Istanbul Üniversitesi Sağlik Bilimleri Enstitüsü

Total Page:16

File Type:pdf, Size:1020Kb

Istanbul Üniversitesi Sağlik Bilimleri Enstitüsü T.C. İSTANBUL ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ ( YÜKSEK LİSANS TEZİ ) MKA/MR OLGULARINDA GENETİK ETİYOLOJİNİN ARRAY-CGH TEKNİĞİ İLE ARAŞTIRILMASI MARYAM BARGHI MASTAN ABAD PROF. DR. BEYHAN TÜYSÜZ GENETİK ANABİLİM DALI GENETİK PROGRAMI İSTANBUL-2018 BEYAN Bu tez çalışmasının kendi çalışmam olduğunu, tezin planlanmasından yazımına kadar bütün safhalarda etik dışı davranışımın olmadığını, bu tezdeki bütün bilgileri akademik ve etik kurallar içinde elde ettiğimi, bu tez çalışmayla elde edilmeyen bütün bilgi ve yorumlara kaynak gösterdiğimi ve bu kaynakları da kaynaklar listesine aldığımı, yine bu tezin çalışılması ve yazımı sırasında patent ve telif haklarını ihlal edici bir davranışımın olmadığı beyan ederim. MARYAM BARGHI MASTAN ABAD ii İTHAF Sevgili Aileme… iii TEŞEKKÜR Yüksek lisans eğitimim boyunca engin bilgi ve tecrübelerinden yararlandığım, desteğini her zaman yanımda hissettiğim, tez çalışmamın her satırında emeği olan sevgili danışman hocam sayın Prof. Dr. Beyhan TÜYSÜZ’e; Yol gösterici ve anlayışlı tavrıyla her zaman destek olan, bilgi ve tecrübelerini esirgemeyen sevgili hocam sayın Doç. Dr. Birsen KARAMAN’a; Tez çalışmalarım boyunca birlikte çalışma fırsatı yakaladığım, bilgi ve tecrübelerinden yararlandığım, desteğini her zaman hissettiğim sayın Dr. Dilek ULUDAĞ’a; Eğitimim boyunca hiçbir konuda yardımlarını esirgemeyen, her zaman destekleyen, her birinin ayrı ayrı emeği olan tüm Çocuk Genetik Anabilim Dalı çalışanlarına ve arkadaşlarıma, Desteklerini hiçbir zaman esirgemeyen ve her an yanımda olan sevgili aileme sonsuz teşekkür ederim. iv İÇİNDEKİLER TEZ ONAYI……………………………………………………………………………….... İ BEYAN ………...................................................................................................................... İİ İTHAF..................................................................................................................................... İİİ TEŞEKKÜR............................................................................................................................ İV İÇİNDEKİLER..........................................................................................................................V TABLOLAR LİSTESİ......................................................................................................... Vİİİ ŞEKİLLER LİSTESİ.............................................................................................................. İX SEMBOLLER / KISALTMALAR LİSTESİ.......................................................................... Xİ ÖZET.................................................................................................................................... Xİİİ ABSTRACT......................................................................................................................... XİV 1. GİRİŞ VE AMAÇ..................................................................................................................1 2. GENEL BİLGİLER............................................................................................................... 3 2.1 Mental RetardasyonTanımı ve Epidemiyolojisi…………………….…………………... 3 2.2 MR’nin Sınıflandırılması……………………………………………………………….. 3 2.3 Multipl Konjenital Anomali (MKA)Tanımı ve Epidemiyolojisi……………..………… 4 2.4 MKA/MR’nin Etiyolojisi………………………………………………………………. 5 2.4.1 MKA/MR'ye Sebep Olan Genetik Nedenler……………………….…………………. 8 2.4.1.1 MKA/MR Etiyolojisinde Kromozom Anomalileri…………………………………. 9 2.4.1.1.2 Sayısal Kromozom Anomalileri…………………………………………………. 10 2.4.1.1.3 Yapısal Kromozom Anomalileri………………………………………………… 10 2.4.1.1.3.1 Dengeli Yapısal Kromozom Anomalileri……………………………………… 10 2.4.1.1.3.2 Dengesiz Yapısal kromozom Anomalileri…………………………………….. 12 2.4.1.2 Tek Gen Hastalıkları………………………………………………………………. 14 Otozomal Dominant Geҫişli Olan MR……………………………………………………… 14 Otozomal Resesif Geҫişli Olan MR……………..………………………………………….. 15 X’e Bağlı MR……………………………………………………………………………..… 15 v 2.5 MKA/MR Tanısında Kullanılan Teknikler…………………………………………...... 16 2.5.1 Klasik Sitogenetik Teknikleri………………………………………………………… 16 Kromozom Elde Edilmesi…………………………………………………………………... 16 Giemsa Bandlama Yöntemi (G-Banding) ………………………………………………...... 17 Yüksek Rezollüsyonlu Bantlama Tekniği (HRBT)…………………………………………. 18 2.5.2 Moleküler Sitogenetik Teknikler……………………………………………………... 19 2.5.2.1 Floresan İn situ Hibridizasyon (FISH)……………………………………………... 19 2.5.2.2 CGH (Comperative Genomic Hybridisation) ……………………………………… 22 2.5.2.3 Mikroarray Analizleri………………………………...…………………………….. 23 2.5.2.4 Array-CGH…………………………………………………………………………. 23 2.4.2.5 SNP-Array………………………………………………………………………...... 28 2.4.2.6 CGH Array'ler ile SNP Array'lerin Karşılaştırılması………………………………. 29 3. GEREÇ-YÖNTEM………………………………………………………………………. 31 3.2 Gereçler………………………………………………………………………………… 31 3.2.1 Kullanılan Taşınabilir Cihazlar………………………………………………………. 31 3.2.2. Kullanılan Kimyasal Malzemeler……………………………………………………. 32 3.3 Kullanılan Teknikler…………………………………………………………………… 33 3.3.2 Array-CGH Çalışması……………………………………………………………...… 34 3.3.2.1 Hasta ve Referans DNA’nın İşaretlenerek Hibridizasyonu…..……………………. 34 3.3.2.2 Yıkama Aşaması…………………………………………………………………… 36 3.3.2.3 Tarama Aşaması……………………………………………………………………. 36 3.3.2.4 Analiz Aşaması……………………………………………………….……………. 37 4. BULGULAR……………………………………………………………………….…….. 39 4.1 a-CGHʼde Patolojik Varyant Saptanan 4 Olgunun Sunumu…………………………… 40 5. TARTIŞMA……………………………………………………………………………… 58 KAYNAKLAR…………………………………………………………………………...…. 67 FORMLAR………………………………………………………………………………….. 72 vi ETİK KURUL KARARI……………………………………………………………….…… 73 ÖZGEÇMİŞ………………………………………………………………………………… 74 vii TABLOLAR LİSTESİ Tablo2-1: IQ test puanlamasına göre MR sınıflandırılması ....................................................... 4 Tablo 2-2: Fetal hayatın farklı evrelerinde ve postnatal dönemde kromozom anomalilerinin sıklığı…………………………………………………………………………………………. 9 Tablo 2-3: Sık görülen bazı mikrodelesyon sendromları ve lokalizasyonları………………. 13 Tablo 4-1: Çalışmaya Dahil Edilen Bireyler ve Bilgileri…………………………………… 39 Tablo 4-2: a-CGHʼde patolojik varyant saptanan 4 olgunun özeti…………………………. 40 Tablo 5-1: 6qterminal delesyonuyla ilşkili en önemli genler, fonksiyonları ve yol aҫtıkları hastalıklar…………………………………………………………………………………… 60 Tablo 5-2: 22q11.2 delesyonuyla ilşkili en önemli genler, fonksiyonları ve yol aҫtıkları hastalıklar…………………………………………………………………………………… 61 Tablo 5-3: Xq27.3q28 duplikasyonu ile ilşkili en önemli genler, fonksiyonları ve yol aҫtıkları hastalıklar…………………………………………………………………………………… 62 Tablo 5-4: Xp22.33 delesyonuyla ilşkili en önemli genler, fonksiyonları ve yol aҫtıkları hastalıklar…………………………………………………………………………………… 64 Tablo 5-5: 16p11.2 mikrodelesyon ile ilşkili en önemli genler, fonksiyonları ve yol aҫtıkları hastalıklar…………………………………………………………………………………… 65 viii ŞEKİLLER LİSTESİ Şekil 2-1: MKA/MR’ye sebep olan genetik nedenler………………………………………... 9 Şekil 2-2: 3.kromozomda perisentrik inversiyon örneği……………………………………. 12 Şekil 2-3: MR ile ilişkili bazı otozomal genler ve kromozomlar üzerindeki yerleri………... 14 Şekil 2-4: OMIM'de X'e bağlı MR sorumlu olarak rapor edilen genlerin kromozomal lokalizasyonu ve ilişkili oldukları hastalıklar………………………………………………... 16 Şekil 2-5: CTF’de yapılan G-bantlama örneği……………………………………………… 18 Şekil 2-6: FISH çalışma prensibi…………………………………………………………… 20 Şekil 2-7: CGH yönteminin akış şeması……………………………………………………. 22 Şekil 2-8: Database of Genomic Variants’da arşivlenmiş CNV’lerin büyüklük dağılımları…………………………………………………………………………………... 28 Şekil 2-9: CNV’lerin tek ve çift vuruş fenotip etkisi……………………………………….. 25 Şekil 2-10: a-CGH tekniğinin uygulama aşamaları………………………………………… 26 Şekil 2-11: Kromozom analizi normal sonuҫlanan olgulardaki a-CGH incelemelerinde akış şeması……………………………………………………………………………………….. 28 Şekil 2-13: CGH arrayʼler ile SNP arrayʼlerin karşılaştırılması……………………………. 30 Şekil 4-1: olgu 17ʼye ait aile ağacı………………………………………………………….. 40 Şekil 4-2: Olgu 17’e ait 5.5 yaş fotoğrafları………………………………………………… 41 Şekil 4-3: Olgu 17'e ait karyotip görüntüsü………………………………………………… 42 Şekil 4-4: Olgu 17’ye ait a-CGH (Agilent platformu ile) görüntüsü……………………….. 42 Şekil 4-5: Olgu 17’e ait 6. kromozomundaki delesyon bölgesinin a-CGH görüntüsü……… 43 Şekil 4-6: Olgu 18ʼe ait aile ağacı…………………………………………………………... 44 Şekil 4-7: Olgu 18’e ait 16 yaş fotoğrafları…………………………………………………. 44 Şekil 4-8: Olgu 18'e ait karyotip görüntüsü………………………………………………… 45 Şekil 4-9: Olgu 18’e ait a-CGH (Agilent platformu ile) görüntüsü………………………… 46 Şekil 4-10: Olgu 18’e ait 22. kromozomundaki delesyon bölgesinin a-CGH görüntüsü…… 46 Şekil 4-11: Olgu 18'e ait FISH görüntüsü…………………………………………………... 47 ix Şekil 4-12: Olgu 19ʼa ait aile ağacı…………………………………………………………. 48 Şekil 4-13: Olgu 19’a ait 4.5 yaş fotoğrafları……………………………………………….. 49 Şekil 4-14: Olgu 19'a ait karyotip görüntüs………………………………………………… 49 Şekil 4-15: Olgu 19’a ait a-CGH (Agilent platformu ile) görüntüsü……………………….. 50 Şekil 4-16: Olgu 19’a ait X. kromozomundaki delesyon/duplikasyon bölgelerinin a-CGH görüntüsü……………………………………………………………………………………. 51 Şekil 4-17: olgu 19'a ait FISH görüntüsü…………………………………………………… 52 Şekil 4-18: olgu 19'un annesine ait FISH görütüsü…………………………………………. 53 Şekil 4-19: Olgu 20ʼye ait aile ağacı………………………………………………………... 53 Şekil 4-20: Olgu 20’ye ait 5.5 yaş fotoğrafları……………………………………………… 55 Şekil 4-21: Olgu 20'ye ait karyotip görüntüsü……………………………………………… 55 Şekil 4-22: Olgu 20’ye ait a-CGH (Agilent platformu ile) görüntüsü…………………….... 56 Şekil 4-23: Olgu 20’ye ait 16. kromozomundaki delesyon bölgelerinin a-CGH görüntüsü…56 x
Recommended publications
  • An Alu Element-Based Model of Human Genome Instability George Wyndham Cook, Jr
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2013 An Alu element-based model of human genome instability George Wyndham Cook, Jr. Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Cook, Jr., George Wyndham, "An Alu element-based model of human genome instability" (2013). LSU Doctoral Dissertations. 2090. https://digitalcommons.lsu.edu/gradschool_dissertations/2090 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. AN ALU ELEMENT-BASED MODEL OF HUMAN GENOME INSTABILITY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by George Wyndham Cook, Jr. B.S., University of Arkansas, 1975 May 2013 TABLE OF CONTENTS LIST OF TABLES ...................................................................................................... iii LIST OF FIGURES .................................................................................................... iv LIST OF ABBREVIATIONS ......................................................................................
    [Show full text]
  • Ageing-Associated Changes in DNA Methylation in X and Y Chromosomes
    Kananen and Marttila Epigenetics & Chromatin (2021) 14:33 Epigenetics & Chromatin https://doi.org/10.1186/s13072-021-00407-6 RESEARCH Open Access Ageing-associated changes in DNA methylation in X and Y chromosomes Laura Kananen1,2,3,4* and Saara Marttila4,5* Abstract Background: Ageing displays clear sexual dimorphism, evident in both morbidity and mortality. Ageing is also asso- ciated with changes in DNA methylation, but very little focus has been on the sex chromosomes, potential biological contributors to the observed sexual dimorphism. Here, we sought to identify DNA methylation changes associated with ageing in the Y and X chromosomes, by utilizing datasets available in data repositories, comprising in total of 1240 males and 1191 females, aged 14–92 years. Results: In total, we identifed 46 age-associated CpG sites in the male Y, 1327 age-associated CpG sites in the male X, and 325 age-associated CpG sites in the female X. The X chromosomal age-associated CpGs showed signifcant overlap between females and males, with 122 CpGs identifed as age-associated in both sexes. Age-associated X chro- mosomal CpGs in both sexes were enriched in CpG islands and depleted from gene bodies and showed no strong trend towards hypermethylation nor hypomethylation. In contrast, the Y chromosomal age-associated CpGs were enriched in gene bodies, and showed a clear trend towards hypermethylation with age. Conclusions: Signifcant overlap in X chromosomal age-associated CpGs identifed in males and females and their shared features suggest that despite the uneven chromosomal dosage, diferences in ageing-associated DNA methylation changes in the X chromosome are unlikely to be a major contributor of sex dimorphism in ageing.
    [Show full text]
  • H2A.B Facilitates Transcription Elongation at Methylated Cpg Loci
    Downloaded from genome.cshlp.org on October 27, 2017 - Published by Cold Spring Harbor Laboratory Press Research H2A.B facilitates transcription elongation at methylated CpG loci Yibin Chen,1 Qiang Chen,1 Richard C. McEachin,2 James D. Cavalcoli,2 and Xiaochun Yu1,3 1Division of Molecular Medicine and Genetics, Department of Internal Medicine, 2Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA H2A.B is a unique histone H2A variant that only exists in mammals. Here we found that H2A.B is ubiquitously expressed in major organs. Genome-wide analysis of H2A.B in mouse ES cells shows that H2A.B is associated with methylated DNA in gene body regions. Moreover, H2A.B-enriched gene loci are actively transcribed. One typical example is that H2A.B is enriched in a set of differentially methylated regions at imprinted loci and facilitates transcription elongation. These results suggest that H2A.B positively regulates transcription elongation by overcoming DNA methylation in the tran- scribed region. It provides a novel mechanism by which transcription is regulated at DNA hypermethylated regions. [Supplemental material is available for this article.] Histones are nuclear proteins in eukaryotes that package genomic 2004; Eirin-Lopez et al. 2008; Ishibashi et al. 2010; Soboleva et al. DNA into structural units called nucleosomes (Andrews and Luger 2012; Tolstorukov et al. 2012). 2011). A nucleosome consists of a histone octamer with two copies Although H2A.B has been well characterized in vitro, the each of four core histones that are wrapped with ;146 bp of function and localization of H2A.B in the genome are still unclear.
    [Show full text]
  • Plenary and Platform Abstracts
    American Society of Human Genetics 68th Annual Meeting PLENARY AND PLATFORM ABSTRACTS Abstract #'s Tuesday, October 16, 5:30-6:50 pm: 4. Featured Plenary Abstract Session I Hall C #1-#4 Wednesday, October 17, 9:00-10:00 am, Concurrent Platform Session A: 6. Variant Insights from Large Population Datasets Ballroom 20A #5-#8 7. GWAS in Combined Cancer Phenotypes Ballroom 20BC #9-#12 8. Genome-wide Epigenomics and Non-coding Variants Ballroom 20D #13-#16 9. Clonal Mosaicism in Cancer, Alzheimer's Disease, and Healthy Room 6A #17-#20 Tissue 10. Genetics of Behavioral Traits and Diseases Room 6B #21-#24 11. New Frontiers in Computational Genomics Room 6C #25-#28 12. Bone and Muscle: Identifying Causal Genes Room 6D #29-#32 13. Precision Medicine Initiatives: Outcomes and Lessons Learned Room 6E #33-#36 14. Environmental Exposures in Human Traits Room 6F #37-#40 Wednesday, October 17, 4:15-5:45 pm, Concurrent Platform Session B: 24. Variant Interpretation Practices and Resources Ballroom 20A #41-#46 25. Integrated Variant Analysis in Cancer Genomics Ballroom 20BC #47-#52 26. Gene Discovery and Functional Models of Neurological Disorders Ballroom 20D #53-#58 27. Whole Exome and Whole Genome Associations Room 6A #59-#64 28. Sequencing-based Diagnostics for Newborns and Infants Room 6B #65-#70 29. Omics Studies in Alzheimer's Disease Room 6C #71-#76 30. Cardiac, Valvular, and Vascular Disorders Room 6D #77-#82 31. Natural Selection and Human Phenotypes Room 6E #83-#88 32. Genetics of Cardiometabolic Traits Room 6F #89-#94 Wednesday, October 17, 6:00-7:00 pm, Concurrent Platform Session C: 33.
    [Show full text]
  • Molecular Analyses of Malignant Pleural Mesothelioma
    Molecular Analyses of Malignant Pleural Mesothelioma Shir Kiong Lo National Heart and Lung Institute Imperial College Dovehouse Street London SW3 6LY A thesis submitted for MD (Res) Faculty of Medicine, Imperial College London 2016 1 Abstract Malignant pleural mesothelioma (MPM) is an aggressive cancer that is strongly associated with asbestos exposure. Majority of patients with MPM present with advanced disease and the treatment paradigm mainly involves palliative chemotherapy and best supportive care. The current chemotherapy options are limited and ineffective hence there is an urgent need to improve patient outcomes. This requires better understanding of the genetic alterations driving MPM to improve diagnostic, prognostic and therapeutic strategies. This research aims to gain further insights in the pathogenesis of MPM by exploring the tumour transcriptional and mutational profiles. We compared gene expression profiles of 25 MPM tumours and 5 non-malignant pleura. This revealed differentially expressed genes involved in cell migration, invasion, cell cycle and the immune system that contribute to the malignant phenotype of MPM. We then constructed MPM-associated co-expression networks using weighted gene correlation network analysis to identify clusters of highly correlated genes. These identified three distinct molecular subtypes of MPM associated with genes involved in WNT and TGF-ß signalling pathways. Our results also revealed genes involved in cell cycle control especially the mitotic phase correlated significantly with poor prognosis. Through exome analysis of seven paired tumour/blood and 29 tumour samples, we identified frequent mutations in BAP1 and NF2. Additionally, the mutational profile of MPM is enriched with genes encoding FAK, MAPK and WNT signalling pathways.
    [Show full text]
  • Systematic Quantitative Analysis of H2A And
    El Kennani et al. Epigenetics & Chromatin (2018) 11:2 https://doi.org/10.1186/s13072-017-0172-y Epigenetics & Chromatin METHODOLOGY Open Access Systematic quantitative analysis of H2A and H2B variants by targeted proteomics Sara El Kennani1, Annie Adrait1, Olga Permiakova1, Anne‑Marie Hesse1, Côme Ialy‑Radio2, Myriam Ferro1, Virginie Brun1, Julie Cocquet2, Jérôme Govin1* and Delphine Pfieger1,3* Abstract Background: Histones organize DNA into chromatin through a variety of processes. Among them, a vast diversity of histone variants can be incorporated into chromatin and fnely modulate its organization and functionality. Classically, the study of histone variants has largely relied on antibody-based assays. However, antibodies have a limited ef‑ ciency to discriminate between highly similar histone variants. Results: In this study, we established a mass spectrometry-based analysis to address this challenge. We developed a targeted proteomics method, using selected reaction monitoring or parallel reaction monitoring, to quantify a maxi‑ mum number of histone variants in a single multiplexed assay, even when histones are present in a crude extract. This strategy was developed on H2A and H2B variants, using 55 peptides corresponding to 25 diferent histone sequences, among which a few difer by a single amino acid. The methodology was then applied to mouse testis extracts in which almost all histone variants are expressed. It confrmed the abundance profles of several testis-specifc histones during successive stages of spermatogenesis and the existence of predicted H2A.L.1 isoforms. This methodology was also used to explore the over-expression pattern of H2A.L.1 isoforms in a mouse model of male infertility.
    [Show full text]
  • Chew Et Al-2021-Nature Communi
    Short H2A histone variants are expressed in cancer Guo-Liang Chew, Marie Bleakley, Robert Bradley, Harmit Malik, Steven Henikoff, Antoine Molaro, Jay Sarthy To cite this version: Guo-Liang Chew, Marie Bleakley, Robert Bradley, Harmit Malik, Steven Henikoff, et al.. Short H2A histone variants are expressed in cancer. Nature Communications, Nature Publishing Group, 2021, 12 (1), pp.490. 10.1038/s41467-020-20707-x. hal-03118929 HAL Id: hal-03118929 https://hal.archives-ouvertes.fr/hal-03118929 Submitted on 22 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ARTICLE https://doi.org/10.1038/s41467-020-20707-x OPEN Short H2A histone variants are expressed in cancer Guo-Liang Chew 1, Marie Bleakley2, Robert K. Bradley 3,4,5, Harmit S. Malik4,6, Steven Henikoff 4,6, ✉ ✉ Antoine Molaro 4,7 & Jay Sarthy 4 Short H2A (sH2A) histone variants are primarily expressed in the testes of placental mammals. Their incorporation into chromatin is associated with nucleosome destabilization and modulation of alternate splicing. Here, we show that sH2As innately possess features similar to recurrent oncohistone mutations associated with nucleosome instability. Through 1234567890():,; analyses of existing cancer genomics datasets, we find aberrant sH2A upregulation in a broad array of cancers, which manifest splicing patterns consistent with global nucleosome destabilization.
    [Show full text]
  • H2A.B Is a Cancer/Testis Factor Involved in Activation of Ribosome Biogenesis in Hodgkin Lymphoma
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.19.427265; this version posted January 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. H2A.B is a cancer/testis factor involved in activation of ribosome biogenesis in Hodgkin Lymphoma Xuanzhao Jiang1, Jiayu Wen1, Elizabeth Paver2, Wu, Yu-Huan1,3, Gege Sun1,4, Amanda Bullman5, Jane E. Dahlstrom5,6, David J. Tremethick1* and Tatiana A. Soboleva1* 1The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia. 2 Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia. 3 Current address: IQVIA Solutions Taiwan Ltd. 105, Taiwan, Taipei City, Songshan District, Section 3, Minsheng East Road, 13, Taipei City, Taiwan. 4 Current address: Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China. 5 Department of Anatomical Pathology, ACT Pathology, The Canberra Hospital, Canberra, ACT, Australia. 6 Australian National University Medical School, The Australian National University, Canberra, ACT, Australia. *Corresponding co-authors [email protected] [email protected] Running title: H2A.B enhances Pol I and II transcription Key words: histone variants, H2A.B, chromatin, transcription, RNA Polymerase 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.19.427265; this version posted January 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved.
    [Show full text]
  • The Human Canonical Core Histone Catalogue David Miguel Susano Pinto*, Andrew Flaus*,†
    bioRxiv preprint doi: https://doi.org/10.1101/720235; this version posted July 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The Human Canonical Core Histone Catalogue David Miguel Susano Pinto*, Andrew Flaus*,† Abstract Core histone proteins H2A, H2B, H3, and H4 are encoded by a large family of genes dis- tributed across the human genome. Canonical core histones contribute the majority of proteins to bulk chromatin packaging, and are encoded in 4 clusters by 65 coding genes comprising 17 for H2A, 18 for H2B, 15 for H3, and 15 for H4, along with at least 17 total pseudogenes. The canonical core histone genes display coding variation that gives rise to 11 H2A, 15 H2B, 4 H3, and 2 H4 unique protein isoforms. Although histone proteins are highly conserved overall, these isoforms represent a surprising and seldom recognised variation with amino acid identity as low as 77 % between canonical histone proteins of the same type. The gene sequence and protein isoform diversity also exceeds com- monly used subtype designations such as H2A.1 and H3.1, and exists in parallel with the well-known specialisation of variant histone proteins. RNA sequencing of histone transcripts shows evidence for differential expression of histone genes but the functional significance of this variation has not yet been investigated. To assist understanding of the implications of histone gene and protein diversity we have catalogued the entire human canonical core histone gene and protein complement.
    [Show full text]
  • Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham a Thesis Submitted in Conformity
    Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Molecular Genetics University of Toronto © Copyright by Edward James Higginbotham 2020 i Abstract Characterizing Genomic Duplication in Autism Spectrum Disorder Edward James Higginbotham Master of Science Graduate Department of Molecular Genetics University of Toronto 2020 Duplication, the gain of additional copies of genomic material relative to its ancestral diploid state is yet to achieve full appreciation for its role in human traits and disease. Challenges include accurately genotyping, annotating, and characterizing the properties of duplications, and resolving duplication mechanisms. Whole genome sequencing, in principle, should enable accurate detection of duplications in a single experiment. This thesis makes use of the technology to catalogue disease relevant duplications in the genomes of 2,739 individuals with Autism Spectrum Disorder (ASD) who enrolled in the Autism Speaks MSSNG Project. Fine-mapping the breakpoint junctions of 259 ASD-relevant duplications identified 34 (13.1%) variants with complex genomic structures as well as tandem (193/259, 74.5%) and NAHR- mediated (6/259, 2.3%) duplications. As whole genome sequencing-based studies expand in scale and reach, a continued focus on generating high-quality, standardized duplication data will be prerequisite to addressing their associated biological mechanisms. ii Acknowledgements I thank Dr. Stephen Scherer for his leadership par excellence, his generosity, and for giving me a chance. I am grateful for his investment and the opportunities afforded me, from which I have learned and benefited. I would next thank Drs.
    [Show full text]
  • Méthylations De L'histone H3 Et Contrôle Épigénétique Des
    M´ethylations de l'histone H3 et contr^ole´epig´en´etique des propri´et´esdes cellules souches de gliomes Alexandra Bogeas To cite this version: Alexandra Bogeas. M´ethylations de l'histone H3 et contr^ole´epig´en´etiquedes propri´et´esdes cellules souches de gliomes. M´edecinehumaine et pathologie. Universit´eRen´eDescartes - Paris V, 2013. Fran¸cais. <NNT : 2013PA05P620>. <tel-01170633> HAL Id: tel-01170633 https://tel.archives-ouvertes.fr/tel-01170633 Submitted on 2 Jul 2015 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Université Paris Descartes PARIS V Ecole Doctorale MTCE «Médicament, Toxicologie, Chimie et Environnement» THÈSE de DOCTORAT de l’UNIVERSITE PARIS V Spécialité : Neurosciences En vue de l’obtention du grade de Docteur de l’Université Paris V Présentée par Alexandra BOGEAS Méthylations de l’histone H3 et contrôle épigénétique des propriétés des cellules souches de gliomes Thèse dirigée par le Dr Hervé CHNEIWEISS Soutenue le 29 Novembre 2013 Devant le Jury composé de : Madame le Docteur Sylvie ROBINE Président Monsieur le Professeur
    [Show full text]
  • 1 Gene Editing of the Multi
    bioRxiv preprint doi: https://doi.org/10.1101/233379; this version posted December 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Gene editing of the multi-copy H2A.B gene family by a single pair of TALENS Nur Diana Anuar1, Matt Field 1, 2, 6, Sebastian Kurscheid1, 6, Lei Zhang3, Edward Rebar3, Philip Gregory3,4, Josephine Bowles5, Peter Koopman5, David J. Tremethick#1 and Tatiana Soboleva#1 1The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia. 2Current address: James Cook University, PO BoX 6811, Cairns, QLD 4870, Australia 3Sangamo Therapeutics, 501 Canal Blvd, Richmond, CA 94804, USA. 4Current address: bluebird bio, 60 Binney St, Cambridge, MA 02142, USA. 5Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia 6Contributed equally # Corresponding authors: Tatiana Soboleva, Tel: +61 2 6125 4391; Fax: +61 2 6125 2499; Email: [email protected] David Tremethick, Tel: +61 2 6125 2326; Fax: +61 2 6125 2499; Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/233379; this version posted December 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. In view of the controversy related to the generation of off-target mutations by gene editing approaches, we tested the specificity of TALENs by disrupting a multi-copy gene family using only one pair of TALENS.
    [Show full text]