CFD-Analysis of the Aerodynamic Prop- Erties of a Mercedes-Benz 300SLR
Total Page:16
File Type:pdf, Size:1020Kb
CFD-analysis of the aerodynamic prop- erties of a Mercedes-Benz 300SLR Bachelor’s thesis in Applied Mechanics ANDREAS FALKOVÉN JOHAN NORDIN KRESHNIK RAMA ANDREAS RASK PHILIP SJÖSTRAND MICHAEL STADLER Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2015 Bachelor thesis nr 2015:07 Bachelor’s project TMEX02-15-15 CFD-analysis of the aerodynamic properties of a Mercedes-Benz 300SLR Comparison of drag- and lift forces generated when the Mercedes’ air brake is deployed ANDREAS FALKOVÉN JOHAN NORDIN KRESHNIK RAMA ANDREAS RASK PHILIP SJÖSTRAND MICHAEL STADLER Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Chalmers University of Technology Gothenburg, Sweden 2015 CFD-analysis of the aerodynamic properties of a Mercedes-Benz 300SLR. Comparison of drag- and lift forces generated when the Mercedes’ air brake is de- ployed. ANDREAS FALKOVÉN JOHAN NORDIN KRESHNIK RAMA ANDREAS RASK PHILIP SJÖSTRAND MICHAEL STADLER © ANDREAS FALKOVÉN JOHAN NORDIN KRESHNIK RAMA ANDREAS RASK PHILIP SJÖSTRAND MICHAEL STADLER, 2015. Supervisor: Emil Ljungskog Examiner: Professor Lennart Löfdahl Bachelor’s project TMEX02-15-15 Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000 Cover: Streamlines around the Mercedes-Benz 300SLR travelling at 120 kph. Gothenburg, Sweden 2015 iv Abstract Mercedes-Benz was one of the most prominent car manufacturers in motorsport in the 50’s. In 1955 they participated with the model 300 SLR in the Le Mans 24- hour race. What made this model standing out was the mounted air brake, which would compensate for the weaker drum brakes compared with competing models’ disc brakes. During the ongoing race the world became witness to one of the most fatal accident in motorsport history, where the Mercedes in a collision flew up and crashed into the grandstand. The aim of this work was to investigate the air brake’s effect on the car’s character- istics at the crash moment. This is done by monitoring the work of Peter Gullberg and Lennart Löfdahl performed in 2008, but with a more accurate basis. A laser scanned model of the car that was obtained from Gullbergs and Löfdahl’s work in 2008 was improved to match more with the real car and to obtain accurate results in the flow simulations performed in STAR CCM+. The results obtained confirmed the earlier work in the field which indicated that the car gets an overall higher downforce with the air brake engaged compared to the down position. Additionally, a major downforce was noted on the rear axle compared to the front when the air brake was engaged. Sammanfattning Mercedes-Benz var en av de absolut främsta biltillverkarna inom motorsporten på 50-talet. År 1955 deltog de med modellen 300 SLR i Le Mans 24-timmarslopp. Vad som stack ut med denna modell var att det monterats en luftbroms för att kompensera för de svagare trumbromsarna jämfört med konkurrerande modellers skivbromsar. Under loppen skedde den mest fatala olyckan i motorsportens historia, där Mercedesen vid en kollision flög upp och kraschade in i åskådarläktaren. Syftet med arbetet var att utreda luftbromsens inverkan på bilens egenskaper vid kraschtillfället. Detta görs genom uppföljning av det arbete Peter Gullberg och Lennart Löfdahl utfört 2008, men med noggrannare underlag. En laserskannad modell av bilen som erhölls från Gullbergs och Löfdahls arbete 2008 importerades och gjordes mer noggran som den riktiga bilen för att sedan erhålla noggrannare resultat vid de strömningssimuleringar som utförts i STAR CCM+. De resultat som erhölls bekräftar det tidigare arbetets indikationer att bilen får en ökad total downforce vid uppfälld luftbroms jämfört med nedfälld. Dessutom noteras en större downforce på bakaxeln jämfört med framaxeln då luftbromsen är uppfälld. Keywords: CFD, mercedes, air brake, le mans, aerodynamics, drag force, lift force. v Preface This report represents the final results of a bachelor thesis during the period of 2015-01-27 to 2015-06-01 at the Department of Applied Mechanics at Chalmers University of Technology, Gothenburg Sweden. The objective of this project was, with the base of earlier studies made by Peter Gullberg and Lennart Löfdahl in 2008, to enhance the underlaying CAD-model and analyse the aerodynamic properties of the Mercedes-Benz 300 SLR from 1955. Analysis of the aerodynamic properties of different car setups and velocities was performed using the commercial CFD-software program STAR CCM+. It is recommended that the reader of this thesis be familiar with the basic principles of fluid dynamics to fully appreciate the contents of the report. Acknowledgements First of all we would like to thank Professor Lennart Löfdahl for the opportunity to work with this project and for letting us take part of his earlier studies done in this field. His enthusiasm on the subject has been a great inspiration and motivation. Secondly, we would like to thank our supervisor Ph.D student Emil Ljungskog for his support and excellent availability through this project. Without his aid the first simulations would probably still be running. We would also like to thank Ph.D student Teddy Hobeika for his useful opinions and tips during the simulations. Lastly a big thank to CD-Adapco for providing us with a STAR-CCM+ license and the ability to participate in their online courses. The authors, Gothenburg, May 2015 vii Contents Nomenclature xi 1 Introduction1 1.1 Historical Background..........................1 1.1.1 The 1955 Le Mans tragedy....................1 1.1.2 Mercedes-Benz 300 SLR.....................2 1.2 Objective.................................2 1.3 Delimitations...............................3 2 Theory of Fluid Mechanics5 2.1 Reynolds transport theorem.......................5 2.2 Conservation of mass and momentum in a fluid............5 2.3 Reynolds number.............................6 2.4 Compressible and incompressible flow..................6 2.5 Bernoulli’s Equation...........................7 2.6 Aerodynamics...............................7 2.6.1 Drag and lift forces........................8 2.6.2 Laminar and turbulent flow...................8 2.7 Navier-Stokes equations.........................8 2.8 Boundary layer theory..........................8 2.8.1 Attached and separated flow...................9 2.9 Turbulence modelling...........................9 2.9.1 Reynolds Averaged Navier-Stokes................ 10 2.9.2 Realizable k- model....................... 10 2.9.3 Modelling of porous media.................... 11 2.9.4 Wall treatment.......................... 11 2.10 The Finite Volume Method....................... 11 3 Method 13 3.1 Pre-processing............................... 13 3.1.1 Preparing the laser-scan..................... 13 3.1.2 Modelling of the car body and air brake............ 14 3.1.3 Modelling of exterior parts.................... 15 3.1.4 Modelling the internal parts................... 16 3.1.5 Merging the model........................ 17 3.1.6 Surface wrapping and meshing.................. 18 ix Contents 3.2 CFD simulations............................. 20 3.2.1 Boundary conditions....................... 20 3.2.2 Physics settings.......................... 21 3.3 Post-processing.............................. 21 4 Results of CFD simulations 23 4.1 Closed cooling............................... 23 4.2 Open cooling............................... 24 5 Discussion and Analysis 27 5.1 Comments on methodology....................... 27 5.1.1 Pre processing........................... 27 5.1.2 Solving............................... 28 5.1.3 Post processing.......................... 28 5.2 Drag forces................................ 28 5.3 Lift force.................................. 29 5.4 Sources of errors............................. 29 5.5 Comparison with earlier works...................... 30 6 Conclusions 33 6.1 Conclusions of this project........................ 33 6.2 Closing remarks and future works.................... 33 Bibliography 35 A CAD modelsI B PID’s III x Contents Nomenclature ANSA Pre-processing software CATIA CAD-software used to create computer models STAR CCM+ CFD-software used to run simulations of fluid flow CAD Computer Aided Design CFD Computational Fluid Dynamics PID Property ID RANS Reynolds Averaged Navier Stokes Ap Characteristic area α Viscous resistance in a porous medium as Speed of sound B An extensive property of a fluid β The derivative of a property B with respect to its mass m βI Inertial resistance of a porous medium CD Coefficient of drag CL Coefficient of lift Cµ Dimensionless structure factor D Dt Material derivative δ Boundary layer thickness δij Kronecker delta Energy dissipation factor FD Horizontal drag force FL Vertical lift force g Gravitational acceleration k Turbulent energy L Characteristic length m Mass Ma Mach number µ Dynamic viscosity µt Eddy viscosity ν Kinematic viscosity xi Contents ∇ Gradient operator p Pressure p¯ Time-averaged pressure p0 Time-fluctuating pressure Re Reynolds number Sij Mean flow strain rate tensor τw Wall shear stress u Velocity field of a flow ¯u Time-averaged velocity field U Free stream velocity u Flow velocity component in the x-direction u¯ Time-averaged velocity component in the x-direction u0 Fluctuating velocity component in the x-direction u* Friction velocity u+ Dimensionless velocity near a wall v Flow velocity component in the y-direction v¯ Time-averaged velocity component in the y-direction