Three-Dimensional Integrated Circuit Design: EDA, Design And

Total Page:16

File Type:pdf, Size:1020Kb

Three-Dimensional Integrated Circuit Design: EDA, Design And Integrated Circuits and Systems Series Editor Anantha Chandrakasan, Massachusetts Institute of Technology Cambridge, Massachusetts For other titles published in this series, go to http://www.springer.com/series/7236 Yuan Xie · Jason Cong · Sachin Sapatnekar Editors Three-Dimensional Integrated Circuit Design EDA, Design and Microarchitectures 123 Editors Yuan Xie Jason Cong Department of Computer Science and Department of Computer Science Engineering University of California, Los Angeles Pennsylvania State University [email protected] [email protected] Sachin Sapatnekar Department of Electrical and Computer Engineering University of Minnesota [email protected] ISBN 978-1-4419-0783-7 e-ISBN 978-1-4419-0784-4 DOI 10.1007/978-1-4419-0784-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009939282 © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword We live in a time of great change. In the electronics world, the last several decades have seen unprecedented growth and advancement, described by Moore’s law. This observation stated that transistor density in integrated circuits doubles every 1.5–2 years. This came with the simultaneous improvement of individual device perfor- mance as well as the reduction of device power such that the total power of the resulting ICs remained under control. No trend remains constant forever, and this is unfortunately the case with Moore’s law. The trouble began a number of years ago when CMOS devices were no longer able to proceed along the classical scaling trends. Key device parameters such as gate oxide thickness were simply no longer able to scale. As a result, device off- state currents began to creep up at an alarming rate. These continuing problems with classical scaling have led to a leveling off of IC clock speeds to the range of several GHz. Of course, chips can be clocked higher but the thermal issues become unmanageable. This has led to the recent trend toward microprocessors with multi- ple cores, each running at a few GHz at the most. The goal is to continue improving performance via parallelism by adding more and more cores instead of increasing speed. The challenge here is to ensure that general purpose codes can be efficiently parallelized. There is another potential solution to the problem of how to improve CMOS technology performance: three-dimensional integrated circuits (3D ICs). By moving to a technology with multiple active “tiers” in the vertical direction, a number of significant benefits can be realized. Global wires become much shorter, interconnect bandwidth can be greatly increased, and latencies can be significantly decreased. Large amounts of low-latency cache memory can be utilized and intelligent physical design can help mitigate thermal and power delivery hotspots. Three-dimensional IC technology offers a realistic path for maintaining the progress defined by Moore’s Law without requiring classical scaling. This is a critical opportunity for the future. The Defense Advanced Research Project Agency (DARPA) has recognized the significance of 3D IC technology a number of years ago and began carefully tar- geted investments in this area based on the potential for military relevance and applications. There are also many potential commercial benefits from such a tech- nology. The Microsystems Technology Office at DARPA has launched a number of 3D IC-based Programs in recent years targeting areas such as intelligent imagers, v vi Foreword heterogeneously integrated 3D stacks, and digital performance enhancement. The research results in a number of the chapters in this book were made possible by DARPA-sponsored programs in the field of 3D IC. Three-dimensional IC technology is currently at an early stage, with several pro- cesses just becoming available and more in the early development stage. Still, its potential is so great that a dedicated community has already begun to seriously study the EDA, design, and architecture issues associated with 3D IC, which are well summarized in this book. Chapter 1 provides a good introduction to this field by an expert from IBM well versed in both design and technology aspects. Chapter 2 pro- vides an excellent overview of key 3D IC technology issues by process technology researchersfrom IBM and can be beneficial to any designer or architect. Chapters 3– 6 cover important 3D IC electronic design automation (EDA) issues by researchers from the University of California, Los Angeles and the University of Minnesota. Key issues covered in these chapters include methods for managing the thermal, electrical, and layout challenges of a multi-tier electronic stack during the modeling and physical design processes. Chapters 7–9 deal with 3D design issues, including the 3D processor design by authors from the Georgia Institute of Technology, a 3D network-on-chip (NoC) architecture by authors from Pennsylvania State University, and a 3D architectural approach to energy efficient server designs by authors from the University of Michigan and Intel. The book concludes with a system–level analysis of the potential cost advantages of 3D IC technology by researchers at Pennsylvania State University. As I mentioned in the beginning we live at a time of great change. Such change can be viewed as frightening, as long-held assumptions and paradigms, such as Moore’s Law, lose relevance. Challenging times are also important opportunities to try new ideas. Three-dimensional IC technology is such a new idea and this book will play an important and pioneering role in ushering in this new technology to the research community and the IC industry. DARPA Microsystems Technology Office Michael Fritze, Ph.D. Arlington, Virginia March 2009 Preface To the observer, it would appear that New York city has a special place in the hearts of integrated circuit (IC) designers. Manhattan geometries, which mimic the blocks and streets of the eponymous borough, are routinely used in physical design: under this paradigm, all shapes can be decomposed into rectangles, and each wire is either parallel and perpendicular to any other. The advent of 3D circuits extends the anal- ogy to another prominent feature of Manhattan – namely, its skyscrapers – as ICs are being built upward, with stacks of active devices placed on top of each other. More precisely, unlike conventional 2D IC technologies that employ a single tier with one layer of active devices and several layers of interconnect above this layer, 3D ICs stack multiple tiers above each other. This enables the enhanced use of silicon real estate and the use of efficient communication structures (analogous to elevators in a skyscraper) within a stack. Going from the prevalent 2D paradigm to 3D is certainly not a small step: in more ways than one, this change adds a new dimension to IC design. Three-dimensional design requires novel process and manufacturing technologies to reliably, scalably, and economically stack multiple tiers of circuitry, design methods from the circuit level to the architectural level to exploit the promise of 3D, and computer-aided design (CAD) techniques that facilitate circuit analysis and optimization at all stages of design. In the past few years, as process technologies for 3D have neared maturity and 3D circuits have become a reality, this field has seen a flurry of research effort. The objective of this book is to capture the current state of the art and to provide the readers with a comprehensive introduction to the underlying manufacturing technol- ogy, design methods, and computer-aided design (CAD) techniques. This collection consists of contributions from some of the most prominent research groups in this area, providing detailed insights into the challenges and opportunities of designing 3D circuits. The history of 3D circuits goes back many years, and some of its roots can be traced to a major government-funded program in Japan from a couple of decades ago. It is only in the past few years that the idea of 3D has gained major traction, so that it is considered a realistic option today. Today, most major players in the semiconductor industry have dedicated significant resources and effort to this area. As a result, 3D technology is at a stage where it is poised to make a major leap. The context and motivation for this technology are provided in Chapter 1. vii viii Preface The domain of 3D circuits is diverse, and various 3D technologies available today provide a wide range of tradeoffs between cost and performance. These include silicon-carrier-like technologies with multiple dies mounted on a substrate, wafer stacking with intertier spacings of the order of hundreds of microns, and thinned die/wafer stacks with intertier distances of the order of ten microns. The former two have the advantage of providing compact packaging and higher levels of integration but often involve significant performance overheads in communications from one tier to another. The last, with small intertier distances, not only provides increased levels of integration but also facilitates new architectures that can actually improve significantly upon an equivalent 2D implementation. Such advanced technologies are the primary focus of this book, and a cutting-edge example within this class is described in detail in Chapter 2.
Recommended publications
  • A Survey of Network Performance Monitoring Tools
    A Survey of Network Performance Monitoring Tools Travis Keshav -- [email protected] Abstract In today's world of networks, it is not enough simply to have a network; assuring its optimal performance is key. This paper analyzes several facets of Network Performance Monitoring, evaluating several motivations as well as examining many commercial and public domain products. Keywords: network performance monitoring, application monitoring, flow monitoring, packet capture, sniffing, wireless networks, path analysis, bandwidth analysis, network monitoring platforms, Ethereal, Netflow, tcpdump, Wireshark, Ciscoworks Table Of Contents 1. Introduction 2. Application & Host-Based Monitoring 2.1 Basis of Application & Host-Based Monitoring 2.2 Public Domain Application & Host-Based Monitoring Tools 2.3 Commercial Application & Host-Based Monitoring Tools 3. Flow Monitoring 3.1 Basis of Flow Monitoring 3.2 Public Domain Flow Monitoring Tools 3.3 Commercial Flow Monitoring Protocols 4. Packet Capture/Sniffing 4.1 Basis of Packet Capture/Sniffing 4.2 Public Domain Packet Capture/Sniffing Tools 4.3 Commercial Packet Capture/Sniffing Tools 5. Path/Bandwidth Analysis 5.1 Basis of Path/Bandwidth Analysis 5.2 Public Domain Path/Bandwidth Analysis Tools 6. Wireless Network Monitoring 6.1 Basis of Wireless Network Monitoring 6.2 Public Domain Wireless Network Monitoring Tools 6.3 Commercial Wireless Network Monitoring Tools 7. Network Monitoring Platforms 7.1 Basis of Network Monitoring Platforms 7.2 Commercial Network Monitoring Platforms 8. Conclusion 9. References and Acronyms 1.0 Introduction http://www.cse.wustl.edu/~jain/cse567-06/ftp/net_perf_monitors/index.html 1 of 20 In today's world of networks, it is not enough simply to have a network; assuring its optimal performance is key.
    [Show full text]
  • Fabrication of Group IV Semiconductors on Insulator for Monolithic 3D Integration
    Fabrication of Group IV Semiconductors on Insulator for Monolithic 3D Integration Ali Asadollahi Doctoral Thesis in Information and Communication Technology School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm, Sweden 2017 KTH School of Electrical Engineering and Computer TRITA-EECS-AVL-2018:1 Science ISBN: 978-91-7729-658-4 SE-164 40 Stockholm SWEDEN Akademisk avhandling som med tillstånd av Kungliga Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen fredagen den 16 februari 2018 klockan 10:00 i Ka-Sal C (Sal Sven-Olof Öhrvik), Electrum, Kungliga Tekniska högskolan, Kistagången 16, Kista. ©Ali Asadollahi, December 2017 Tryck: Universitetsservice US-AB, Stockholm, 2017 ii To My Parents “All the different nations in the world, despite their differences of appearance and language and the way of life, still have one thing in common, and that is what's inside in all of us. If we X-rayed the insides of different human beings, we wouldn't be able to tell from those X-rays what the person's language or background or race is.” Abbas Kiarostami iv Abstract The conventional 2D geometrical scaling of transistors is now facing many challenges in order to continue the performance enhancement while decreasing power consumption. The decrease in the device power consumption is related to the scaling of the power supply voltage (Vdd) and interconnects wiring length. In addition, monolithic three dimensional (M3D) integration in the form of vertically stacked devices, is a possible solution to increase the device density and reduce interconnect wiring length. Integrating strained germanium on insulator (sGeOI) pMOSFETs monolithically with strained silicon/silicon-germanium on insulator (sSOI/sSiGeOI) nMOSFETs can increase the device performance and packing density.
    [Show full text]
  • A Review Paper on Enhancement of Radio Frequency Microelectro Mechanical Systems
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 3 Issue 10, October- 2014 A Review Paper on Enhancement of Radio Frequency MicroElectro Mechanical Systems Shilpa G. Kulkarni Electronics And Telecommunication Engineering V.I.T.Wadala Mumbai - India Abstract—Radio Frequency Micro Electro Mechanical Systems (RF MEMS) refers to the design and fabrication of committed II. NEED FOR RF MEMS MEMS for RF circuits. RF MEMS is a multi-disciplinary area MEMS switches combine the advantageous properties of in which the components operate Micromechanical And / Or mechanical and semiconductor switches.RF MEMS have components are fabricated using micromachining and these advantages such as, Low insertion loss, High isolation, Lower components are used in RF systems. The regular microwave switches currently employed in the microwave industry are power consumption, Excellent signal linearity, Better mechanical switches and semiconductor switches. Mechanical impedance match, Less dispersion , Miniaturization, Simple coaxial and waveguide switches offer benefits such as, low control circuits, High volume production possible, Very large insertion loss, large off-state isolation and high power handling bandwidth , Resistant to external environment. Table Iand Fig capabilities. Yet, they are bulky, heavy and slow. Semiconductor 1provide a comparison of RF MEMS Switches with the switches provide switching at a much faster speed and are conventional switches. smaller in size and weight, but are inferior in insertion loss, DC power consumption, isolation and power handling capabilities TABLE I. COMPARISON OF VARIOUS PARAMETERS[2] than their mechanical counterparts. MEMS switches promise to RF combine the advantageous properties of mechanical and Parameter PIN FET semiconductor switches. There are nevertheless few issues in RF MEMS MEMS Switch like, Actuation Speed, Power handling capacity, Voltage(V) 20-80 ±3-5 3-5 Stiction and Actuation voltage etc.
    [Show full text]
  • Efficient Checker Processor Design
    Efficient Checker Processor Design Saugata Chatterjee, Chris Weaver, and Todd Austin Electrical Engineering and Computer Science Department University of Michigan {saugatac,chriswea,austin}@eecs.umich.edu Abstract system works to increase test space coverage by proving a design is correct, either through model equivalence or assertion. The approach is significantly more efficient The design and implementation of a modern micro- than simulation-based testing as a single proof can ver- processor creates many reliability challenges. Design- ify correctness over large portions of a design’s state ers must verify the correctness of large complex systems space. However, complex modern pipelines with impre- and construct implementations that work reliably in var- cise state management, out-of-order execution, and ied (and occasionally adverse) operating conditions. In aggressive speculation are too stateful or incomprehen- our previous work, we proposed a solution to these sible to permit complete formal verification. problems by adding a simple, easily verifiable checker To further complicate verification, new reliability processor at pipeline retirement. Performance analyses challenges are materializing in deep submicron fabrica- of our initial design were promising, overall slowdowns tion technologies (i.e. process technologies with mini- due to checker processor hazards were less than 3%. mum feature sizes below 0.25um). Finer feature sizes However, slowdowns for some outlier programs were are generally characterized by increased complexity, larger. more exposure to noise-related faults, and interference In this paper, we examine closely the operation of the from single event radiation (SER). It appears the current checker processor. We identify the specific reasons why advances in verification (e.g., formal verification, the initial design works well for some programs, but model-based test generation) are not keeping pace with slows others.
    [Show full text]
  • RF CMOS Power Amplifiers: Theory, Design and Implementation the KLUWER INTERNATIONAL SERIES in ENGINEERING and COMPUTER SCIENCE
    RF CMOS Power Amplifiers: Theory, Design and Implementation THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE ANALOG CIRCUITS AND SIGNAL PROCESSING Consulting Editor: Mohammed Ismail. Ohio State University Related Titles: POWER TRADE-OFFS AND LOW POWER IN ANALOG CMOS ICS M. Sanduleanu, van Tuijl ISBN: 0-7923-7643-9 RF CMOS POWER AMPLIFIERS: THEORY, DESIGN AND IMPLEMENTATION M.Hella, M.Ismail ISBN: 0-7923-7628-5 WIRELESS BUILDING BLOCKS J.Janssens, M. Steyaert ISBN: 0-7923-7637-4 CODING APPROACHES TO FAULT TOLERANCE IN COMBINATION AND DYNAMIC SYSTEMS C. Hadjicostis ISBN: 0-7923-7624-2 DATA CONVERTERS FOR WIRELESS STANDARDS C. Shi, M. Ismail ISBN: 0-7923-7623-4 STREAM PROCESSOR ARCHITECTURE S. Rixner ISBN: 0-7923-7545-9 LOGIC SYNTHESIS AND VERIFICATION S. Hassoun, T. Sasao ISBN: 0-7923-7606-4 VERILOG-2001-A GUIDE TO THE NEW FEATURES OF THE VERILOG HARDWARE DESCRIPTION LANGUAGE S. Sutherland ISBN: 0-7923-7568-8 IMAGE COMPRESSION FUNDAMENTALS, STANDARDS AND PRACTICE D. Taubman, M. Marcellin ISBN: 0-7923-7519-X ERROR CODING FOR ENGINEERS A.Houghton ISBN: 0-7923-7522-X MODELING AND SIMULATION ENVIRONMENT FOR SATELLITE AND TERRESTRIAL COMMUNICATION NETWORKS A.Ince ISBN: 0-7923-7547-5 MULT-FRAME MOTION-COMPENSATED PREDICTION FOR VIDEO TRANSMISSION T. Wiegand, B. Girod ISBN: 0-7923-7497- 5 SUPER - RESOLUTION IMAGING S. Chaudhuri ISBN: 0-7923-7471-1 AUTOMATIC CALIBRATION OF MODULATED FREQUENCY SYNTHESIZERS D. McMahill ISBN: 0-7923-7589-0 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN S. Huss ISBN: 0-7923-7598-X CONTINUOUS-TIME SIGMA-DELTA MODULATION FOR A/D CONVERSION IN RADIO RECEIVERS L.
    [Show full text]
  • Microchip Manufacturing
    Si3N4 Deposition & the Virtual Chemical Vapor Deposition Lab Making a transistor, the general process A closer look at chemical vapor deposition and the virtual lab Images courtesy Silicon Run Educational Video, VCVD Lab Screenshot Why Si3N4 Deposition…Making Microprocessors http://www.sonyericsson.com/cws/products/mobilephones /overview/x1?cc=us&lc=en http://vista.pca.org/yos/Porsche-911-Turbo.jpg On a wafer, billions of transistors are housed on a single square chip. One malfunctioning transistor could cause a chip to short-circuit, ruining the chip. Thus, the process of creating each microscopic transistor must be very precise. Wafer image: http://upload.wikimedia.org/wikipedia/fr/thumb/2/2b/PICT0214.JPG/300px-PICT0214.JPG What size do you think an individual transistor being made today is? Size of Transistors One chip is made of millions or billions of transistors packed into a length and width of less than half an inch. Channel lengths in MOSFET transistors are less than a tenth of a micrometer. Human hair is approximately 100 micrometers in diameter. Scaling of successive generations of MOSFETs into the nanoscale regime (from Intel). Transistor: MOS We will illustrate the process sequence of creating a transistor with a Metal Oxide Semiconductor(MOS) transistor. Wafers – 12” Diameter ½” to ¾” Source Gate Drain conductor Insulator n-Si n-Si p-Si Image courtesy: Pro. Milo Koretsky Chemical Engineering Department at OSU IC Manufacturing Process IC Processing consists of selectively adding material (Conductor, insulator, semiconductor) to, removing it from or modifying it Wafers Deposition / Photo/ Ion Implant / Pattern Etching / CMP Oxidation Anneal Clean Clean Transfer Loop (Note that these steps are not all the steps to create a transistor.
    [Show full text]
  • An Introduction
    This chapter is from Social Media Mining: An Introduction. By Reza Zafarani, Mohammad Ali Abbasi, and Huan Liu. Cambridge University Press, 2014. Draft version: April 20, 2014. Complete Draft and Slides Available at: http://dmml.asu.edu/smm Chapter 10 Behavior Analytics What motivates individuals to join an online group? When individuals abandon social media sites, where do they migrate to? Can we predict box office revenues for movies from tweets posted by individuals? These questions are a few of many whose answers require us to analyze or predict behaviors on social media. Individuals exhibit different behaviors in social media: as individuals or as part of a broader collective behavior. When discussing individual be- havior, our focus is on one individual. Collective behavior emerges when a population of individuals behave in a similar way with or without coordi- nation or planning. In this chapter we provide examples of individual and collective be- haviors and elaborate techniques used to analyze, model, and predict these behaviors. 10.1 Individual Behavior We read online news; comment on posts, blogs, and videos; write reviews for products; post; like; share; tweet; rate; recommend; listen to music; and watch videos, among many other daily behaviors that we exhibit on social media. What are the types of individual behavior that leave a trace on social media? We can generally categorize individual online behavior into three cate- gories (shown in Figure 10.1): 319 Figure 10.1: Individual Behavior. 1. User-User Behavior. This is the behavior individuals exhibit with re- spect to other individuals. For instance, when befriending someone, sending a message to another individual, playing games, following, inviting, blocking, subscribing, or chatting, we are demonstrating a user-user behavior.
    [Show full text]
  • Hybrid Memristor–CMOS Implementation of Combinational Logic Based on X-MRL †
    electronics Article Hybrid Memristor–CMOS Implementation of Combinational Logic Based on X-MRL † Khaled Alhaj Ali 1,* , Mostafa Rizk 1,2,3 , Amer Baghdadi 1 , Jean-Philippe Diguet 4 and Jalal Jomaah 3 1 IMT Atlantique, Lab-STICC CNRS, UMR, 29238 Brest, France; [email protected] (M.R.); [email protected] (A.B.) 2 Lebanese International University, School of Engineering, Block F 146404 Mazraa, Beirut 146404, Lebanon 3 Faculty of Sciences, Lebanese University, Beirut 6573, Lebanon; [email protected] 4 IRL CROSSING CNRS, Adelaide 5005, Australia; [email protected] * Correspondence: [email protected] † This paper is an extended version of our paper published in IEEE International Conference on Electronics, Circuits and Systems (ICECS) , 27–29 November 2019, as Ali, K.A.; Rizk, M.; Baghdadi, A.; Diguet, J.P.; Jomaah, J. “MRL Crossbar-Based Full Adder Design”. Abstract: A great deal of effort has recently been devoted to extending the usage of memristor technology from memory to computing. Memristor-based logic design is an emerging concept that targets efficient computing systems. Several logic families have evolved, each with different attributes. Memristor Ratioed Logic (MRL) has been recently introduced as a hybrid memristor–CMOS logic family. MRL requires an efficient design strategy that takes into consideration the implementation phase. This paper presents a novel MRL-based crossbar design: X-MRL. The proposed structure combines the density and scalability attributes of memristive crossbar arrays and the opportunity of their implementation at the top of CMOS layer. The evaluation of the proposed approach is performed through the design of an X-MRL-based full adder.
    [Show full text]
  • Recommendation to Handle Bare Dies
    Recommendation to handle bare dies Rev. 1.3 General description This application note gives recommendations on how to handle bare dies* in Chip On Board (COB), Chip On Glass (COG) and flip chip technologies. Bare dies should not be handled as chips in a package. This document highlights some specific effects which could harm the quality and yield of the production. *separated piece(s) of semiconductor wafer that constitute(s) a discrete semiconductor or whole integrated circuit. International Electrotechnical Commission, IEC 62258-1, ed. 1.0 (2005-08). A dedicated vacuum pick up tool is used to manually move the die. Figure 1: Vacuum pick up tool and wrist-strap for ESD protection Delivery Forms Bare dies are delivered in the following forms: Figure 2: Unsawn wafer Application Note – Ref : APN001HBD1.3 FBC-0002-01 1 Recommendation to handle bare dies Rev. 1.3 Figure 3: Unsawn wafer in open wafer box for multi-wafer or single wafer The wafer is sawn. So please refer to the E-mapping file from wafer test (format: SINF, eg4k …) for good dies information, especially when it is picked from metal Film Frame Carrier (FFC). Figure 4: Wafer on Film Frame Carrier (FFC) Figure 5: Die on tape reel Figure 6: Waffle pack for bare die Application Note – Ref : APN001HBD1.3 FBC-0002-01 2 Recommendation to handle bare dies Rev. 1.3 Die Handling Bare die must be handled always in a class 1000 (ISO 6) clean room environment: unpacking and inspection, die bonding, wire bonding, molding, sealing. Handling must be reduced to the absolute minimum, un-necessary inspections or repacking tasks have to be avoided (assembled devices do not need to be handled in a clean room environment since the product is already well packed) Use of complete packing units (waffle pack, FFC, tape and reel) is recommended and remaining quantities have to be repacked immediately after any process (e.g.
    [Show full text]
  • From Sand to Circuits
    From sand to circuits By continually advancing silicon technology and moving the industry forward, we help empower people to do more. To enhance their knowledge. To strengthen their connections. To change the world. How Intel makes integrated circuit chips www.intel.com www.intel.com/museum Copyright © 2005Intel Corporation. All rights reserved. Intel, the Intel logo, Celeron, i386, i486, Intel Xeon, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. 0605/TSM/LAI/HP/XK 308301-001US From sand to circuits Revolutionary They are small, about the size of a fingernail. Yet tiny silicon chips like the Intel® Pentium® 4 processor that you see here are changing the way people live, work, and play. This Intel® Pentium® 4 processor contains more than 50 million transistors. Today, silicon chips are everywhere — powering the Internet, enabling a revolution in mobile computing, automating factories, enhancing cell phones, and enriching home entertainment. Silicon is at the heart of an ever expanding, increasingly connected digital world. The task of making chips like these is no small feat. Intel’s manufacturing technology — the most advanced in the world — builds individual circuit lines 1,000 times thinner than a human hair on these slivers of silicon. The most sophisticated chip, a microprocessor, can contain hundreds of millions or even billions of transistors interconnected by fine wires made of copper. Each transistor acts as an on/off switch, controlling the flow of electricity through the chip to send, receive, and process information in a fraction of a second.
    [Show full text]
  • LDMOS for Improved Performance
    > Submitted to IEEE Transactions on Electron Devices < Final MS # 8011B 1 Extended-p+ Stepped Gate (ESG) LDMOS for Improved Performance M. Jagadesh Kumar, Senior Member, IEEE and Radhakrishnan Sithanandam Abstract—In this paper, we propose a new Extended-p+ Stepped Gate (ESG) thin film SOI LDMOS with an extended-p+ region beneath the source and a stepped gate structure in the drift region of the LDMOS. The hole current generated due to impact ionization is now collected from an n+p+ junction instead of an n+p junction thus delaying the parasitic BJT action. The stepped gate structure enhances RESURF in the drift region, and minimizes the gate-drain capacitance. Based on two- dimensional simulation results, we show that the ESG LDMOS exhibits approximately 63% improvement in breakdown voltage, 38% improvement in on-resistance, 11% improvement in peak transconductance, 18% improvement in switching speed and 63% reduction in gate-drain charge density compared with the conventional LDMOS with a field plate. Index Terms—LDMOS, silicon on insulator (SOI), breakdown voltage, transconductance, on- resistance, gate charge I. INTRODUCTION ATERALLY double diffused metal oxide semiconductor (LDMOS) on SOI substrate is a promising Ltechnology for RF power amplifiers and wireless applications [1-5]. In the recent past, developing high voltage thin film LDMOS has gained importance due to the possibility of its integration with low power CMOS devices and heterogeneous microsystems [6]. But realization of high voltage devices in thin film SOI is challenging because floating body effects affect the breakdown characteristics. Often, body contacts are included to remove the floating body effects in RF devices [7].
    [Show full text]
  • Understanding Performance Numbers in Integrated Circuit Design Oprecomp Summer School 2019, Perugia Italy 5 September 2019
    Understanding performance numbers in Integrated Circuit Design Oprecomp summer school 2019, Perugia Italy 5 September 2019 Frank K. G¨urkaynak [email protected] Integrated Systems Laboratory Introduction Cost Design Flow Area Speed Area/Speed Trade-offs Power Conclusions 2/74 Who Am I? Born in Istanbul, Turkey Studied and worked at: Istanbul Technical University, Istanbul, Turkey EPFL, Lausanne, Switzerland Worcester Polytechnic Institute, Worcester MA, USA Since 2008: Integrated Systems Laboratory, ETH Zurich Director, Microelectronics Design Center Senior Scientist, group of Prof. Luca Benini Interests: Digital Integrated Circuits Cryptographic Hardware Design Design Flows for Digital Design Processor Design Open Source Hardware Integrated Systems Laboratory Introduction Cost Design Flow Area Speed Area/Speed Trade-offs Power Conclusions 3/74 What Will We Discuss Today? Introduction Cost Structure of Integrated Circuits (ICs) Measuring performance of ICs Why is it difficult? EDA tools should give us a number Area How do people report area? Is that fair? Speed How fast does my circuit actually work? Power These days much more important, but also much harder to get right Integrated Systems Laboratory The performance establishes the solution space Finally the cost sets a limit to what is possible Introduction Cost Design Flow Area Speed Area/Speed Trade-offs Power Conclusions 4/74 System Design Requirements System Requirements Functionality Functionality determines what the system will do Integrated Systems Laboratory Finally the cost sets a limit
    [Show full text]