Genome-Wide Gene Expression Profiling of Randall's Plaques In

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Wide Gene Expression Profiling of Randall's Plaques In CLINICAL RESEARCH www.jasn.org Genome-Wide Gene Expression Profiling of Randall’s Plaques in Calcium Oxalate Stone Formers † † Kazumi Taguchi,* Shuzo Hamamoto,* Atsushi Okada,* Rei Unno,* Hideyuki Kamisawa,* Taku Naiki,* Ryosuke Ando,* Kentaro Mizuno,* Noriyasu Kawai,* Keiichi Tozawa,* Kenjiro Kohri,* and Takahiro Yasui* *Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and †Department of Urology, Social Medical Corporation Kojunkai Daido Hospital, Daido Clinic, Nagoya, Japan ABSTRACT Randall plaques (RPs) can contribute to the formation of idiopathic calcium oxalate (CaOx) kidney stones; however, genes related to RP formation have not been identified. We previously reported the potential therapeutic role of osteopontin (OPN) and macrophages in CaOx kidney stone formation, discovered using genome-recombined mice and genome-wide analyses. Here, to characterize the genetic patho- genesis of RPs, we used microarrays and immunohistology to compare gene expression among renal papillary RP and non-RP tissues of 23 CaOx stone formers (SFs) (age- and sex-matched) and normal papillary tissue of seven controls. Transmission electron microscopy showed OPN and collagen expression inside and around RPs, respectively. Cluster analysis revealed that the papillary gene expression of CaOx SFs differed significantly from that of controls. Disease and function analysis of gene expression revealed activation of cellular hyperpolarization, reproductive development, and molecular transport in papillary tissue from RPs and non-RP regions of CaOx SFs. Compared with non-RP tissue, RP tissue showed upregulation (˃2-fold) of LCN2, IL11, PTGS1, GPX3,andMMD and downregulation (0.5-fold) of SLC12A1 and NALCN (P,0.01). In network and toxicity analyses, these genes associated with activated mitogen- activated protein kinase, the Akt/phosphatidylinositol 3-kinase pathway, and proinflammatory cytokines that cause renal injury and oxidative stress. Additionally, expression of proinflammatory cytokines, num- bers of immune cells, and cellular apoptosis increased in RP tissue. This study establishes an association between genes related to renal dysfunction, proinflammation, oxidative stress, and ion transport and RP development in CaOx SFs. J Am Soc Nephrol 28: 333–347, 2017. doi: 10.1681/ASN.2015111271 The prevalence of kidney stone disease is nearly 9% in The other pathway involves overgrowth on interstitial the adult population and continues to increase world- apatite plaques, the so-called Randall plaques (RPs),9 wide.1,2 This condition has a medical and economic as observed in some idiopathic CaOx SFs. impact3 andisreportedtobeassociatedwithcompli- cations such as metabolic syndrome (MetS)4,5 and CLINICAL RESEARCH 6 ESRD. The pathogenesis of kidney stone formation Received November 27, 2015. Accepted May 4, 2016. has been investigated, and there are two major theories K. Taguchi and S.H. contributed equally to this work. for predicting lithogenesis.7 One pathway involves for- mation of intra-tubular crystals in the duct of Bellini, Published online ahead of print. Publication date available at www.jasn.org. the so-called Randall plugs, as observed with both ex- 8 Correspondence: Dr. Atsushi Okada, Department of Nephro-urology, perimental hyperoxaluria-induced animal models Nagoya City University Graduate School of Medical Sciences, 1 and human primary hyperoxaluria and with calcium Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan. phosphate (CaP), struvite, in addition to some idio- Email address: [email protected] pathic calcium oxalate (CaOx) stone formers (SFs). Copyright © 2016 by the American Society of Nephrology J Am Soc Nephrol 28: 333–347, 2017 ISSN : 1046-6673/2801-333 333 CLINICAL RESEARCH www.jasn.org In a recent study using genome-wide analysis and genome- the pathologic united theory of RP formation,16 molecular- recombined mice, we found OPN expression in renal tubular level analysis of cellular function is necessary for better cells and macrophage (Mw) migration in the interstitial space understanding of the role of RPs. The recently developed around crystals to be essential for stone formation.10–12 We found nephroureteroscopic technique permits more detailed analy- that the anti-inflammatory phenotype Mw played a suppressive sis of RPs involving both microscopic and genomic analyses.17 role in kidney stone formation via renal crystal phagocytosis.13 Therefore, to establish molecular-targeted therapies for Differentiation and induction of anti-inflammatory Mw are kidney stones, we investigated the gene expression profiles of considered a potential therapeutic approach for kidney stone RP sections from human papillary tissues and studied the disease; however, this evidence is only applicable to Randall plugs, factors controlling the development of RPs using microarray which have similarities with the hyperoxaluric mouse model. and immunohistochemical analyses. Understanding of RPs is also essential to clarify the potential of molecular therapies, such as OPN and Mw-related genes. Regarding the origin of some idiopathic CaOx kidney RESULTS stones, Evan et al. made major contributions to the study of the microscopic structure of RPs, which begin in the basement Patient Background membranes of thin loops of Henle with calcium deposits.14 Patients who underwent percutaneous nephrolithotomy or Despite numerous studies involving animal hyperoxaluric retrograde intrarenal surgery for calcium-based stones were stone models and human samples,15 the exact role of RP in the formation of CaOx crystals remains unknown. Since mor- phologic, mineral, and matrix-based investigations provided Table 1. Patient backgrounds Control CaOx SFs Characteristics P Value (n=7) (n=23) General Age, y 56618 59613 NSa Gender, M/F 4:3 14, 9 NSc Side, Rt/Lt 3:4 13, 10 NSc BMI, kg/m2 22.162.9 23.364.7 NSa Stone Stone composition CaOx, % — 91.469.1 — CaP, % — 5.567.5 — Stone volume, mm3 — 76161528 — Stone density, HU — 8206375 — Hydronephrosis, grade 0,I,II 5,1,1 12, 6, 5 NSd Serum BUN, mg/dl 12.863.7 14.563.8 NSb Cre, mg/dl 0.960.4 0.960.2 NSb Ca, mg/dl 9.460.7 9.460.6 NSb P, mg/dl 3.261.0 3.160.3 NSb UA, mg/dl 4.961.2 5.861.6 NSb WBC, cells/ml 651461748 678361853 NSb CRP, mg/dl 1.961.7 0.360.1 NSb Urine NSb pH 6.860.6 6.660.7 NSb WBC, cells/HPF 9610 19628 NSb Figure 1. Endoscopic and microscopic distribution of RPs. Rep- RBC, cells/HPF 16637 19629 NSb resentative photographs show renal papillary tissues from both 6 Data are presented as the mean SD. Grade of hydronephrosis was cate- normal and RP mucosa. The endoscopic image shows renal papilla gorized by Society for Fetal Urology. NS, not significant; M, male; F, female; Rt, right; Lt, left; BMI, body mass index; —, inapplicable data; HU, Hounsfield mucosa in the upper calyx during retrograde intrarenal surgery. unit; BUN, blood urea nitrogen; Cre, creatinine; Ca, calcium; P, phosphorus; The normal papilla shows fleshy smooth mucosa without bleeding UA, uric acid; WBC, white blood cell; CRP, c-reactive protein; HPF, high or calcification. Some RPs are showing as a white patchy lesion fi power eld; RBC, red blood cell. (arrow heads) as well as a ductal plug (arrow) within the same aStatistical analyses performed by t test. b papilla. Micro tissues were stained with hematoxylin-eosin, von Statistical analyses performed by Mann–Whitney U test. cStatistical analyses performed by Fisher exact test. Kossa (for detection of CaP crystals), and Pizzolato (for detection dStatistical analyses were performed by Kruskal–Wallis test. of CaOx crystals) staining. *Location of RP. Magnification, 3400. 334 Journal of the American Society of Nephrology J Am Soc Nephrol 28: 333–347, 2017 www.jasn.org CLINICAL RESEARCH enrolled in this study. There were no statistical differences in the indicating that RPs contained CaP but did not have a CaOx general background among the seven controls and 23 CaOx SFs component (Figure 1). suchasage,gender,sideoftreatment,andbodymassindex.Based Energy dispersive x-ray (EDX) microanalysis revealed that the on the composition of the stone fragments obtained during spectra of both calcium and phosphorus matched those for the lithotripsy, CaOx SF was defined as a patient with kidney and/or RP region; other regions did not show spectra for both (Figure ureter stones that had .80% content of CaOx crystals. There 2A). Transmission electron microscopy (TEM) showed that were no significant differences in serum and urine parameters there were numerous collagen fibers in both interstitial cellular among the three groups (Table 1). spaces around RPs and outside interstitial spaces around the basement membranes of renal tubular cells (Figure 2B). Immu- Observation of RPs and the Surrounding Tissue nohistochemical TEM showed much more diffuse and higher During the endoscopic intrarenal operation, RPs were ob- expression of OPN, considered to represent the matrix of CaOx served as plain white calcification regions that were covered and CaP stones, in RPs compared with both renal tubular cells with the papillary epithelium when viewed through a neph- and interstitial cells without RPs (Figure 2C). roureteroscope. Some RPs coexisted with ductal plugs in the same renal calyx papilla. Hematoxylin-eosin staining showed Gene Profiling of Papillary Tissue of CaOx SFs and destruction of the papillary epithelium layer and interstitial Controls cellular disorder surrounding RPs. The RPs were positive for Microarray analysis was performed to compare the gene ex- von Kossa staining but negative for Pizzolato staining, pression profiles of papillary tissue from nonstone patients Figure 2. Ultrastructural observations obtained using EDX microanalysis and TEM. (A) EDX microanalysis of RPs. Upper images are microphotographs of non-, calcium (Ca)-, and phosphorus (P)-staining tissues. Lower images show spectra of carbon (C), oxygen (O), sodium (Na), Osmium (Os), Ca (arrow head), and P (arrow) for each tissue. L1, lesion 1 (the nonplaque area); L2, lesion 2 (another nonplaque area); RP, RP area. (B) Ultrastructural details of collagen fibers surrounding RP and normal renal tubular cells from non-RP lesion detected in papillary tissue by TEM.
Recommended publications
  • Gene Expression and Splicing Alterations Analyzed by High Throughput RNA Sequencing of Chronic Lymphocytic Leukemia Specimens
    Liao et al. BMC Cancer (2015) 15:714 DOI 10.1186/s12885-015-1708-9 RESEARCH ARTICLE Open Access Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens Wei Liao1, Gwen Jordaan1, Phillipp Nham2, Ryan T. Phan2, Matteo Pelegrini3 and Sanjai Sharma1,4* Abstract Background: To determine differentially expressed and spliced RNA transcripts in chronic lymphocytic leukemia specimens a high throughput RNA-sequencing (HTS RNA-seq) analysis was performed. Methods: Ten CLL specimens and five normal peripheral blood CD19+ B cells were analyzed by HTS RNA-seq. The library preparation was performed with Illumina TrueSeq RNA kit and analyzed by Illumina HiSeq 2000 sequencing system. Results: An average of 48.5 million reads for B cells, and 50.6 million reads for CLL specimens were obtained with 10396 and 10448 assembled transcripts for normal B cells and primary CLL specimens respectively. With the Cuffdiff analysis, 2091 differentially expressed genes (DEG) between B cells and CLL specimens based on FPKM (fragments per kilobase of transcript per million reads and false discovery rate, FDR q < 0.05, fold change >2) were identified. Expression of selected DEGs (n = 32) with up regulated and down regulated expression in CLL from RNA-seq data were also analyzed by qRT-PCR in a test cohort of CLL specimens. Even though there was a variation in fold expression of DEG genes between RNA-seq and qRT-PCR; more than 90 % of analyzed genes were validated by qRT-PCR analysis. Analysis of RNA-seq data for splicing alterations in CLL and B cells was performed by Multivariate Analysis of Transcript Splicing (MATS analysis).
    [Show full text]
  • Haplotypes of CYP1B1 and CCDC57 Genes in an Afro-Caribbean Female
    Molecular Biology Reports (2019) 46:3299–3306 https://doi.org/10.1007/s11033-019-04790-y ORIGINAL ARTICLE Haplotypes of CYP1B1 and CCDC57 genes in an Afro‑Caribbean female population with uterine leiomyoma Angela T. Alleyne1 · Virgil S. Bideau1 Received: 13 December 2018 / Accepted: 28 March 2019 / Published online: 13 April 2019 © Springer Nature B.V. 2019 Abstract Uterine leiomyomas (UL) are prevalent benign tumors, especially among women of African ancestry. The disease also has genetic liability and is infuenced by risk factors such as hormones and obesity. This study investigates the haplotypes of the Cytochrome P450 1B1 gene (CYP1B1) related to hormones and coiled-coil domain containing 57 gene (CCDC57) related to obesity in Afro-Caribbean females. Each haplotype was constructed from unphased sequence data using PHASE v.2.1 software and Haploview v.4.2 was used for linkage disequilibrium (LD) studies. There were contrasting LD observed among the single nucleotide polymorphisms of CYP1B1 and CCDC5. Accordingly, the GTA haplotype of CYP1B1 was signifcantly associated with UL risk (P = 0.02) while there was no association between CCDC57 haplotypes and UL (P = 0.2) for the ATG haplotype. As such, our fndings suggest that the Asp449Asp polymorphism and GTA haplotype of CYP1B1 may contribute to UL susceptibility in women of Afro-Caribbean ancestry in this population. Keywords SNP · Fibroids · Haplotyping · Estrogen · Linkage disequilibrium Introduction consistently having a higher risk of UL development than White women [4]. However cumulatively Black women have Globally, 20–25% of women are clinically diagnosed with an earlier onset for diagnosis than White women [2, 10].
    [Show full text]
  • Polymorphisms of the BARX1 and ADAMTS17 Locus Genes in Individuals with Gastroesophageal Reflux Disease
    J Neurogastroenterol Motil, Vol. 25 No. 3 July, 2019 pISSN: 2093-0879 eISSN: 2093-0887 https://doi.org/10.5056/jnm18183 JNM Journal of Neurogastroenterology and Motility Original Article Polymorphisms of the BARX1 and ADAMTS17 Locus Genes in Individuals With Gastroesophageal Reflux Disease Alexandra Argyrou,1 Evangelia Legaki,1 Christos Koutserimpas,2 Maria Gazouli,1* Ioannis Papaconstantinou,3 George Gkiokas,3 and George Karamanolis4 1Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; 22nd Department of General Surgery, “Sismanoglio General Hospital of Athens, Athens, Greece; 32nd Department of Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; and 4Gastroenterology Unit, 2nd Department of Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece Background/Aims Gastroesophageal reflux disease (GERD) represents a common condition having a substantial impact on the patients’ quality of life, as well as the health system. According to many studies, the BARX1 and ADAMTS17 genes have been suggested as genetic risk loci for the development of GERD and its complications. The purpose of this study is to investigate the potential association between GERD and BARX1 and ADAMTS17 polymorphisms. Methods The present is a prospective cohort study of 160 GERD patients and 180 healthy control subjects of Greek origin, examined for BARX1 and ADAMTS17 polymorphisms (rs11789015 and rs4965272) and a potential correlation to GERD. Results The rs11789015 AG and GG genotypes were found to be significantly associated with GERD (P = 0.032; OR, 1.65; 95% CI, 1.06- 2.57 and P = 0.033; OR, 3.00; 95% CI, 1.15-7.82, respectively), as well as the G allele (P = 0.007; OR, 1.60; 95% CI, 1.14- 2.24).
    [Show full text]
  • Human Prion-Like Proteins and Their Relevance in Disease
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Universitat Autònoma de Barcelona Departament de Bioquímica i Biologia Molecular Institut de Biotecnologia i Biomedicina HUMAN PRION-LIKE PROTEINS AND THEIR RELEVANCE IN DISEASE Doctoral thesis presented by Cristina Batlle Carreras for the degree of PhD in Biochemistry, Molecular Biology and Biomedicine from the Universitat Autònoma de Barcelona. The work described herein has been performed in the Department of Biochemistry and Molecular Biology and in the Institute of Biotechnology and Biomedicine, supervised by Prof. Salvador Ventura i Zamora. Cristina Batlle Carreras Prof. Salvador Ventura i Zamora Bellaterra, 2020 Protein Folding and Conformational Diseases Lab. This work was financed with the fellowship “Formación de Profesorado Universitario” by “Ministerio de Ciencia, Innovación y Universidades”. This work is licensed under a Creative Commons Attributions-NonCommercial-ShareAlike 4.0 (CC BY-NC- SA 4.0) International License. The extent of this license does not apply to the copyrighted publications and images reproduced with permission. (CC BY-NC-SA 4.0) Batlle, Cristina: Human prion-like proteins and their relevance in disease. Doctoral Thesis, Universitat Autònoma de Barcelona (2020) English summary ENGLISH SUMMARY Prion-like proteins have attracted significant attention in the last years.
    [Show full text]
  • 00006396 201510000 00004
    King’s Research Portal DOI: 10.1097/j.pain.0000000000000200 Document Version Publisher's PDF, also known as Version of record Link to publication record in King's Research Portal Citation for published version (APA): Livshits, G., Macgregor, A. J., Gieger, C., Malkin, I., Moayyeri, A., Grallert, H., Emeny, R. T., Spector, T., Kastenmuller, G., & Williams, F. M. K. (2015). An omics investigation into chronic widespread musculoskeletal pain reveals epiandrosterone sulfate as a potential biomarker. Pain, 156(10), 1845-1851. https://doi.org/10.1097/j.pain.0000000000000200 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • Protein Interaction Network of Alternatively Spliced Isoforms from Brain Links Genetic Risk Factors for Autism
    ARTICLE Received 24 Aug 2013 | Accepted 14 Mar 2014 | Published 11 Apr 2014 DOI: 10.1038/ncomms4650 OPEN Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism Roser Corominas1,*, Xinping Yang2,3,*, Guan Ning Lin1,*, Shuli Kang1,*, Yun Shen2,3, Lila Ghamsari2,3,w, Martin Broly2,3, Maria Rodriguez2,3, Stanley Tam2,3, Shelly A. Trigg2,3,w, Changyu Fan2,3, Song Yi2,3, Murat Tasan4, Irma Lemmens5, Xingyan Kuang6, Nan Zhao6, Dheeraj Malhotra7, Jacob J. Michaelson7,w, Vladimir Vacic8, Michael A. Calderwood2,3, Frederick P. Roth2,3,4, Jan Tavernier5, Steve Horvath9, Kourosh Salehi-Ashtiani2,3,w, Dmitry Korkin6, Jonathan Sebat7, David E. Hill2,3, Tong Hao2,3, Marc Vidal2,3 & Lilia M. Iakoucheva1 Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases.
    [Show full text]
  • Autism Multiplex Family with 16P11.2P12.2 Microduplication Syndrome in Monozygotic Twins and Distal 16P11.2 Deletion in Their Brother
    European Journal of Human Genetics (2012) 20, 540–546 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother Anne-Claude Tabet1,2,3,4, Marion Pilorge2,3,4, Richard Delorme5,6,Fre´de´rique Amsellem5,6, Jean-Marc Pinard7, Marion Leboyer6,8,9, Alain Verloes10, Brigitte Benzacken1,11,12 and Catalina Betancur*,2,3,4 The pericentromeric region of chromosome 16p is rich in segmental duplications that predispose to rearrangements through non-allelic homologous recombination. Several recurrent copy number variations have been described recently in chromosome 16p. 16p11.2 rearrangements (29.5–30.1 Mb) are associated with autism, intellectual disability (ID) and other neurodevelopmental disorders. Another recognizable but less common microdeletion syndrome in 16p11.2p12.2 (21.4 to 28.5–30.1 Mb) has been described in six individuals with ID, whereas apparently reciprocal duplications, studied by standard cytogenetic and fluorescence in situ hybridization techniques, have been reported in three patients with autism spectrum disorders. Here, we report a multiplex family with three boys affected with autism, including two monozygotic twins carrying a de novo 16p11.2p12.2 duplication of 8.95 Mb (21.28–30.23 Mb) characterized by single-nucleotide polymorphism array, encompassing both the 16p11.2 and 16p11.2p12.2 regions. The twins exhibited autism, severe ID, and dysmorphic features, including a triangular face, deep-set eyes, large and prominent nasal bridge, and tall, slender build. The eldest brother presented with autism, mild ID, early-onset obesity and normal craniofacial features, and carried a smaller, overlapping 16p11.2 microdeletion of 847 kb (28.40–29.25 Mb), inherited from his apparently healthy father.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table 3 Complete List of RNA-Sequencing Analysis of Gene Expression Changed by ≥ Tenfold Between Xenograft and Cells Cultured in 10%O2
    Supplementary Table 3 Complete list of RNA-Sequencing analysis of gene expression changed by ≥ tenfold between xenograft and cells cultured in 10%O2 Expr Log2 Ratio Symbol Entrez Gene Name (culture/xenograft) -7.182 PGM5 phosphoglucomutase 5 -6.883 GPBAR1 G protein-coupled bile acid receptor 1 -6.683 CPVL carboxypeptidase, vitellogenic like -6.398 MTMR9LP myotubularin related protein 9-like, pseudogene -6.131 SCN7A sodium voltage-gated channel alpha subunit 7 -6.115 POPDC2 popeye domain containing 2 -6.014 LGI1 leucine rich glioma inactivated 1 -5.86 SCN1A sodium voltage-gated channel alpha subunit 1 -5.713 C6 complement C6 -5.365 ANGPTL1 angiopoietin like 1 -5.327 TNN tenascin N -5.228 DHRS2 dehydrogenase/reductase 2 leucine rich repeat and fibronectin type III domain -5.115 LRFN2 containing 2 -5.076 FOXO6 forkhead box O6 -5.035 ETNPPL ethanolamine-phosphate phospho-lyase -4.993 MYO15A myosin XVA -4.972 IGF1 insulin like growth factor 1 -4.956 DLG2 discs large MAGUK scaffold protein 2 -4.86 SCML4 sex comb on midleg like 4 (Drosophila) Src homology 2 domain containing transforming -4.816 SHD protein D -4.764 PLP1 proteolipid protein 1 -4.764 TSPAN32 tetraspanin 32 -4.713 N4BP3 NEDD4 binding protein 3 -4.705 MYOC myocilin -4.646 CLEC3B C-type lectin domain family 3 member B -4.646 C7 complement C7 -4.62 TGM2 transglutaminase 2 -4.562 COL9A1 collagen type IX alpha 1 chain -4.55 SOSTDC1 sclerostin domain containing 1 -4.55 OGN osteoglycin -4.505 DAPL1 death associated protein like 1 -4.491 C10orf105 chromosome 10 open reading frame 105 -4.491
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]