White Paper: Introduction to Intel® Architecture, the Basics

Total Page:16

File Type:pdf, Size:1020Kb

White Paper: Introduction to Intel® Architecture, the Basics White Paper Introduction to Intel® Architecture Introduction to Intel® Architecture The Basics Executive Summary The term Intel® architecture encompasses a combination of microprocessors and supporting hardware that creates the building blocks for a variety of computing systems. Although the architecture is straightforward and remarkably well-supported, the workings of these components may not be obvious to engineers, programmers, or product developers with no previous Intel architecture experience. This paper describes the basic operations and functions of the relevant components, using three example systems. Specifically, the paper will focus on the Intel® Core™ i7 processor (high-performance) and the Intel® Atom™ processor (low-power) implementations. In each case, the paper will walk the reader through the operation of the microprocessor’s communication with memory and peripheral I/O devices, the interaction between different types of components, and related design criteria. The goal of this paper is to The various system components are described along with the services they provide. describe the basic operation This paper will also define common terms used when describing Intel architecture designs and their operation. The final section highlights design aids, support, and and function of three classes of collateral provided by Intel and its partner provides to help create successful products. hardware platforms based on the Intel architecture and the components used. Jim Turley Principal Analyst, Silicon Insider White Paper Introduction to Intel® Architecture Table of Contents What is Intel® Architecture? experience. Software can be reused across generations of products, and product Intel® is the world’s oldest and most- What is Intel® Architecture? . 1 teams can protect their investment (in established microprocessor company, both hardware and software) in a cost- Introduction to Intel® Architecture . 1 producing the world’s most popular efficient manner. Although original work microprocessor chips. Although perhaps Basics of an Intel® Architecture may be required to take advantage of the best known for its PC processors, Intel System . 4 newest microprocessor features, the old devices are used in virtually every field Intel® Core™ i7 Processor–Based software will still work as-is. of electronics, including automotive, System . 5 industrial, automation, robotics, consumer Intel architecture chips have obviously The Intel® Core™ i7 Processor . 5 electronics, image processing, networking, undergone many changes over the past 40+ years. A list of currently available Intel’s Direct Media Interface encryption, military, construction, medical, 1 (DMI) . 6 energy, and other industries. devices is available here. Early chips were given technical part numbers, such Platform Controller Hub (PCH) . 6 Designers unfamiliar with the Intel as 8086, 80386, or 80486. This led to Intel® Atom™ Processor–Based architecture may have concerns about the commonly used shorthand of “x86 System . 9 the architecture’s fundamental concepts, architecture,” in reference to the last its inner workings, or its complexity. The two digits of each chip’s part number. The Intel® Atom™ Processor . 9 goal of this paper is to educate skilled Beginning in 1993, the “x86” naming Tools for New Designs . 9 developers with no previous exposure convention gave way to more memorable Conclusion . 10 to the Intel architecture and to provide (and pronounceable) product names guidance regarding system components such as Intel® Pentium® processor, Intel® References . 10 and concepts. Celeron® processor, Intel® Core™ processor, and Intel® Atom™ processor. Introduction to Intel® Architecture Although every branch of the broad Since the first tiny Intel 4004 Intel architecture (or x86) family tree microprocessor chip was made in 1971, retains the same basic features and Intel has produced an unbroken series functionality as the earlier chips, and of upgrades and improvements to the retains backward compatibility with them, world’s best known microprocessor family. each new generation also adds its own From its early 8-bit beginnings, the Intel unique features to the mix. For example, architecture now encompasses a range Intel Pentium processor added multimedia of 32-bit and 64-bit microprocessors extensions (called MMX™ technology) that that address a range of applications, accelerated audio and video processing. performance requirements, power levels, Extended temperature Intel Pentium and price points. processor with MMX technology is with The cornerstone of Intel architecture’s more streaming-media capabilities known popularity is its compatibility. Each as Intel® Streaming SIMD Extensions (Intel® new generation of Intel architecture SSE) and Intel® Streaming SIMD Extensions microprocessor is a superset of its 2 (Intel® SSE2). Floating-point units (FPUs) predecessors, providing backward went from optional upgrade to standard compatibility with older chips and older feature of Intel architecture processors, software, while also adding new or and today encryption/decryption enhanced features. This compatibility extensions, power-management features, allows engineers, programmers, and and multilevel caches are now found on development teams to reuse the most Intel architecture processors. Data software and software-development paths have widened from 8 bits to 32 tools from earlier projects, protecting bits, 64 bits, and even 128 bits and more. their investment in time and talent. It Operating frequencies have jumped from 1 http://ark.intel.com also makes developing new Intel-based a few megahertz to 2 GHz (two billion systems easier by leveraging developers’ cycles per second) and beyond. 2 White Paper Introduction to Intel® Architecture Some abbreviations used in the diagrams below: LPC Low Pin Count; a simple interface SATA Serial ATA; a popular to slower I/O devices disk-interface standard BIOS Basic Input/Output System; a boot ROM PCH Platform Controller Hub; SPI Serial Peripheral Interface; a companion chip simple interface to DDR3 Double Data-Rate v3; a popular slower devices DRAM interface standard PCI Peripheral Component Interconnect; a popular DMI Direct Memory Interface; a expansion bus video graphics standard PCIe* PCI Express*; an upgraded PCI FIVR Fully Integrated Voltage standard Regulator Figure 1: Typical system based on the Intel® Core™ i7 processor 3 White Paper Introduction to Intel® Architecture * Figure 2: Typical system with Intel® Atom™ processor (SoC) Similarly, many Intel® architecture chips ever more capable, there have been not stand alone, but works in concert now boast multicore performance, similar advances with the support logic, with compatible support chips. Different meaning that two or more Intel the development tools, and completely Intel architecture processors work with architecture processor cores, or “engines,” integrated hardware “platforms.” Every different support chips, and this paper operate within a single chip. Many also Intel architecture processor is supported outlines two representative examples. offer multithreading, a technique that by one or more chip sets that provide The first example describes a typical is designed to improve performance by needed system-level functions, and some hardware platform based on the allowing a single Intel architecture core to Intel architecture processors include their high-performance Intel® Core™ i7 processor perform multiple tasks. All the while, the own integrated functions such as memory combined with similarly high-performance power consumption and heat dissipation controllers, graphics engines, or network support logic (see Figure 1). The second of these processor chips has been kept interfaces. Sometimes the “chip set” is example focuses on a small, low-cost Intel in check thanks to aggressive on-chip internal, and the processor becomes a Atom processor–based system power-management hardware (some of standalone SoC – a system on a chip. (see Figure 2). which is adjustable through software) and industry-leading semiconductor- Basics of an Intel® Architecture Generally speaking, every Intel manufacturing technology. An in-depth System architecture hardware platform will description of the Intel architecture include two major components: the The hardware requirements for each technical features can be found in the microprocessor chip, and a companion customer application will be different, of Intel Software Developer’s Manual, chip known as the platform controller hub course, but some basics apply to all. The available here.2 (PCH). In earlier times, Intel® processors processor chip itself is just the beginning. were paired with two companion chips, And while the processors have gotten With few exceptions, the processor does often called the “north bridge” and 2 http://download.intel.com/design/processor/ manuals/253665.pdf 4 White Paper Introduction to Intel® Architecture the “south bridge,” or the MCH and the Intel® Core™ i7 Processor–Based The Intel Core i7 processor achieves its ICH. Nowadays, the functions of the System high performance through its multiple CPU north bridge are usually included in cores and its Simultaneous Multithreading the processor itself, while the south The example in Figure 1 illustrates a (SMT) feature. Between the four cores bridge has been replaced by the much high-performance system based on the (in this example) and the two-way more capable PCH. In single-chip (SoC) quad-core Intel Core i7 processor, the multithreading per core, the Intel
Recommended publications
  • Wind River Vxworks Platforms 3.8
    Wind River VxWorks Platforms 3.8 The market for secure, intelligent, Table of Contents Build System ................................ 24 connected devices is constantly expand- Command-Line Project Platforms Available in ing. Embedded devices are becoming and Build System .......................... 24 VxWorks Edition .................................2 more complex to meet market demands. Workbench Debugger .................. 24 New in VxWorks Platforms 3.8 ............2 Internet connectivity allows new levels of VxWorks Simulator ....................... 24 remote management but also calls for VxWorks Platforms Features ...............3 Workbench VxWorks Source increased levels of security. VxWorks Real-Time Operating Build Configuration ...................... 25 System ...........................................3 More powerful processors are being VxWorks 6.x Kernel Compatibility .............................3 considered to drive intelligence and Configurator ................................. 25 higher functionality into devices. Because State-of-the-Art Memory Host Shell ..................................... 25 Protection ..................................3 real-time and performance requirements Kernel Shell .................................. 25 are nonnegotiable, manufacturers are VxBus Framework ......................4 Run-Time Analysis Tools ............... 26 cautious about incorporating new Core Dump File Generation technologies into proven systems. To and Analysis ...............................4 System Viewer ........................
    [Show full text]
  • Intel® Architecture Instruction Set Extensions and Future Features Programming Reference
    Intel® Architecture Instruction Set Extensions and Future Features Programming Reference 319433-037 MAY 2019 Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn more at intel.com, or from the OEM or retailer. No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifica- tions. Current characterized errata are available on request. This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1- 800-548-4725, or by visiting http://www.intel.com/design/literature.htm. Intel, the Intel logo, Intel Deep Learning Boost, Intel DL Boost, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S.
    [Show full text]
  • How to Hack a Turned-Off Computer Or Running Unsigned
    HOW TO HACK A TURNED-OFF COMPUTER, OR RUNNING UNSIGNED CODE IN INTEL ME Contents Contents ................................................................................................................................ 2 1. Introduction ...................................................................................................................... 3 1.1. Intel Management Engine 11 overview ............................................................................. 4 1.2. Published vulnerabilities in Intel ME .................................................................................. 5 1.2.1. Ring-3 rootkits.......................................................................................................... 5 1.2.2. Zero-Touch Provisioning ........................................................................................... 5 1.2.3. Silent Bob is Silent .................................................................................................... 5 2. Potential attack vectors ...................................................................................................... 6 2.1. HECI ............................................................................................................................... 6 2.2. Network (vPro only)......................................................................................................... 6 2.3. Hardware attack on SPI interface ..................................................................................... 6 2.4. Internal file system .........................................................................................................
    [Show full text]
  • Inside Intel® Core™ Microarchitecture Setting New Standards for Energy-Efficient Performance
    White Paper Inside Intel® Core™ Microarchitecture Setting New Standards for Energy-Efficient Performance Ofri Wechsler Intel Fellow, Mobility Group Director, Mobility Microprocessor Architecture Intel Corporation White Paper Inside Intel®Core™ Microarchitecture Introduction Introduction 2 The Intel® Core™ microarchitecture is a new foundation for Intel®Core™ Microarchitecture Design Goals 3 Intel® architecture-based desktop, mobile, and mainstream server multi-core processors. This state-of-the-art multi-core optimized Delivering Energy-Efficient Performance 4 and power-efficient microarchitecture is designed to deliver Intel®Core™ Microarchitecture Innovations 5 increased performance and performance-per-watt—thus increasing Intel® Wide Dynamic Execution 6 overall energy efficiency. This new microarchitecture extends the energy efficient philosophy first delivered in Intel's mobile Intel® Intelligent Power Capability 8 microarchitecture found in the Intel® Pentium® M processor, and Intel® Advanced Smart Cache 8 greatly enhances it with many new and leading edge microar- Intel® Smart Memory Access 9 chitectural innovations as well as existing Intel NetBurst® microarchitecture features. What’s more, it incorporates many Intel® Advanced Digital Media Boost 10 new and significant innovations designed to optimize the Intel®Core™ Microarchitecture and Software 11 power, performance, and scalability of multi-core processors. Summary 12 The Intel Core microarchitecture shows Intel’s continued Learn More 12 innovation by delivering both greater energy efficiency Author Biographies 12 and compute capability required for the new workloads and usage models now making their way across computing. With its higher performance and low power, the new Intel Core microarchitecture will be the basis for many new solutions and form factors. In the home, these include higher performing, ultra-quiet, sleek and low-power computer designs, and new advances in more sophisticated, user-friendly entertainment systems.
    [Show full text]
  • Developing Solutions for the Internet of Things
    Cloud Data Gateways Analytics Things WHITE PAPER Internet of Things Developing Solutions for the Internet of Things Intel® products, solutions, and services are enabling secure and seamless solutions for the Internet of Things (IoT). Introduction The world is undergoing a dramatic transformation, rapidly transitioning from isolated systems to ubiquitous Internet-enabled ‘things’ capable of generating data that can be analyzed to extract valuable information. Commonly referred to as the Internet of Things (IoT), this new reality will enrich everyday life, increase business productivity, improve government efficiency, and the list goes on. Intel is working with a large community of solution providers to develop IoT solutions for a wide range of organizations and businesses, including industrial, retail, automotive, energy, and healthcare industries. The solutions generate actionable information by running analytic Powering software and services on data that moves between devices and the cloud in a manner that is Business always secure, manageable, and user-friendly. Transformation Whether connecting a consumer wearable device, vehicle, or factory controller to the Internet, everyone wants it to be quick and seamless. This paper describes how Intel® products and technologies are helping make this a reality by providing fundamental building blocks for a robust ecosystem that is developing end-to-end IoT solutions. Building Blocks for Thing to Cloud Innovation The IoT vision is to create opportunities to transform businesses, people’s lives, and the world in countless ways by enabling billions of systems across the globe to share and analyze data over the cloud. With these capabilities, IoT solutions can improve medical outcomes, create better products faster, lower development cost, make shopping more enjoyable, or optimize energy generation and consumption.
    [Show full text]
  • Allgemeines Abkürzungsverzeichnis
    Allgemeines Abkürzungsverzeichnis L.
    [Show full text]
  • Lecture Note 1
    EE586 VLSI Design Partha Pande School of EECS Washington State University [email protected] Lecture 1 (Introduction) Why is designing digital ICs different today than it was before? Will it change in future? The First Computer The Babbage Difference Engine (1832) 25,000 parts cost: £17,470 ENIAC - The first electronic computer (1946) The Transistor Revolution First transistor Bell Labs, 1948 The First Integrated Circuits Bipolar logic 1960’s ECL 3-input Gate Motorola 1966 Intel 4004 Micro-Processor 1971 1000 transistors 1 MHz operation Intel Pentium (IV) microprocessor Moore’s Law In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months. He made a prediction that semiconductor technology will double its effectiveness every 18 months Moore’s Law 16 15 14 13 12 11 10 9 8 7 6 OF THE NUMBER OF 2 5 4 LOG 3 2 1 COMPONENTS PER INTEGRATED FUNCTION 0 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 Electronics, April 19, 1965. Evolution in Complexity Transistor Counts 1 Billion K Transistors 1,000,000 100,000 Pentium® III 10,000 Pentium® II Pentium® Pro 1,000 Pentium® i486 100 i386 80286 10 8086 Source: Intel 1 1975 1980 1985 1990 1995 2000 2005 2010 Projected Courtesy, Intel Moore’s law in Microprocessors 1000 2X growth in 1.96 years! 100 10 P6 Pentium® proc 1 486 386 0.1 286 Transistors (MT) Transistors 8086 Transistors8085 on Lead Microprocessors double every 2 years 0.01 8080 8008 4004 0.001 1970 1980 1990 2000 2010 Year Courtesy, Intel Die Size Growth 100 P6
    [Show full text]
  • Tms320dm643x DMP Peripherals Overview Reference Guide (Rev. A
    TMS320DM643x DMP Peripherals Overview Reference Guide Literature Number: SPRU983A June 2007 2 SPRU983A–June 2007 Submit Documentation Feedback Contents Preface ............................................................................................................................... 4 1 Overview.................................................................................................................... 5 2 Asynchronous External Memory Interface (EMIF)............................................................ 6 3 DDR2 Memory Controller ............................................................................................. 6 4 DSP Megamodule Internal Direct Memory Access (IDMA) Controller ................................. 7 5 DSP Megamodule Interrupt Controller (INTC) ................................................................. 7 6 DSP Megamodule Power-Down Controller (PDC) ............................................................ 8 7 Enhanced Direct Memory Access (EDMA) Controller....................................................... 8 8 Ethernet Media Access Controller (EMAC)/Management Data Input/Output (MDIO) Module....................................................................................................................... 8 9 General-Purpose Input/Output (GPIO)............................................................................ 8 10 High-End CAN Controller (HECC).................................................................................. 9 11 Host Port Interface (HPI) .............................................................................................
    [Show full text]
  • Intel® Atom™ Processor E6x5c Series-Based Platform for Embedded Computing
    PlAtfOrm brief Intel® Atom™ Processor E6x5C Series Embedded Computing Intel® Atom™ Processor E6x5C Series-Based Platform for Embedded Computing Platform Overview Available with industrial and commercial The Intel® Atom™ processor E6x5C series temperature ranges, this processor series delivers, in a single package, the benefits of provides embedded lifecycle support and the Intel® Atom™ processor E6xx combined is supported by the broad Intel® archi- with a Field-Programmable Gate Array tecture ecosystem as well as standard (FPGA) from Altera. This series offers Altera development tools. Additionally, a exceptional flexibility to incorporate a compatible, dedicated Power Management wide range of standard and user-defined Integrated Circuit (PMIC) solution may be I/O interfaces, high-speed connectivity, obtained from leading PMIC suppliers to memory interfaces, and process accelera- help minimize platform part count and tion to meet the requirements of a variety reduce bill of material costs and design of embedded applications in industrial, medi- complexity. Options include separate PMIC cal, communication, vision systems, voice and clock generator chips (available from over Internet protocol (VoIP), military, high- ROHM Co., Ltd.) or a single-chip solution performance programmable logic control- that integrates the voltage regulator and lers (PLCs) and embedded computers. clock generator (available from Dialog Semiconductor). The Intel Atom processor E6x5C series is a multi-chip, single-package device that Product Highlights reduces board footprint, lowers compo- • Single-package: A compact 37.5 x nent count, and simplifies inventory 37.5 mm, 0.8 mm ball pitch, multi-chip control and manufacturing. This compact device internally connects the Intel Atom design offers single-vendor support while processor E6xx with a user-programma- providing Intel Atom processors for ble FPGA.
    [Show full text]
  • Dell EMC Poweredge T340 Technical Guide
    Dell EMC PowerEdge T340 Technical Guide Regulatory Model: E60S Regulatory Type: E60S001 Dec. 2020 Rev. A07 Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your product. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. © 2018 - 2020 Dell Inc. or its subsidiaries. All rights reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners. 1 Product Overview Topics: • Introduction • New technologies Introduction The Dell EMC PowerEdge T340 is the reliable, easy to manage, and scalable 1-socket tower server for growing businesses and remote offices/ branch offices. New technologies The PowerEdge T340 equipped with Intel® Xeon® E-2100 and E-2200 product family processors support to help run applications faster and support for full-feature remote management (iDRAC9). The T340 is versatile enough to address many customer segments and workloads. Target workloads include ● Small and medium businesses and organizations: Collaboration/sharing productivity applications, databases, web serving, backup/recovery, and mail and messaging. ● ROBO: Applications and workloads specific to the particular industry, e.g. Retail, Healthcare, Finance, Education, etc. The following table shows the list of new technologies offered by the PowerEdge T340: New Technologies Detailed Descriptions Intel® C246 series chipset Please refer to the chipset section for details. Intel® Xeon® processor E- 2100 and E-2200 Product The Intel® processor that works with Intel® C246 series Family chipset.
    [Show full text]
  • 2Nd Generation Intel Core Processor Family with Intel 6 Series Chipset Development Kit User Guide
    2nd Generation Intel® Core™ Processor Family with Intel® 6 Series Chipset Development Kit User Guide March 2011 Document Number: 325208 About This Document INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Intel processor numbers are not a measure of performance.
    [Show full text]
  • Data Sampling on MDS-Resistant 10Th Generation Intel Core (Ice Lake) 1
    Data Sampling on MDS-resistant 10th Generation Intel Core (Ice Lake) Daniel Moghimi Worcester Polytechnic Institute, Worcester, MA, USA Abstract the store buffer. MSBDS has been shown in attacks on the kernel space as well as on SGX [1]. In addition to the leakage Microarchitectural Data Sampling (MDS) is a set of hardware component, MSBDS can also be turned around easily to tran- vulnerabilities in Intel CPUs that allows an attacker to leak siently inject values into a victim, an attack technique known bytes of data from memory loads and stores across various as Load Value Injection (LVI) [14]. security boundaries. On affected CPUs, some of these vulner- abilities were patched via microcode updates. Additionally, To mitigate these vulnerabilities, Intel released software Intel announced that the newest microarchitectures, namely workarounds and microcode updates for affected CPUs [4]. Cascade Lake and Ice Lake, were not affected by MDS. While One of the most recent microarchitectures, Ice Lake, is re- Cascade Lake turned out to be vulnerable to the ZombieLoad ported to be unaffected by MDS attacks [6,8]. Intel has also v2 MDS attack (also known as TAA), Ice Lake was not af- explicitly listed Ice Lake processors as not being vulnera- fected by this attack. ble to LVI-SB [14], which exploits MSBDS for Load Value Injection [7]. In this technical report, we show a variant of MSBDS (CVE- 2018-12126), an MDS attack, also known as Fallout, that To better analyze the MDS vulnerabilities, and potentially works on Ice Lake CPUs. This variant was automatically find new variants, Moghimi et al.
    [Show full text]