Neuroforum 1/03

Total Page:16

File Type:pdf, Size:1020Kb

Neuroforum 1/03 März 2003 D 13882 F 1.03 IX. Jahrgang ISSN 0947-0875 Perspektiven der Hirnforschung ........................................................................ Neurowissenschaftliche .......n Gesellschaft .. ...........................................................Neuro forum Organ der Neurowissenschaftlichen Gesellschaft Neuronale Schäden bei der bakteriellen Meningitis – Enstehungsmechanismen Handlungssteuerung, Handlungsauswahl und Handlungswahrnehmung Lateralization of magnetic compass orientation in a migratory bird Neuroforum 1/03 1 Sophisticated Research Instrumentation ● INHALT For all lab animals for Life Sciences and Laboratories ● 3-dimension precision manipulator for left- & right-hand use ● Optional fine adjustment in the 3rd axis ● Choice of animal adapters, Stereotaxic Systems ear bars & accessories N ESIG ● D Versatile attention testing EW N system for rats & mice ● 5-choice serial reaction task ● The complete solution for drug research ● Pellet feeder or liquid ● Fully computerized custom systems dispenser configuration for rats and mice 5-Hole-Box ● Assess incorrect, correct & Operant Behavior Systems Operant Behavior ● Includes ready-to-use trials such as FR, premature responses VR, PR, FI, VI, DRH and DRL ● Create your own schedules with the unique program composer! ● Analyze acoustic, tactile & fear-potentiated startle ● Control 4 units with one PC ● User-defined trial sequences ● Complex pre-pulse designs ● Outputs response latency & Startle Response amplitude ● Study open field behavior or home-cage activity ● Variable box sizes and infra- ● For all arenas including open field, water red sensor densities maze, elevated plus maze, radial maze... ● Vertical movement detection ideoMot 2 - Activity System Video ● Outputs distance travelled, time spent, ● Detailed spatial & temporal V latencies, entries, speed, rotation Motility Systems analysis of locomotion ● With key-board event recorder Contact us for other products and details. Saalburgstr. 157 D-61 350 Bad Homburg/Germany TSE Phone: +49 (0 ) 6172-7 89-0 Technical & Scientific Fax: +49 (0 ) 6172-7 89-50 0 Equipment2 GmbH E-Mail: [email protected] 1/03 Internet: http://www.TSE-Systems.de INHALT INHALT 3 HAUPTARTIKEL Roland Nau und Joachim Gerber 4 Neuronale Schäden bei der bakteriellen Meningitis – Entstehungsmechanismen und mögliche Konsequenzen für die Behandlung Zum Titelbild: Andreas Wohlschläger und Wolfgang Prinz 11 Embryonen der Strandkrabbe carcinus Handlungssteuerung, Handlungsauswahl und Handlungswahrnehmung maenas (Decapoda, Malacostraca) dar. (Vergl. Neuroforum 4/02, S. 267-273, Artikel von Steffen Harzsch) ARTIKEL DES QUARTALS Neurowissenschaftliche ....... Gesellschaft vorgestellt von Herbert Zimmermann 17 n Lateralization of magnetic compass orientation in a migratory bird Vorstand: NACHRICHTEN AUS DER NEUROWISSENSCHAFTLICHEN GESELLSCHAFT Prof. Dr. Herbert Zimmermann, 4. Internationaler Preis der Dargut und Milena Kemali Stiftung 20 Frankfurt/M. Neurowissenschaften (Bewerbungsaufruf 2003) Präsident FENS Schools Program 2003 21 Human Frontier Science Program 23 Prof. Dr. Klaus-Peter Hoffmann, Bochum Boehringer Ingelheim FENS Research Award 2004 23 Vizepräsident 14. Neurobiologischer Doktorandenworkshop 2003 23 AFI Fördermittel für die Alzheimer-Forschung 23 Prof. Dr. Andreas Draguhn, Heidelberg Who is who im Vorstand der Neurowissenschaftlichen Gesellschaft – 25 Schatzmeister die neuen Vorstandsmitglieder stellen sich vor th Prof. Dr. Helmut Kettenmann, Berlin 29 GÖTTINGEN NEUROBIOLOGY CONFERENCE 29 Generalsekretär 5th MEETING OF THE GERMAN NEUROSCIENCE SOCIETY Einladung zur Mitgliederversammlung auf der Göttinger Tagung 30 Prof. Dr. Klaus Pawelzik, Bremen der Neurowissenschaftlichen Gesellschaft (12. – 15. Juni 2003) Sektionssprecher Computational Neuroscience Prof. Dr. Sigrun Korsching, Köln Entwicklungsneurobiologie/Neurogenetik BÜCHER Prof. Dr. Mathias Bähr, Göttingen Frontalhirn: Funktionen und Erkrankungen 30 Klinische Neurowissenschaften Schokolade im Gehirn 31 Prof. Dr. Niels Birbaumer, Tübingen Kognitive Neurowissenschaften und Verhalten AUSBLICK/IMPRESSUM 32 Prof. Dr. Hans-Werner Müller, Düsseldorf Molekulare Neurobiologie Prof. Dr. Werner J. Schmidt, Tübingen Neuropharmakologie und -toxikologie Prof. Dr. Hermann Wagner, Aachen Systemneurobiologie Prof. Dr. Tobias Bonhoeffer, Martinsried Zelluläre Neurobiologie Neuroforum 1/03 3 NEURONALE SCHÄDEN BEI DER BAKTERIELLEN MENINGITIS Neuronale Schäden bei der Einleitung Ohne Einschluss periodisch auftretender bakteriellen Meningitis – Epidemien durch Meningokokken erkranken weltweit mindestens 1,2 Millionen Men- Entstehungsmechanismen und schen pro Jahr (Schätzung) an bakterieller Hirnhautentzündung (Meningitis). Die mögliche Konsequenzen für die Sterblichkeit beträgt über 10% [WHO Fact Sheet (http://www.who.int/inf-fs/en/fact Behandlung 105.html)]. Trotz Einführung verbesserter diagnostischer Verfahren, neuer Antibiotika Roland Nau und Joachim Gerber und Fortschritten in der Intensivmedizin hat sich in den industrialisierten Ländern die Sterblichkeit der bakteriellen Meningitis ins- Zusammenfassung gesamt in den letzten vier Jahrzehnten nicht Tod in der Akutphase der Erkrankung und neurologische Spätschäden sind häufige entscheidend verringert und liegt bei 5-10% Komplikationen einer bakteriellen Meningitis. Diese werden gemeinschaftlich verur- bei Kindern und ca. 25% bei Erwachsenen. sacht durch 1.) die systemische Entzündungsreaktion des Wirts (Einwanderung von Die drei häufigsten Erreger der außerhalb Granulozyten und Monozyten in das zentrale Nervensystem (ZNS), Gefäßentzündung, des Krankenhauses erworbenen bakteriellen Hirnschwellung und sekundäre zerebrale Durchblutungsstörungen), 2.) die Stimulati- Meningitis sind Neisseria meningitidis (ca. on residenter Mikrogliazellen im ZNS durch bakterielle Produkte und 3.) direkte Neu- 500.000 Fälle pro Jahr), Streptococcus pneu- rotoxizität einiger Bakterienbestandteile. Die neuronale Schädigung wird vermittelt moniae und Haemophilus influenzae (selten durch freie Radikale, Proteasen, Zytokine, exzitatorische Aminosäuren und intrazel- in Ländern, in denen die Kinder routinemä- lulären Kalzium-Einstrom. Unmittelbar zum Zelltod führende Ereignisse sind zellulä- ßig gegen H. influenzae Typ B geimpft wer- rer Energieverlust mit Depolarisation des Ruhemembranpotenzials, Aktivierung von den) (Peltola 1999), gefolgt von Mycobac- Caspasen und anderen Proteasen. Bei der antibiotisch behandelten experimentellen terium tuberculosis und Listeria monocyto- Pneumokokken-Meningitis verstärkt das Glukokortikoid Dexamethason den Neuro- genes. nenschaden in der Formatio hippocampi. Dies deutet darauf hin, dass trotz positiver N. meningitidis ist der einzige Erreger, der klinischer Studien die Gabe von Glukokortikoiden zusätzlich zur antibiotischen The- im sogenannten Meningitis-Gürtel im Süden rapie nicht die ideale adjuvante Behandlungsstrategie darstellt. Ansätze, die selektiver der Sahara vom Senegal bis nach Äthiopien in die Mechanismen der neuronalen Schädigung eingreifen und die in Tiermodellen große Epidemien verursachen kann. Die In- wirksam sind, sind die Therapie mit Proteinsynthese-hemmenden Antibiotika, die Bak- fektion erfolgt über den Nasen-Rachen- terienzellen zwar töten, aber nicht lysieren, die Gabe von Antioxidanzien sowie Inhibi- Raum. Bei jungen Kindern sowie Jungend- toren von Transkriptionsfaktoren, Matrix-Metalloproteinasen und Caspasen. lichen und jungen Erwachsenen ist das Er- krankungsrisiko am größten. L. monocyto- Abstract genes wird mit der Nahrung aufgenommen Death in the acute phase of the disease and neurological sequelae are frequent compli- und kann kleine Epidemien verursachen. cations of bacterial meningitis. They are jointly caused by 1.) the systemic inflammato- ry response of the host (invasion of the central nervous system (CNS) by granulocytes Standardtherapie and monocytes, vasculitis, brain oedema and secondary cerebral ischaemia), 2.) the stimulation of resident microglia in the CNS by bacterial compounds and 3.) direct Entscheidend für die Therapie der bakteri- neurotoxicity of some bacterial products. Neuronal injury is mediated by free radicals, ellen Meningitis ist die rasche Diagnose und proteases, cytokines, excitatory amino acids and intracellular calcium influx. Immedi- der schnelle Beginn der antibiotischen Be- ate causes of death are cellular energy failure, membrane depolarisation, and the acti- handlung. Für die in Deutschland außerhalb vation of caspases and other proteases. In experiments involving pneumococcal men- des Krankenhauses erworbene Meningitis ingitis treated with antibiotics the corticosteroid dexamethasone increases neuron in- benutzen wir die Kombination von Cefota- jury in the hippocampal formation. This indicates that, despite positive clinical stud- xim oder Ceftriaxon (um auch S. pneumoni- ies, the administration of corticosteroids as an addition to antibiotic therapy may not ae mit einer verminderten Empfindlichkeit be the ideal adjuvant strategy. Approaches which intervene more selectively in the gegenüber Penicillin G zu erfassen) + Am- mechanism of the neuronal damage and have been shown to be effective in animal picillin (um L. monocytogenes abzudecken). experiments, include treatment with bactericidal protein synthesis inhibiting antibiot- In Regionen mit einem hohen Anteil Peni- ics, which destroy the bacterial cells, but do not cause lysis, additional therapy with cillin- und Cephalosporin-resistenter Pneu- antioxidants, inhibitors of transcription factors,
Recommended publications
  • Implications of Action-Oriented Paradigm Shifts in Cognitive Science
    20 Implications of Action- Oriented Paradigm Shifts in Cognitive Science Peter F. Dominey, Tony J. Prescott, Jeannette Bohg, Andreas K. Engel, Shaun Gallagher, Tobias Heed, Matej Hoffmann, Günther Knoblich, Wolfgang Prinz, and Andrew Schwartz Abstract An action-oriented perspective changes the role of an individual from a passive ob- server to an actively engaged agent interacting in a closed loop with the world as well as with others. Cognition exists to serve action within a landscape that contains both. This chapter surveys this landscape and addresses the status of the pragmatic turn. Its potential infl uence on science and the study of cognition are considered (including per- ception, social cognition, social interaction, sensorimotor entrainment, and language acquisition) and its impact on how neuroscience is studied is also investigated (with the notion that brains do not passively build models, but instead support the guidance of action). A review of its implications in robotics and engineering includes a discussion of the application of enactive control principles to couple action and perception in robotics as well as the conceptualization of system design in a more holistic, less modular manner. Practical applications that can impact the human condition are reviewed (e.g., educa- tional applications, treatment possibilities for developmental and psychopathological disorders, the development of neural prostheses). All of this foreshadows the potential societal implications of the pragmatic turn. The chapter concludes that an action-orient- ed approach emphasizes a continuum of interaction between technical aspects of cogni- tive systems and robotics, biology, psychology, the social sciences, and the humanities, where the individual is part of a grounded cultural system.
    [Show full text]
  • An Introduction to the Imitative Mind and Brain
    Cambridge University Press 0521806852 - The Imitative Mind: Development, Evolution, and Brain Bases Edited by Andrew N. Meltzoff and Wolfgang Prinz Excerpt More information An introduction to the imitative mind and brain Wolfgang Prinz and Andrew N. Meltzoff Introduction Imitation guides the behavior of a range of species. Advances in the study of imitation, from brain to behavior, have profound implications for a variety of topics including consciousness, the neural underpinnings of perception-action coding, and the origins of theory of mind. Human beings are the most imitative creatures on the planet. We create but we also imitate, and this combination provides us with a special (though perhaps not unique) cognitive-social profile. This book provides insights into the imitative mind and brain, its evolution, development, and place in adult psychology. In so doing, it addresses a longstanding puzzle about how“self” and “other” are coded withinour brains. Scope Imitation has a long and rich history. From a historical perspective, the interest in imitation is much broader than the more focused treatment we give it in the present book. For example, in the past, the term imitation has been used in a number of different ways in domains as diverse as theory of art, theology, ethology, cultural anthropology, and psychology. Platonic and Aristotelian theories, drama, the visual arts, and music were conceived as using the imitation of nature (imitatio naturae) as a princi- ple of aesthetic performance. In medieval theology, the notion of imitatio christi stood for the way man could regain resemblance with God (lost through the Fall of Man), by leading a life in humility, hardship, and poverty.
    [Show full text]
  • Modeling Self on Others: an Import Theory of Subjectivity and Selfhood*
    submitted to C & C 10/28/16 Modeling Self on Others: An Import Theory of Subjectivity and Selfhood* Wolfgang Prinz Wolfgang Prinz Max Planck Institute for Human Cognitive and Brain Sciences Stephanstrasse 1 a 04103 Leipzig GERMANY Tel: 0049 341 9940-2270 mailto: [email protected] * Dedicated to the memory of Bruce Bridgeman, erudite scholar, inspiring scientist, constructive critic. 2 Abstract This paper outlines an Import Theory of subjectivity and selfhood. Import theory claims that subjectivity and selfhood are initially perceived as key features of other minds before they then become imported from other minds to own minds. Import theory builds on perception- production matching, which in turn draws on both representational mechanisms and social practices. Representational mechanisms rely on common coding of perception and production. Social practices rely on action mirroring in dyadic interactions. The interplay between mechanisms and practices gives rise to model self on others. Individuals become intentional agents in virtue of perceiving others mirroring themselves.—The outline of the theory is preceded by an introductory section that locates import theory in the broader context of competing approaches and followed by a concluding section that assesses import theory in terms of empirical evidence and explanatory power. Keywords common coding, consciousness, import theory, intentionality, other minds, perception- production matching, subjectivity, selfhood, social mirroring 3 1 Subjectivity and Selfhood 1.1 Conscious Experience 1.2 Mental Selfhood 1.2.1 Kinds of selves 1.2.2 Proper functions 1.3 Self and Others 1.3.1 Export Theory 1.3.2 Import Theory 2 Import Theory 2.1 Action Mirroring 2.1.1 Physical mirrors 2.1.2 Social mirrors 2.1.3 Modes of mirroring 2.2 Action Matching 2.2.1 Action perception 2.2.2 Perception/production matching 2.3 Empirical Evidence 3 Consciousness Demystified 3.1.1 Selfhood 3.1.2 Intersubjectivity 3.1.3 Intentionality words: 9,308 4 This paper outlines what I call an import theory of subjectivity and selfhood.
    [Show full text]
  • Theoretical Issues in Stimulus-Response Compatibility B
    Theoretical Issues in Stimulus-Response Compatibility B. Hommel and W. Prinz (Editors) 1997 Elsevier Science B.V. All rights reserved. Theoretical Issues in Stimulus-Response Compatibility: Editors' Introduction Bernhard Hommel and Wolfgang Pfinz Max-Planck4nstitut far psychologische Forschung, Miinchen It all began in the mid-1950s. Although the term stimulus-response compatibility had been coined and already introduced by Small in 1951 (see Small, 1990), the real spark for compatibility research were the now classic papers by Fitts and Seeger (1953) and Fitts and Deininger (1954). The important f'mding of Fitts and colleagues was that human performance is not only affected by characteristics of the stimulus set and the response set used in a task, but by the combination of the sets as well. In particular, performance was shown to be systematically affected by (a) whether or not a set of stimuli shares one or more features with the response set and (b) the way in which the particular stimuli and responses are mapped onto each other (cf., AUuisi & Warm, 1990; Komblum, Hasbroucq, & Osman, 1990). Since then, the effect of stimulus-response (S-R) mapping with feature-overlapping stimulus and response sets has been called the S-R compat- ibility effect. During the late 1950s and 1960s, S-R compatibility research flourished, not least due to the increasing interest in human factors and the design of man- machine interfaces (for an overview see Kantowitz, Triggs, & Barnes, 1990; Wickens, 1992). Yet, there was little interest in theorizing about compatibility phenomena, at least not over and above attempts to rephrase empirical results in the language of information theory, which was at its heyday at this time.
    [Show full text]
  • Mpi Cbs 2006–2007 12.28 Mb
    Research Report 2006/2007 Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Editors: D. Yves von Cramon Angela D. Friederici Wolfgang Prinz Robert Turner Arno Villringer Max Planck Institute for Human Cognitive and Brain Sciences Stephanstrasse 1a · D-04103 Leipzig, Germany Phone +49 (0) 341 9940-00 Fax +49 (0) 341 9940-104 [email protected] · www.cbs.mpg.de Editing: Christina Schröder Layout: Andrea Gast-Sandmann Photographs: Nikolaus Brade, Berlin David Ausserhofer, Berlin (John-Dylan Haynes) Martin Jehnichen, Leipzig (Angela D. Friederici) Norbert Michalke, Berlin (Ina Bornkessel) Print: Druckerei - Werbezentrum Bechmann, Leipzig Leipzig, November 2007 Research Report 2006/2007 The photograph on this page was taken in summer 2007, During the past two years, the Institute has resembled a depicting the building works at our Institute. It makes the building site not only from the outside, but also with re- point that much of our work during the past two years gard to its research profile. On the one hand, D. Yves von has been conducted, quite literally, beside a building site. Cramon has shifted the focus of his work from Leipzig Happily, this essential work, laying the foundations for to the Max Planck Institute for Neurological Research in our future research, has not interfered with our scientific Cologne. On the other hand, we successfully concluded progress. two new appointments. Since October 2006, Robert Turner has been working at the Institute as Director There were two phases of construction. The first results of the newly founded Department of Neurophysics, from the merger of both Institutes and will accommo- which has already established itself at international lev- date two new Departments including offices and multi- el.
    [Show full text]
  • The Theory of Event Coding (TEC): a Framework for Perception and Action Planning
    BEHAVIORAL AND BRAIN SCIENCES (2001) 24, 849–937 Printed in the United States of America The Theory of Event Coding (TEC): A framework for perception and action planning Bernhard Hommel,a,b Jochen Müsseler,b Gisa Aschersleben,b and Wolfgang Prinzb aSection of Experimental and Theoretical Psychology, University of Leiden, 2300 RB Leiden, The Netherlands; bMax Planck Institute for Psychological Research, D-80799 Munich, Germany {muesseler;aschersleben;prinz}@mpipf-muenchen.mpg.de www.mpipf-muenchen.mpg.de/~prinz [email protected] Abstract: Traditional approaches to human information processing tend to deal with perception and action planning in isolation, so that an adequate account of the perception-action interface is still missing. On the perceptual side, the dominant cognitive view largely un- derestimates, and thus fails to account for, the impact of action-related processes on both the processing of perceptual information and on perceptual learning. On the action side, most approaches conceive of action planning as a mere continuation of stimulus processing, thus failing to account for the goal-directedness of even the simplest reaction in an experimental task. We propose a new framework for a more adequate theoretical treatment of perception and action planning, in which perceptual contents and action plans are coded in a common representational medium by feature codes with distal reference. Perceived events (perceptions) and to-be-produced events (actions) are equally represented by integrated, task-tuned networks of feature codes – cognitive structures we call event codes. We give an overview of evidence from a wide variety of empirical domains, such as spatial stimulus-response compatibility, sensorimotor syn- chronization, and ideomotor action, showing that our main assumptions are well supported by the data.
    [Show full text]
  • An Introduction to the Imitative Mind and Brain
    Cambridge University Press 0521806852 - The Imitative Mind: Development, Evolution, and Brain Bases Edited by Andrew N. Meltzoff and Wolfgang Prinz Excerpt More information An introduction to the imitative mind and brain Wolfgang Prinz and Andrew N. Meltzoff Introduction Imitation guides the behavior of a range of species. Advances in the study of imitation, from brain to behavior, have profound implications for a variety of topics including consciousness, the neural underpinnings of perception-action coding, and the origins of theory of mind. Human beings are the most imitative creatures on the planet. We create but we also imitate, and this combination provides us with a special (though perhaps not unique) cognitive-social profile. This book provides insights into the imitative mind and brain, its evolution, development, and place in adult psychology. In so doing, it addresses a longstanding puzzle about how“self” and “other” are coded withinour brains. Scope Imitation has a long and rich history. From a historical perspective, the interest in imitation is much broader than the more focused treatment we give it in the present book. For example, in the past, the term imitation has been used in a number of different ways in domains as diverse as theory of art, theology, ethology, cultural anthropology, and psychology. Platonic and Aristotelian theories, drama, the visual arts, and music were conceived as using the imitation of nature (imitatio naturae) as a princi- ple of aesthetic performance. In medieval theology, the notion of imitatio christi stood for the way man could regain resemblance with God (lost through the Fall of Man), by leading a life in humility, hardship, and poverty.
    [Show full text]
  • Mpi Cbs 2004–2005 9.72 Mb
    Annual Report 2004 · 2005 Max Planck Institute for Human Cognitive and Brain Sciences Leipzig · Munich Editors: D. Yves von Cramon Angela D. Friederici Wolfgang Prinz Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig · Munich Stephanstraße 1a · D-04103 Leipzig Phone +49 (0) 341 9940-00 Fax +49 (0) 341 9940-260 [email protected] · www.cbs.mpg.de A NNUAL R EPORT 2 0 0 4 · 2 0 0 5 The past two years have witnessed the merger of the two former Institutes, the Max Planck Institute for Psychological Research (Munich) and the Max Planck Institute of Cognitive Neuroscience in Leipzig into a new centre: the Max Planck Institute for Human Cognitive and Brain Sciences. In 2004, it was still a merger on paper, but in 2005 it turned into reality. The Munich group, headed by Wolfgang Prinz, moved to Leipzig and resumed its work at the Institute. A number of exciting new collaborations are starting. Research at the centre addresses human cognitive and brain processes with particular emphasis on language, music, action and executive functions. During the period covered by this report – 2004/2005 – research has been flourishing at both places, Leipzig and Munich, and is now flourishing even more after the Munich branch has moved to Leipzig. The new Leipzig centre provides unique conditions for joint interdisciplin- ary research into the behavioral and neurobiological bases of human cognition. The merger is the first link in a chain of major changes and extensions we anticipate to see in the near future. Most importantly, we will soon be implementing two novel departments, one in Imaging Science and another one in Behavioral Cognitive Science.
    [Show full text]
  • The Imitative Mind: Development, Evolution, and Brain Bases Edited by Andrew N
    Cambridge University Press 0521806852 - The Imitative Mind: Development, Evolution, and Brain Bases Edited by Andrew N. Meltzoff and Wolfgang Prinz Frontmatter More information The Imitative Mind Recent scientific breakthroughs in the study of imitation at multiple levels from cell to behavior have deep implications for cognitive sci- ence, neuroscience, and evolutionary and developmental psychology. This volume provides a state-of-the-art summary of the research on im- itation in both Europe and America, including work on infants, adults, and nonhuman primates, with speculations about robotics. A special feature of this book is that it provides a concrete instance of the bur- geoning link between developmental psychology, neuroscience, and cog- nitive science. The book showcases howan in-depth, interdisciplinar y approach to imitation can illuminate long-standing problems in the brain sciences, including consciousness, self, perception-action coding, theory of mind, and intersubjectivity. The book addresses what it means to be human and howweget that way. AndrewN. Meltzoff is Professor of Psychology and Co-Director of the Center for Mind, Brain and Learning at the University of Washington. He is co-author of Words, Thoughts, and Theories (1997) and The Scientist in the Crib: What Early Learning Tells Us About The Mind (1999). Wolfgang Prinz is Director at the Max Planck Institute for Psychologi- cal Research, Munich. He has published experimental, theoretical, and historical work on perception, action, attention and consciousness. © Cambridge University Press www.cambridge.org Cambridge University Press 0521806852 - The Imitative Mind: Development, Evolution, and Brain Bases Edited by Andrew N. Meltzoff and Wolfgang Prinz Frontmatter More information Cambridge Studies in Cognitive Perceptual Development Series Editors Kurt W.
    [Show full text]
  • Research Article
    PSYCHOLOGICAL SCIENCE Research Article PREDICTING THE EFFECTS OF ACTIONS: Interactions of Perception and Action Günther Knoblich and Rüdiger Flach Max Planck Institute for Psychological Research, Munich, Germany Abstract—Many theories in cognitive psychology assume that per- tween perception and action. In fact, some of these theories hold that ception and action systems are clearly separated from the cognitive many cognitive functions can only be appropriately described as aris- system. Other theories suggest that important cognitive functions re- ing from these interactions. side in the interactions between these systems. One consequence of the According to Gibson’s (1979) ecological approach, perception latter claim is that the action system may contribute to predicting the does not consist of a serial transformation of input. Rather, it is future consequences of currently perceived actions. In particular, such claimed that optical distributions entail different types of information predictions might be more accurate when one observes one’s own ac- that can be directly perceived. For instance, when an observer walks tions than when one observes another person’s actions, because in the through an otherwise static environment, optic flow patterns provide former case the system that plans the action is the same system that information about the direction of the movement or the distance from contributes to predicting the action’s effects. In the present study, par- a certain location. But as soon as the observer stops moving, motion- ticipants (N ϭ 104) watched video clips displaying either themselves based information cannot be derived anymore. Hence, perception and or somebody else throwing a dart at a target board and predicted the action are inseparable in the sense that action enriches the informa- dart’s landing position.
    [Show full text]
  • Curriculum Vitae – Prof
    Curriculum Vitae – Prof. Dr. phil. Moritz M. Daum 1 CURRICULUM VITAE Personal Data Name Moritz Matthäus Daum Institutional Address University of Zurich Department of Psychology Jacobs Center for Developmental Psychology Productive Youth Development Binzmühlestrasse. 41, Box 21 Andreasstrasse 15 CH-8050 Zurich CH-8050 Zürich +41 (0)44 635 74 86 +41 (0)44 634 76 06 [email protected] http://www.psychologie.uzh.ch http://www.jacobscenter.uzh.ch Date of Birth 7 February 1973 Place of Birth Baden / Switzerland Family Status Married to Eva-Maria Schöning 3 children (Anna Katharina Daum (*2004), Greta Sophie Daum (*2007), Gustav Anton Daum (*2010)) Nationality Germany Researcher IDs Google Scholar: Moritz Daum; OrcID: https://orcid.org/0000-0002-4032- 4574; ResearcherID: A-1441-2013; ResearchGate: Moritz M. Daum; Academia.edu: https://uzh.academia.edu/MoritzDaum; OSF: http://osf.io/28bv7 Higher Education February 2011 Habilitation at the Faculty of Biosciences, Pharmaceutics, and Psychology, University of Leipzig, Germany Habilitation Thesis: Mechanisms in the early development of action understanding February 2005 PhD in Psychology at the Faculty of Arts, University of Zurich, Switzerland PhD Thesis: Dynamic mental representations in children and adults: influences of perception and cognition on representational momentum December 2001 Licentiate degree (Master) in Psychology at the Faculty of Arts, University of Zurich, Switzerland Diploma Thesis: Development of visuomotor control in children and adults: Controlling reaching movements with predictable
    [Show full text]
  • The Theory of Event Coding (TEC): a Framework for Perception and Action Planning
    Edinburgh Research Explorer A common framework for language comprehension and language production? Citation for published version: Hartsuiker, RJ & Pickering, MJ 2001, 'A common framework for language comprehension and language production?', Behavioral and Brain Sciences, vol. 24, no. 5, pp. 887-+. <http://journals.cambridge.org/download.php?file=%2FBBS%2FBBS24_05%2FS0140525X01000103a.pdf& code=aaa3b7457514c8f5d990e75cf703ee45> Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Behavioral and Brain Sciences Publisher Rights Statement: ©Hartsuiker, R. J., & Pickering, M. J. (2001). A common framework for language comprehension and language production?. Behavioral and Brain Sciences, 24(5), 887-+ General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 30. Sep. 2021 BEHAVIORAL AND BRAIN SCIENCES (2001) 24, 849–937 Printed in the United States of America The Theory
    [Show full text]