCCTGGCGAGGAC ACGCGTACGCGGCCGCTCGAG - GFP Tag - GTTTAA Protein Sequence: >RG223551 representing NM_001017991 Red=Cloning site Green=Tags(s) MPRRRRRRGSSGAGGRGRTCSRTVRAELSFSVSQVERSLREGHYAQRLSRTAPVYLAAVIEYLTAKVLEL AGNEAQNSGERNITPLLLDMVVHNDRLLSTLFNTTTISQVAPGED TRTRPLE - GFP Tag - V Restriction Sites: SgfI-MluI This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200,
    [Show full text]
  • Histone H2A Bbd (H2AFB2) (NM 001017991) Human Tagged ORF Clone Lentiviral Particle Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC223551L4V Histone H2A Bbd (H2AFB2) (NM_001017991) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: Histone H2A Bbd (H2AFB2) (NM_001017991) Human Tagged ORF Clone Lentiviral Particle Symbol: H2AB2 Synonyms: H2A.Bbd; H2AB3; H2AFB2 Vector: pLenti-C-mGFP-P2A-Puro (PS100093) ACCN: NM_001017991 ORF Size: 345 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC223551). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_001017991.1 RefSeq Size: 594 bp RefSeq ORF: 348 bp Locus ID: 474381 UniProt ID: P0C5Z0 Protein Pathways: Systemic lupus erythematosus MW: 12.7 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Histone H2A Bbd (H2AFB2) (NM_001017991) Human Tagged ORF Clone Lentiviral Particle – RC223551L4V Gene Summary: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes.
    [Show full text]
  • Looking for Missing Proteins in the Proteome Of
    Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update Yves Vandenbrouck, Lydie Lane, Christine Carapito, Paula Duek, Karine Rondel, Christophe Bruley, Charlotte Macron, Anne Gonzalez de Peredo, Yohann Coute, Karima Chaoui, et al. To cite this version: Yves Vandenbrouck, Lydie Lane, Christine Carapito, Paula Duek, Karine Rondel, et al.. Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update. Journal of Proteome Research, American Chemical Society, 2016, 15 (11), pp.3998-4019. 10.1021/acs.jproteome.6b00400. hal-02191502 HAL Id: hal-02191502 https://hal.archives-ouvertes.fr/hal-02191502 Submitted on 19 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Proteome Research 1 2 3 Looking for missing proteins in the proteome of human spermatozoa: an 4 update 5 6 Yves Vandenbrouck1,2,3,#,§, Lydie Lane4,5,#, Christine Carapito6, Paula Duek5, Karine Rondel7, 7 Christophe Bruley1,2,3, Charlotte Macron6, Anne Gonzalez de Peredo8, Yohann Couté1,2,3, 8 Karima Chaoui8, Emmanuelle Com7, Alain Gateau5, AnneMarie Hesse1,2,3, Marlene 9 Marcellin8, Loren Méar7, Emmanuelle MoutonBarbosa8, Thibault Robin9, Odile Burlet- 10 Schiltz8, Sarah Cianferani6, Myriam Ferro1,2,3, Thomas Fréour10,11, Cecilia Lindskog12,Jérôme 11 1,2,3 7,§ 12 Garin , Charles Pineau .
    [Show full text]
  • Systematic Quantitative Analysis of H2A And
    El Kennani et al. Epigenetics & Chromatin (2018) 11:2 https://doi.org/10.1186/s13072-017-0172-y Epigenetics & Chromatin METHODOLOGY Open Access Systematic quantitative analysis of H2A and H2B variants by targeted proteomics Sara El Kennani1, Annie Adrait1, Olga Permiakova1, Anne‑Marie Hesse1, Côme Ialy‑Radio2, Myriam Ferro1, Virginie Brun1, Julie Cocquet2, Jérôme Govin1* and Delphine Pfieger1,3* Abstract Background: Histones organize DNA into chromatin through a variety of processes. Among them, a vast diversity of histone variants can be incorporated into chromatin and fnely modulate its organization and functionality. Classically, the study of histone variants has largely relied on antibody-based assays. However, antibodies have a limited ef‑ ciency to discriminate between highly similar histone variants. Results: In this study, we established a mass spectrometry-based analysis to address this challenge. We developed a targeted proteomics method, using selected reaction monitoring or parallel reaction monitoring, to quantify a maxi‑ mum number of histone variants in a single multiplexed assay, even when histones are present in a crude extract. This strategy was developed on H2A and H2B variants, using 55 peptides corresponding to 25 diferent histone sequences, among which a few difer by a single amino acid. The methodology was then applied to mouse testis extracts in which almost all histone variants are expressed. It confrmed the abundance profles of several testis-specifc histones during successive stages of spermatogenesis and the existence of predicted H2A.L.1 isoforms. This methodology was also used to explore the over-expression pattern of H2A.L.1 isoforms in a mouse model of male infertility.
    [Show full text]
  • Chew Et Al-2021-Nature Communi
    Short H2A histone variants are expressed in cancer Guo-Liang Chew, Marie Bleakley, Robert Bradley, Harmit Malik, Steven Henikoff, Antoine Molaro, Jay Sarthy To cite this version: Guo-Liang Chew, Marie Bleakley, Robert Bradley, Harmit Malik, Steven Henikoff, et al.. Short H2A histone variants are expressed in cancer. Nature Communications, Nature Publishing Group, 2021, 12 (1), pp.490. 10.1038/s41467-020-20707-x. hal-03118929 HAL Id: hal-03118929 https://hal.archives-ouvertes.fr/hal-03118929 Submitted on 22 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ARTICLE https://doi.org/10.1038/s41467-020-20707-x OPEN Short H2A histone variants are expressed in cancer Guo-Liang Chew 1, Marie Bleakley2, Robert K. Bradley 3,4,5, Harmit S. Malik4,6, Steven Henikoff 4,6, ✉ ✉ Antoine Molaro 4,7 & Jay Sarthy 4 Short H2A (sH2A) histone variants are primarily expressed in the testes of placental mammals. Their incorporation into chromatin is associated with nucleosome destabilization and modulation of alternate splicing. Here, we show that sH2As innately possess features similar to recurrent oncohistone mutations associated with nucleosome instability. Through 1234567890():,; analyses of existing cancer genomics datasets, we find aberrant sH2A upregulation in a broad array of cancers, which manifest splicing patterns consistent with global nucleosome destabilization.
    [Show full text]
  • Istanbul Üniversitesi Sağlik Bilimleri Enstitüsü
    T.C. İSTANBUL ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ ( YÜKSEK LİSANS TEZİ ) MKA/MR OLGULARINDA GENETİK ETİYOLOJİNİN ARRAY-CGH TEKNİĞİ İLE ARAŞTIRILMASI MARYAM BARGHI MASTAN ABAD PROF. DR. BEYHAN TÜYSÜZ GENETİK ANABİLİM DALI GENETİK PROGRAMI İSTANBUL-2018 BEYAN Bu tez çalışmasının kendi çalışmam olduğunu, tezin planlanmasından yazımına kadar bütün safhalarda etik dışı davranışımın olmadığını, bu tezdeki bütün bilgileri akademik ve etik kurallar içinde elde ettiğimi, bu tez çalışmayla elde edilmeyen bütün bilgi ve yorumlara kaynak gösterdiğimi ve bu kaynakları da kaynaklar listesine aldığımı, yine bu tezin çalışılması ve yazımı sırasında patent ve telif haklarını ihlal edici bir davranışımın olmadığı beyan ederim. MARYAM BARGHI MASTAN ABAD ii İTHAF Sevgili Aileme… iii TEŞEKKÜR Yüksek lisans eğitimim boyunca engin bilgi ve tecrübelerinden yararlandığım, desteğini her zaman yanımda hissettiğim, tez çalışmamın her satırında emeği olan sevgili danışman hocam sayın Prof. Dr. Beyhan TÜYSÜZ’e; Yol gösterici ve anlayışlı tavrıyla her zaman destek olan, bilgi ve tecrübelerini esirgemeyen sevgili hocam sayın Doç. Dr. Birsen KARAMAN’a; Tez çalışmalarım boyunca birlikte çalışma fırsatı yakaladığım, bilgi ve tecrübelerinden yararlandığım, desteğini her zaman hissettiğim sayın Dr. Dilek ULUDAĞ’a; Eğitimim boyunca hiçbir konuda yardımlarını esirgemeyen, her zaman destekleyen, her birinin ayrı ayrı emeği olan tüm Çocuk Genetik Anabilim Dalı çalışanlarına ve arkadaşlarıma, Desteklerini hiçbir zaman esirgemeyen ve her an yanımda olan sevgili aileme sonsuz
    [Show full text]
  • H2A.B Is a Cancer/Testis Factor Involved in Activation of Ribosome Biogenesis in Hodgkin Lymphoma
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.19.427265; this version posted January 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. H2A.B is a cancer/testis factor involved in activation of ribosome biogenesis in Hodgkin Lymphoma Xuanzhao Jiang1, Jiayu Wen1, Elizabeth Paver2, Wu, Yu-Huan1,3, Gege Sun1,4, Amanda Bullman5, Jane E. Dahlstrom5,6, David J. Tremethick1* and Tatiana A. Soboleva1* 1The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia. 2 Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia. 3 Current address: IQVIA Solutions Taiwan Ltd. 105, Taiwan, Taipei City, Songshan District, Section 3, Minsheng East Road, 13, Taipei City, Taiwan. 4 Current address: Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China. 5 Department of Anatomical Pathology, ACT Pathology, The Canberra Hospital, Canberra, ACT, Australia. 6 Australian National University Medical School, The Australian National University, Canberra, ACT, Australia. *Corresponding co-authors [email protected] [email protected] Running title: H2A.B enhances Pol I and II transcription Key words: histone variants, H2A.B, chromatin, transcription, RNA Polymerase 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.19.427265; this version posted January 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved.
    [Show full text]
  • The Human Canonical Core Histone Catalogue David Miguel Susano Pinto*, Andrew Flaus*,†
    bioRxiv preprint doi: https://doi.org/10.1101/720235; this version posted July 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The Human Canonical Core Histone Catalogue David Miguel Susano Pinto*, Andrew Flaus*,† Abstract Core histone proteins H2A, H2B, H3, and H4 are encoded by a large family of genes dis- tributed across the human genome. Canonical core histones contribute the majority of proteins to bulk chromatin packaging, and are encoded in 4 clusters by 65 coding genes comprising 17 for H2A, 18 for H2B, 15 for H3, and 15 for H4, along with at least 17 total pseudogenes. The canonical core histone genes display coding variation that gives rise to 11 H2A, 15 H2B, 4 H3, and 2 H4 unique protein isoforms. Although histone proteins are highly conserved overall, these isoforms represent a surprising and seldom recognised variation with amino acid identity as low as 77 % between canonical histone proteins of the same type. The gene sequence and protein isoform diversity also exceeds com- monly used subtype designations such as H2A.1 and H3.1, and exists in parallel with the well-known specialisation of variant histone proteins. RNA sequencing of histone transcripts shows evidence for differential expression of histone genes but the functional significance of this variation has not yet been investigated. To assist understanding of the implications of histone gene and protein diversity we have catalogued the entire human canonical core histone gene and protein complement.
    [Show full text]