Phylogeny, Historical Biogeography and the Evolution of Migration in Accipitrid Birds of Prey (Aves: Accipitriformes)

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny, Historical Biogeography and the Evolution of Migration in Accipitrid Birds of Prey (Aves: Accipitriformes) Ornis Hungarica 2014. 22(1): 15–35. DOI: 10.2478/orhu-2014-0008 Phylogeny, historical biogeography and the evolution of migration in accipitrid birds of prey (Aves: Accipitriformes) Jenő nagy1 & Jácint tökölyi2* Jenő Nagy & Jácint Tökölyi 2014. Phylogeny, historical biogeography and the evolution of mig ration in accipitrid birds of prey (Aves: Accipitriformes). – Ornis Hungarica 22(1): 15–35. Abstract Migration plays a fundamental part in the life of most temperate bird species. The re­ gu lar, large­scale seasonal movements that characterize temperate migration systems appear to have originated in parallel with the postglacial northern expansion of tropical species. Migratoriness is also in- fluenced by a number of ecological factors, such as the ability to survive harsh winters. Hence, understanding the origins and evolution of migration requires integration of the biogeographic history and ecology of birds in a phylogenetic context. We used molecular dating and ancestral state reconstruction to infer the origins and evolu- tionary changes in migratory behavior and ancestral area reconstruction to investigate historical patterns of range evolution in accipitrid birds of prey (Accipitriformes). Migration evolved multiple times in birds of prey, the ear- liest of which occurred in true hawks (Accipitrinae), during the middle Miocene period, according to our analy- ses. In most cases, a tropical ancestral distribution was inferred for the non­migratory ancestors of migratory line- ages. Results from directional evolutionary tests indicate that migration evolved in the tropics and then increased the rate of colonization of temperate habitats, suggesting that temperate species might be descendants of tropi- cal ones that dispersed into these seasonal habitats. Finally, we found that diet generalization predicts migratori- ness in this group. Keywords: ancestral area reconstruction, annual cycle, comparative, diet specialization, diurnal birds of prey, mo- lecular dating, seasonality Összefoglalás A legtöbb mérsékelt övi madárfaj életciklusában alapvető szerepet tölt be a vonulás. A rendszeres, nagy kiterjedésű mozgások, melyek a mérsékelt övi vonulási rendszereket jellemzik, egyes feltételezések szerint a trópusi fajok poszt­glaciális, északi irányú terjeszkedésével párhuzamosan jelentek meg. Ezen felül a vonulás előfordulását számos ökológiai tényező is befolyásolhatja, mint például a környezet szezonalitásának mértéke vagy a téli túlélést befolyásoló tényezők. A vonulás eredete és evolúciója ezért csak úgy érthető meg, ha a madarak biogeográfiai törté- netiségét és ökológiáját filogenetikai kontextusban tanulmányozzuk. Jelen vizsgálatban a vágómadár­alakúak (Acci- pitriformes) vonulásának evolúcióját elemeztük komparatív módszerekkel. Első lépésben létrehoztunk egy fosszilis adatok alapján datált molekuláris törzsfát, amelyen jellegrekonstrukciót végeztünk és rekonstruáltuk a fajok ősi elter- jedési területét. Az elemzéseink alapján a vonulás többször alakult ki a ragadozók esetében, legkorábban a héjafor- mákon (Accipitrinae) belül, vélhetően a Miocén közepén. A legtöbb esetben a vonuló leszármazási vonalak nem vo- nuló őseinél trópusi elterjedésre következtethetünk. A direkcionális evolúciós teszt alapján a vonulás a trópusokon jelent meg és megnövelte a mérsékelt égöv kolonizációjának rátáját. Eszerint tehát a mérsékelt övi ragadozómadár fa- jok vonuló trópusi fajok leszármazottainak tekinthetők, melyek az erősen szezonális, északi élőhelyek irányába ter- jeszkedtek. Végezetül negatív kapcsolatot találtunk a vonulás megjelenése és a táplálékspecializáció mértéke között. Kulcsszavak: éves ciklus, jellegrekonstrukció, komparatív, molekuláris datálás, nappali ragadozómadarak, sze- zonalitás, táplálékspecializáció 1 MTA-ELTE-MTM Ecology Research Group, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary, e-mail: jenon- [email protected] 2 MTA-DE “Lendület” Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary, [email protected] *corresponding author Brought to you by | Swinburne Technical University Authenticated Download Date | 12/29/14 2:10 PM 16 ORNIS HUNGARICA 2014. 22(1) Introduction migratory restlessness (‘zugunruhe’) during the annual cycle and (3) a range of physio- Birds originated, according to our current logical adaptations that cover the metabolic knowledge of the fossil record, about 150­ requirements of long­distance flights during 200 million years ago during the geologi- migration. Understanding how such a comp­ cal era of Jurassic (Padian & Chiappe 1998). lex phenotype could have evolved is a major The appearance of powered flight, probab­ challenge in ornithology. ly in combination with several other avi- While a wealth of information has accu- an fea tures such as warm­bloodedness and mulated on the details of the process of mig­ the presence of extensive parental care has ration, comparatively little is known about fuelled the diversification of this group of how migration originated and evolved in vertebrates, which seems to have accele­ birds. This is not surprising, since behavio- rated around, or shortly after the Cretaceous­ ral traits, such as the migratory habits of a Pa leo gene boundary (Ericson et al. 2006, species do not fossilize and hence our cur- Brown et al. 2008, Jetz et al. 2012). rent ideas of it are strictly inferred from The widespread occurrence of birds is phylogenetic or biogeographic studies. Cur- greatly facilitated by their excellent dis- rent theories of the evolution of migra- persal capabilities. This is perhaps most tion can be divided into two groups (Rap- clearly seen in migratory birds, which can pole & Jones 2002, Bruderer & Salewski travel thousands of kilometres on continen- 2008). The ‘tropical origin’ hypothesis pro- tal scale within a single year. Migration is poses that migratory birds derive from spe- a characteristic feature of birds that is ex- cies inhabiting regions where environmen- tremely common especially in species in- tal factors were constant during the year, habiting the Northern Hemisphere tempe­ so there was no need for migration. These rate zone and the Arctic, but it also occurs, species could have colonized more sea- although in less extreme forms, in other re- sonal, northern habitats, which, during the gions of the globe in the form of intratropi- summer months provided appropriate con- cal migration systems (Alerstam 1993, Ber­ ditions for reproduction. However, during thold 2001, Newton 2008). winter food availability decreased, hence Migration itself profoundly influences the these birds were forced to return to southern distribution, ecology and diversification of latitudes (Rappole & Jones 2002, Bruderer birds (Newton 2008), hence it is not surpri­ & Salewski 2008). Cox (1985) developed sing that a great deal of information has ac- a stepping­stone model of this hypothesis. cumulated on its internal, proximate deter- According to this model, resource­limita- minants and its phenology ever since Hans tion due to competition for food forced cer- Christian Mortensen started ringing birds at tain tropical resident species to expand their the very end of the 19th century. These studies range to the subtropics. These birds continu­ revealed that the migratory phenotype is de- ed to return to the tropics during the winter, termined by a set of complex and tightly re­ resulting in the formation of partial migrant gu lated mechanisms (Gwinner 1990), which species. These partial migrants then continu­ includes, among others (1) sensory elements ed to spread to higher latitudes where they underlying orientation and navigation, (2) were able to breed successfully while still mechanisms responsible for the regulation of returning to the original area in the winter Brought to you by | Swinburne Technical University Authenticated Download Date | 12/29/14 2:10 PM J. Nagy & J. Tökölyi 17 (Stiles 1980, Cox 1985). Thus, this hypo the­ evolution of migration by forcing non­mig­ sis predicts that migratory species evolved ratory temperate and arctic species to leave from tropical ancestors. there home ranges during the winter (Bell Several lines of evidence support the tro­ 2000, 2005), resulting in migratory strate- pi cal origin of long­distance migrants. Jo- gies which allowed the survival of popu- seph et al. (1999), in a study of waders, lations in a strongly seasonal milieu (Bell analyzed the evolution of breeding and win- 2000, 2005). Thus, this hypothesis predicts tering distribution of 16 species from the that migration evolved from temperate resi­ genus Charadrius using phylogenetic me­ dent species, a prediction that has received thods. By reconstructing the hypothesized relatively low support to date. It is clear, distribution of the ancestors of these birds, however, that migration can evolve with- they showed that species that are migratory out the expansion of the breeding ranges, today derive from ancestors whose breeding as examplified by the large number of in- and non­breeding ranges were located in the tra­tropical migrants (e.g. Boyle & Conway tropical zone. Another similar study inves- 2007, Boyle et al. 2011). Comparative stu­ tigated the evolution of migration in Ca- dies of the occurrence of migration among tharus thrushes (Outlaw et al. 2003). This some of these tropical taxa, such as the pas- study showed that North American (migra- serine group Tyranni revealed that a num- tory) thrushes are sister to tropical species, ber of
Recommended publications
  • Chromosome Painting in Three Species of Buteoninae: a Cytogenetic Signature Reinforces the Monophyly of South American Species
    Chromosome Painting in Three Species of Buteoninae: A Cytogenetic Signature Reinforces the Monophyly of South American Species Edivaldo Herculano C. de Oliveira1,2,3*, Marcella Mergulha˜o Tagliarini4, Michelly S. dos Santos5, Patricia C. M. O’Brien3, Malcolm A. Ferguson-Smith3 1 Laborato´rio de Cultura de Tecidos e Citogene´tica, SAMAM, Instituto Evandro Chagas, Ananindeua, PA, Brazil, 2 Faculdade de Cieˆncias Exatas e Naturais, ICEN, Universidade Federal do Para´, Bele´m, PA, Brazil, 3 Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom, 4 Programa de Po´s Graduac¸a˜oem Neurocieˆncias e Biologia Celular, ICB, Universidade Federal do Para´, Bele´m, PA, Brazil, 5 PIBIC – Universidade Federal do Para´, Bele´m, PA, Brazil Abstract Buteoninae (Falconiformes, Accipitridae) consist of the widely distributed genus Buteo, and several closely related species in a group called ‘‘sub-buteonine hawks’’, such as Buteogallus, Parabuteo, Asturina, Leucopternis and Busarellus, with unsolved phylogenetic relationships. Diploid number ranges between 2n = 66 and 2n = 68. Only one species, L. albicollis had its karyotype analyzed by molecular cytogenetics. The aim of this study was to present chromosomal analysis of three species of Buteoninae: Rupornis magnirostris, Asturina nitida and Buteogallus meridionallis using fluorescence in situ hybridization (FISH) experiments with telomeric and rDNA probes, as well as whole chromosome probes derived from Gallus gallus and Leucopternis albicollis. The three species analyzed herein showed similar karyotypes, with 2n = 68. Telomeric probes showed some interstitial telomeric sequences, which could be resulted by fusion processes occurred in the chromosomal evolution of the group, including the one found in the tassociation GGA1p/GGA6.
    [Show full text]
  • Avian Taxonomy
    Length (cm) Wing span (cm) Weight (gms) cluch size incubation fledging Notes TAXONOMY male female male female male female (# eggs) (days) (days) Falconiformes Accipitridae (vultures, hawks, eagles) short rounded wings; long tail; light eyes ACCIPITRINAE (true hawks) Accipiter cooperii (Cooper's hawk) 39 45 73 84 341 528 3-5 30-36 (30) 25-34 crow sized; strongly banded tail; rounded tail Accipiter gentilis (Northern goshawk) 49 58 101 108 816 1059 2-4 28-38 (33) 35 square tail; most abundant NAM hawk; proportionaly 26 31 54 62 101 177 4-5 29 30 Accipiter striatus (sharp-shinned hawk) strongest foot Accipiter nisus (Eurasian sparrowhawk ) 37 37 62 77 150 290 5-Apr 33 27-31 Musket BUTEONINAE (broadwings) Buteo (buzzards or broad tailed hawks) Buteo regalis (ferruginous hawk) 53 59 132 143 1180 1578 6-Apr 34 45-50 Buteo lineatus (red-shouldered hawk) 47 53 96 105 550 700 3-4 28-33 42 square tail Buteo jamaicensis (red-tailed hawk) 48 55 114 122 1028 1224 1-3 (3) 28-35 (34) 42-46 (42) (Harlan' hawk spp); dark patagial featehres: immature; Parabuteo Parabuteo cuncincutus (Harris hawk) 47 52 90 108 710 890 2-4 31-36 45-50 reddish orange shoulders Sea Eagles Haliaeetus leucocephalus (bald eagle) 82 87 185 244 3000 6300 1-3 35 70-92 True Eagles Aquila chrysaetos (golden eagle) 78 82 185 220 3000 6125 1-4 (2) 40-45 50 white patches on wings: immature; CIRCUS Circus cyaneus (Northern harrier) 46 50 93 108 350 530 4-6 26-32 30-35 hovers; hunts by sound Falconidae (falcons) (longwings) notched beak Falco columbarius (American merlin) 26 29 57 64
    [Show full text]
  • SMCSP & SMCSN Wildlife List.Xlsx
    Appendix C: Wildlife list for Six Mile Cypress Slough and Six Mile Cypress North Preserves Designated Status Scientific Name Common Name FWC FWS FNAI MAMMALS Family: Didelphidae (opossums) Didelphis virginiana Virginia opossum Family: Dasypodidae (armadillos) Dasypus novemcinctus nine-banded armadillo * Family: Sciuridae (squirrels and their allies) Sciurus carolinensis eastern gray squirrel Sciurus niger avicennia Big Cypress fox squirrel T G5T2/S2 Family: Muridae (mice and rats) Peromyscus gossypinus cotton mouse Oryzomys palustris marsh rice rat Sigmodon hispidus hispid cotton rat Family: Leporidae (rabbits and hares) Sylvilagus palustris marsh rabbit Sylvilagus floridanus eastern cottontail Family: Talpidae (moles) Scalopus aquaticus eastern mole Family: Felidae (cats) Puma concolor coryi Florida panther E E G5T1/S1 Lynx rufus bobcat Felis silvestris domestic cat * Family: Canidae (wolves and foxes) Urocyon cinereoargenteus common gray fox Family: Ursidae (bears) Ursus americanus floridanus Florida black bear T G5T2/S2 Family: Procyonidae (raccoons) Procyon lotor raccoon Family: Mephitidae (skunks) Spilogale putorius eastern spotted skunk Mephitis mephitis striped skunk Family: Mustelidae (weasels, otters and relatives) Lutra canadensis northern river otter Family: Suidae (old world swine) Sus scrofa feral hog * Family: Cervidae (deer) Odocoileus virginianus white-tailed deer BIRDS Family: Anatidae (swans, geese and ducks) Subfamily: Anatinae (dabbling ducks) Dendrocygna autumnalis black-bellied whistling duck Cairina moschata muscovy
    [Show full text]
  • Repeated Sequence Homogenization Between the Control and Pseudo
    Repeated Sequence Homogenization Between the Control and Pseudo-Control Regions in the Mitochondrial Genomes of the Subfamily Aquilinae LUIS CADAH´IA1*, WILHELM PINSKER1, JUAN JOSE´ NEGRO2, 3 4 1 MIHAELA PAVLICEV , VICENTE URIOS , AND ELISABETH HARING 1Molecular Systematics, 1st Zoological Department, Museum of Natural History Vienna, Vienna, Austria 2Department of Evolutionary Ecology, Estacio´n Biolo´gica de Don˜ana, Sevilla, Spain 3Centre of Ecological and Evolutionary Synthesis (CEES), Department of Biology, Faculty for Natural Sciences and Math, University of Oslo, Oslo, Norway 4Estacio´n Biolo´gica Terra Natura (Fundacio´n Terra Natura—CIBIO), Universidad de Alicante, Alicante, Spain ABSTRACT In birds, the noncoding control region (CR) and its flanking genes are the only parts of the mitochondrial (mt) genome that have been modified by intragenomic rearrangements. In raptors, two noncoding regions are present: the CR has shifted to a new position with respect to the ‘‘ancestral avian gene order,’’ whereas the pseudo-control region (CCR) is located at the original genomic position of the CR. As possible mechanisms for this rearrangement, duplication and transposition have been considered. During characterization of the mt gene order in Bonelli’s eagle Hieraaetus fasciatus, we detected intragenomic sequence similarity between the two regions supporting the duplication hypothesis. We performed intra- and intergenomic sequence comparisons in H. fasciatus and other falconiform species to trace the evolution of the noncoding mtDNA regions in Falconiformes. We identified sections displaying different levels of similarity between the CR and CCR. On the basis of phylogenetic analyses, we outline an evolutionary scenario of the underlying mutation events involving duplication and homogenization processes followed by sporadic deletions.
    [Show full text]
  • Molecular Phylogenetics of the Buteonine Birds of Prey (Accipitridae)
    'e Auk 304(2):304–315, 2008 )e American Ornithologists’ Union, 2008. Printed in USA. MOLECULAR PHYLOGENETICS OF THE BUTEONINE BIRDS OF PREY (ACCIPITRIDAE) HEATHER R. L. LERNER,1 MATTHEW C. KLAVER, AND DAVID P. MINDELL2 Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan 48109, USA A.—Phylogenetic relationships among birds of prey in thhee subbffamily Buteoninae are not fully established but are of par- ticular interest because the Buteoninae constitute one of the largest accipitrid subgroups and include multiple species of conservation concern. Genera previously included within the Buteoninae are Buteo, Leucopternis, Buteogallus, Harpyhaliaetus, Busarellus, Parabu- teo, Geranoaetus, Geranospiza, Ictinia, Rostrhamus, Kaupifalco, and Butastur. We analyzed representatives from all buteonine genera and most non-Buteo (i.e., “sub-buteo”) species with , bases of nuclear and mitochondrial DNA and found non-monophyly for the nominal genera Buteo, Buteogallus, and Leucopternis. )e Old World Lizard Buzzard (Kaupifalco monogrammicus) is not closely re- lated to buteonine taxa but is sister to goshawks in the genera Melierax, Micronisus, and Urotriorchis. Another Old World genus, Butas- tur, is sister to the clade including all other buteonine genera mentioned above. Investigation of several “superspecies” complexes within the genus Leucopternis revealed non-monophyly for the four subspecies of White Hawk (L. albicollis). On the basis of mitochondrial data, L. a. albicollis forms a clade with L. polionotus, whereas L. a. costaricensis, L. a. ghiesbreghti, and L. a. williaminae form a clade with L. occidentalis. Among taxa included as outgroups, we found two species in the genus Circus to be clearly nested within a clade of Accipiter spp.
    [Show full text]
  • Accipitridae Species Tree
    Accipitridae I: Hawks, Kites, Eagles Pearl Kite, Gampsonyx swainsonii ?Scissor-tailed Kite, Chelictinia riocourii Elaninae Black-winged Kite, Elanus caeruleus ?Black-shouldered Kite, Elanus axillaris ?Letter-winged Kite, Elanus scriptus White-tailed Kite, Elanus leucurus African Harrier-Hawk, Polyboroides typus ?Madagascan Harrier-Hawk, Polyboroides radiatus Gypaetinae Palm-nut Vulture, Gypohierax angolensis Egyptian Vulture, Neophron percnopterus Bearded Vulture / Lammergeier, Gypaetus barbatus Madagascan Serpent-Eagle, Eutriorchis astur Hook-billed Kite, Chondrohierax uncinatus Gray-headed Kite, Leptodon cayanensis ?White-collared Kite, Leptodon forbesi Swallow-tailed Kite, Elanoides forficatus European Honey-Buzzard, Pernis apivorus Perninae Philippine Honey-Buzzard, Pernis steerei Oriental Honey-Buzzard / Crested Honey-Buzzard, Pernis ptilorhynchus Barred Honey-Buzzard, Pernis celebensis Black-breasted Buzzard, Hamirostra melanosternon Square-tailed Kite, Lophoictinia isura Long-tailed Honey-Buzzard, Henicopernis longicauda Black Honey-Buzzard, Henicopernis infuscatus ?Black Baza, Aviceda leuphotes ?African Cuckoo-Hawk, Aviceda cuculoides ?Madagascan Cuckoo-Hawk, Aviceda madagascariensis ?Jerdon’s Baza, Aviceda jerdoni Pacific Baza, Aviceda subcristata Red-headed Vulture, Sarcogyps calvus White-headed Vulture, Trigonoceps occipitalis Cinereous Vulture, Aegypius monachus Lappet-faced Vulture, Torgos tracheliotos Gypinae Hooded Vulture, Necrosyrtes monachus White-backed Vulture, Gyps africanus White-rumped Vulture, Gyps bengalensis Himalayan
    [Show full text]
  • Phylogeny, Historical Biogeography and the Evolution of Migration in Accipitrid Birds of Prey (Aves: Accipitriformes)
    Ornis Hungarica 2014. 22(1): 15–35. DOI: 10.2478/orhu-2014-0008 Phylogeny, historical biogeography and the evolution of migration in accipitrid birds of prey (Aves: Accipitriformes) Jenő nagy1 & Jácint tökölyi2* Jenő Nagy & Jácint Tökölyi 2014. Phylogeny, historical biogeography and the evolution of mig ration in accipitrid birds of prey (Aves: Accipitriformes). – Ornis Hungarica 22(1): 15–35. Abstract Migration plays a fundamental part in the life of most temperate bird species. The re­ gu lar, large­scale seasonal movements that characterize temperate migration systems appear to have originated in parallel with the postglacial northern expansion of tropical species. Migratoriness is also in- fluenced by a number of ecological factors, such as the ability to survive harsh winters. Hence, understanding the origins and evolution of migration requires integration of the biogeographic history and ecology of birds in a phylogenetic context. We used molecular dating and ancestral state reconstruction to infer the origins and evolu- tionary changes in migratory behavior and ancestral area reconstruction to investigate historical patterns of range evolution in accipitrid birds of prey (Accipitriformes). Migration evolved multiple times in birds of prey, the ear- liest of which occurred in true hawks (Accipitrinae), during the middle Miocene period, according to our analy- ses. In most cases, a tropical ancestral distribution was inferred for the non­migratory ancestors of migratory line- ages. Results from directional evolutionary tests indicate that migration evolved in the tropics and then increased the rate of colonization of temperate habitats, suggesting that temperate species might be descendants of tropi- cal ones that dispersed into these seasonal habitats.
    [Show full text]
  • A New Genus and Species of Buteonine Hawk from Quaternary Deposits in Bermuda (Aves: Accipitridae)
    PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 121(1):130-14L 2008. A new genus and species of buteonine hawk from Quaternary deposits in Bermuda (Aves: Accipitridae) Storrs L. Olson Department of Vertebrate Zoology, National Museum of Natural History, NHB MRC 116, Smithsonian Institution, P. O. Box 37012, Washington, D. C. 20013-7012, U.S.A., e-mail: [email protected] Abstract.•Bermuteo avivorus, new genus and species, is described from rare Quaternary fossils from the island of Bermuda. Although clearly referable to the Buteoninae, its relationships within that group are difficult to assess. Considerable size variation may be attributable to sexual dimorphism associated with bird-catching behavior. It is uncertain if the species survived into the historic period. Factors contributing to the rarity of hawk remains in the fossil record of Bermuda are discussed. One fragmentary ulna is from a larger hawk, possibly the Red-tailed Hawk Buteo jamaicensis. The isolated North Atlantic island of large dark herons, many very handsome Bermuda was once home to various sparrow-hawks, so stupid that we even species of endemic land birds, the number clubbed them" (Wilkinson 1950:56). The of which fluctuated between glacial peri- tameness presumably refers to both the ods of greatly increased land area and herons and the hawks and strongly certain interglacial periods when high sea- suggests a resident species of hawk levels caused extinctions through reduc- unaccustomed to humans or other pred- tion in land area (Olson & Hearty 2003, ators, rather than some migratory species Olson & Wingate 2000, 2001, 2006; Olson that would probably have been much less et al.
    [Show full text]
  • Accipitridae, Aves
    AMERICAN MUSEUM Norntates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2741, pp. 1-20, figs. 1-4, table 1 July 30, 1982 A Revision of the Sub-Buteonine Hawks (Accipitridae, Aves) DEAN AMADON1 ABSTRACT This paper is a taxonomic review of the 25 species. Changes from usual treatment include rec- species and approximately 10 genera of chiefly ognition ofthe genus Asturina, merger ofthe genus Neotropical hawks called sub-buteonines and al- Heterospizias with Buteogallus, and transfer ofthe lied to the more advanced genus Buteo. Generic genus Geranospiza to the sub-buteonines. Finally, diagnoses supported by logarithmic ratio diagrams the broad systematics of the chief components of of measurements are presented along with com- the family Accipitridae and the place of the sub- ments on intraspecific variation in a few of the buteonine group within it are discussed. INTRODUCTION The term "sub-buteonines" is here used Eight of the 10 sub-buteonine genera here for a group ofhawks and eagles closely allied recognized are Neotropical. Three of the to the large and nearly cosmopolitan genus species in as many genera, cross the United Buteo. As noted later, certain other genera or States border. Two of them, Asturina nitida groups ofgenera may be regarded as sub-bu- and Buteogallus anthracinus, have distribu- teonines in a more general sense, but they are tions that are primarily tropical and subtrop- less closely allied to Buteo and beyond the ical. The third, Parabuteo unicinctus, extends main scope ofthe present paper. As the name a little farther north to Kansas and farther implies and as defined below the sub-bu- south to central Chile.
    [Show full text]
  • Six Mile Cypress Slough Preserve North Wildlife Species List
    Appendix C: Wildlife list for Six Mile Cypress Slough and Six Mile Cypress North Preserves Designated Status Scientific Name Common Name FWC FWS FNAI MAMMALS Family: Didelphidae (opossums) Didelphis virginiana Virginia opossum Family: Dasypodidae (armadillos) Dasypus novemcinctus nine-banded armadillo * Family: Sciuridae (squirrels and their allies) Sciurus carolinensis eastern gray squirrel Sciurus niger avicennia Big Cypress fox squirrel T G5T2/S2 Family: Muridae (mice and rats) Peromyscus gossypinus cotton mouse Oryzomys palustris marsh rice rat Sigmodon hispidus hispid cotton rat Family: Leporidae (rabbits and hares) Sylvilagus palustris marsh rabbit Sylvilagus floridanus eastern cottontail Family: Talpidae (moles) Scalopus aquaticus eastern mole Family: Felidae (cats) Puma concolor coryi Florida panther E E G5T1/S1 Lynx rufus bobcat Felis silvestris domestic cat * Family: Canidae (wolves and foxes) Urocyon cinereoargenteus common gray fox Family: Ursidae (bears) Ursus americanus floridanus Florida black bear G5T2/S2 Family: Procyonidae (raccoons) Procyon lotor raccoon Family: Mephitidae (skunks) Spilogale putorius eastern spotted skunk Mephitis mephitis striped skunk Family: Mustelidae (weasels, otters and relatives) Lutra canadensis northern river otter Family: Suidae (old world swine) Sus scrofa feral hog * Family: Cervidae (deer) Odocoileus virginianus white-tailed deer BIRDS Family: Anatidae (swans, geese and ducks) Subfamily: Anatinae (dabbling ducks) Dendrocygna autumnalis black-bellied whistling duck Cairina moschata muscovy
    [Show full text]
  • Multidirectional Chromosome Painting Substantiates the Occurrence of Extensive Genomic Reshuffling Within Accipitriformes Wenhui Nie1*, Patricia C
    Nie et al. BMC Evolutionary Biology (2015) 15:205 DOI 10.1186/s12862-015-0484-0 RESEARCH ARTICLE Open Access Multidirectional chromosome painting substantiates the occurrence of extensive genomic reshuffling within Accipitriformes Wenhui Nie1*, Patricia C. M. O’Brien2, Beiyuan Fu3, Jinghuan Wang1, Weiting Su1, Kai He1, Bertrand Bed’Hom4, Vitaly Volobouev5, Malcolm A. Ferguson-Smith2, Gauthier Dobigny6* and Fengtang Yang3* Abstract Background: Previous cross-species painting studies with probes from chicken (Gallus gallus) chromosomes 1–10 and a paint pool of nineteen microchromosomes have revealed that the drastic karyotypic reorganization in Accipitridae is due to extensive synteny disruptions and associations. However, the number of synteny association events and identities of microchromosomes involved in such synteny associations remain undefined, due to the lack of paint probes derived from individual chicken microchromosomes. Moreover, no genome-wide homology map between Accipitridae species and other avian species with atypical karyotype organization has been reported till now, and the karyotype evolution within Accipitriformes remains unclear. Results: To delineate the synteny-conserved segments in Accipitridae, a set of painting probes for the griffon vulture, Gyps fulvus (2n = 66) was generated from flow-sorted chromosomes. Together with previous generated probes from the stone curlew, Burhinus oedicnemus (2n = 42), a Charadriiformes species with atypical karyotype organization, we conducted multidirectional chromosome painting, including reciprocal chromosome painting between B. oedicnemus and G. fulvus and cross-species chromosome painting between B. oedicnemus and two accipitrid species (the Himalayan griffon, G. himalayensis 2n = 66, and the common buzzard, Buteo buteo, 2n = 68). In doing so, genome-wide homology maps between B.
    [Show full text]
  • Bald Eagle and Golden Eagle - Two Very Large, Impressive Birds of Prey
    Eagles Order Falconiformes Family Buteoninae Fortunately in Pennsylvania it is possible to see both the Bald Eagle and Golden Eagle - two very large, impressive birds of prey. The golden eagle is a regular migrant during fall and spring, but the bald eagle is making a strong comeback throughout the commonwealth and is found here year-round. Still, if you spot one of these birds, consider yourself very lucky. They are still uncommon. Eagles are big. Their wingspan is up to eight feet. When standing they measure about two feet from head to tail and weigh up to fourteen pounds. Compare this to an adult great horned owl, weighing perhaps three pounds. Like all birds of prey, the female is larger than the male. Bald Eagle Haliaeetus leucocephalus Even though the bald eagle is our national bird, Benjamin Franklin had wanted the wild turkey to be the symbol of our coutry, but his wish never came to be. Instead, our nation’s emblem is the magnificent black bird with the spotless white head and tail. Many people have mistaken the black and white osprey for a bald eagle, until they see a bald eagle. Once you see this huge bird soaring overhead you will never misidentify the two birds again. The Bald Eagle is not bald at all. Historically, bald meant white, and when mature, both the male and female bald eagle have white heads and tails contrasting a dark body. The immature bald eagles are mottled brown all over their body – sometimes resembling golden eagles. At about five years of age the bald eagle molts into its adult plumage.
    [Show full text]