Investigating Proglacial Groundwater Systems in the Quilcayhuanca and Yanamarey Pampas, Cordillera Blanca, Peru

Total Page:16

File Type:pdf, Size:1020Kb

Investigating Proglacial Groundwater Systems in the Quilcayhuanca and Yanamarey Pampas, Cordillera Blanca, Peru Investigating proglacial groundwater systems in the Quilcayhuanca and Yanamarey Pampas, Cordillera Blanca, Peru Laura Maharaj Department of Earth and Planetary Sciences McGill University Montréal, Québec, Canada July 2011 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science © Laura Maharaj 2011 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-83995-9 Our file Notre référence ISBN: 978-0-494-83995-9 NOTICE: AVIS: The author has granted a non- L'auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distrbute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriété du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission. In compliance with the Canadian Conformément à la loi canadienne sur la Privacy Act some supporting forms protection de la vie privée, quelques may have been removed from this formulaires secondaires ont été enlevés de thesis. cette thèse. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. Abstract High-elevation Andean water storage is extremely important for water resources for the arid western coast of South America. Pampas (a subset of pàramos) are a freshwater reservoir in the Cordillera Blanca, Peru. These organic-rich clay systems buffer stream and river runoff to the Rio Santa and provide water to surrounding communities. More than 50% of dry season discharge from pampas is groundwater derived, however little is known about their geomorphology and subsurface sedimentology. Watertable measurements, streambed temperature sensors, and ground penetrating radar (GPR) were used to characterize the subsurface and develop a formational model for the Yanamarey and Quilcayhuanca pampas, Cordillera Blanca, Peru. The water table in July 2009 was found on average to be 0.35 m and 0.57 m below the land surface at Quilcayhuanca and Yanamarey respectively. In the Yanamarey Pampa, streambed temperature sensors showed that upstream, water flows from the stream into the ground and further downstream, water flows upwards recharging the stream. From watertable measurements, a watertable map was produced that showed steeper watertable gradients further up valley. GPR was an effective tool for imaging the subsurface to a depth of 8 meters in the high permittivity material and delineated four stratigraphic units at both sites. In sequence the units are; dry sandy peat soils with pebbles at the surface, water saturated soil with sand and pebbles, linear stratified clay and glacial outwash intermixed with colluviums deposits. The identification of the subsurface sedimentary units allowed for the creation of formation models of both sites. The valley walls of Quilcayhuanca are steeper than Yanamarey, which caused more landslides and consequently more extensive colluvial deposits throughout the Quilcayhuanca valley subsurface. These connected colluvial deposits are likely the primary zone for groundwater flow and storage. ii Résumé Les réservoirs hydrologiques des hautes Andes constituent une partie importantee des ressources d'eau de la région aride de la côte ouest de l'Amérique du Sud. Les Pampas, un sous ensemble des pàramos, représentent un des réservoirs d'eau fraîche de la Cordillère Blanche du Pérou. Ces systèmes riches en argile et en matière organique modulent le ruissellement des rivières et des cours d'eau, et offrent de l'eau fraîche aux communautés voisines. Plus de 50 % du volume d’eau provenant des Pampas durant la saison sèche sont d’origine souterraine, cependant peu d'études se sont penchées sur la géomorphologie et la sédimentologie de ces systèmes. Des relevés du niveau de la nappe, des mesures de température dans le lit de la rivière, et des profils obtenus a l’aide de radars a pénétration du sol (RPS) ont été utilisés pour décrire le sous-sol et développer un modèle pour expliquer le fonctionnement des pampas de Yanamarey et de Quilcayhuancas de la Cordillère Blanche. Le niveau de la nappe se situe en moyenne a 0,35 m et 0,57m de profondeur à Quilcayhuanca et Yanamarey respectivement. Dans le Pampa du Yanamarey, les capteurs de température du lit du cours d'eau mettent en évidence un flux d’eau positif de la rivière vers le sol dans la partie supérieure des pampas, ce flux s’inversant dans sa partie inferieure. La carte du niveau de la nappe, réalisées a partir des mesures effectuées sur le terrain, montrent que les gradients du niveau d'eau sont plus forts en amont du système . L'outil RPS c'est montré utile pour produire des images du soul-sol jusqu'à une profondeur de huit mètres dans le matériau à haute permittivité, distinguant quatre unités stratigraphiques. Du sol aux profondeurs nous trouvons: de la tourbe sèche avec des galets superficiels; du sol saturé en eau avec du sable et des galets; de l'argile stratifiée linéairement et finalement divers dépôts glaciaires et paraglaciaires. L'identification de la géologie souterraine a permis la création du modèle pour chacun des deux sites. Les flancs de la vallée de Quilcayhunca sont plus pentus que ceux du Yanamarey, ce qui induit plus de glissement de terrain et par conséquence, plus de dépôts paraglaciaires dans le sous-sol de la vallée du Quilcayhunca. Ces dépôts et leurs interconnections forment vraisemblablement le passage privilégié de l’eau souterraine et forment possiblement les zones de stockage primaires de ces systèmes. iii Preface The following thesis presents original research by the author at the Department of Earth and Planetary Sciences, McGill University during the 2009-2011 academic years. It is submitted in a traditional thesis format, and is ultimately intended to form a manuscript to be submitted to a peer-reviewed journal. Data acquisition, analysis and interpretation were advised by Professor Jeffrey M. McKenzie, who acted as principal research supervisor along with Professor Sarah Hall, the additional committee member. The acquisition of the light detection and radar data took place in 2008 and was supervised by Professor Bryan Mark at The Ohio State University. Fieldwork took place during July 2009 and July 2010 in the Cordillera Blanca, Peru. Data were collected in the Cordillera Blanca, Peru, and analysis and interpretation were done by the author at McGill University, Montréal, Québec, Canada. ESRI ArcGIS was used by Sara Knox to identify pampas throughout the Cordillera Blanca. iv Acknowledgements I would like to express my heartfelt gratitude to the entire Department of Earth and Planetary Sciences (EPS). This department has been my second family during my years at McGill University. At such a large university, it can be hard to find your place, but the friendly faces of the faculty, staff and students of EPS made that task easy by creating a wonderful social and academic environment. I count myself lucky to have been able to be a part of the EPS community. I extend my gratitude to Jeffrey M. McKenzie, my principal supervisor, who gave me the freedom to take risks and expand my project into new, uncertain, directions. Although, no one travels as much as Jeff does, he still managed to always make himself readily available. He has been a constant source of inspiration and dedicated his time and energy to ensure that I reached my goals. I could not have asked for a better advisor. Many thanks go out to my vibrant research group, namely Michel Baraer, Stephanie Palmer, Bernardo Brixel, Rob Carver and Elizabeth Walsh along with my many other office mates of the first floor in Frank Dawson Adams. You have all been my rock, and I could not have completed my thesis without your advice, support, and most of all your cheerfulness, which made this office a place I loved walking into each day. EPS would not function if it weren’t for our dynamic administrative office trio of Anne Kosowski, Kristy Thornton and Angela Di Ninno. You ladies have been there to answer all of my questions throughout the years, and I will be at a loss of where to turn for advice once I have graduated. Brigitte Dionne, I also thank you for your patience with my countless computer questions. Throughout my fieldwork I had the help of many individuals from various institutions. Firstly, thank you to Fiona Darbyshire and Eric Rosa from L’Université du Québec à Montréal for all their help with the rental and use of their ground penetrating radar equipment. Secondly, great appreciation to Bryan Mark, KyungIn Huh, Jeffrey La Frenierre, Alyssa Singer and Shawn Stone from Ohio State University and Jeffrey Bury and Adam French from University of v California Santa Cruz, for making my two field seasons in Peru a great success.
Recommended publications
  • Cordillera Blanca : Glaciares En La Historia
    Bull. Inst. Fr. &tildes andines 36 B. FRANCOU, P. RlBSTElN - 1995, 24 (1): 37-64 THOMPSON, L.G., 1992- Ice core evidence from Peru and China. in :Clirrrnte sir~eA.D.1500.(R. Bradley and P.D. Jones editors) :517-548, London: Routledege. THOMPSON, L.G., MOSLEY-THOMPSON, E. C MORALES ARNAO, B., 1984 - El Niiio Southern Oscillation events recorded in the stratigraphy of the Tropical Quelccaya ice cap, Peru. Science, :50-53. 22 M. THOMPSON,J., L.G., MOSLEY-THOMPSON, E., DAVIS, M., LIN, P.N., YAO,T., DYURGEROV, & DAI, 1993- ”Recent warming” : ice core evidence from tropical ice cores with empllass on Central Asia. Globnl nird Plnrv&?ry Clrnqe, 7 : 145-156. CORDILLERA BLANCA GLACIARES EN LA HISTORIA I I *O Resumen Seminario internacional: La mis vasta cobertura glaciar situada entre los trilpicos aqarece como objeto de estudio AIUSE ESTRUCTURAL, POL“ AGRARIASY SECTOR AGROPECUARIO EN BOUMA, CHILE, ECUADOR Y PERU, rela tivainente tarde, a fines del sigla XIX, sobre todo gracias a Ias expediciones austro alemanas a partir organizado por el CEPES y FAO y realizado en mayo de 1994 en la ciudad de Lima. de los aiios 1930-1940.EI desarrollo del alpinismo y un gran nilmero de catistrofes mortales asociadas a la dinimica de estos glaciares (rotura de lagunas de represa morrénica, avalanchas) atrajeron la Ajuste estructural el papel relativo del sector agrario en el desarrollo del PerídJuvier lgiiifiíí y atención ysuscitaron investigaciones glaciológicas.En 1980,seencuentran entre losmejormonitoreados de losglaciares tropicales,primero, gracias a un programa
    [Show full text]
  • Multi-Source Glacial Lake Outburst Flood Hazard Assessment and Mapping for Huaraz, Cordillera Blanca, Peru
    ORIGINAL RESEARCH published: 21 November 2018 doi: 10.3389/feart.2018.00210 Multi-Source Glacial Lake Outburst Flood Hazard Assessment and Mapping for Huaraz, Cordillera Blanca, Peru Holger Frey 1*, Christian Huggel 1, Rachel E. Chisolm 2†, Patrick Baer 1†, Brian McArdell 3, Alejo Cochachin 4 and César Portocarrero 5† 1 Department of Geography, University of Zurich, Zurich, Switzerland, 2 Center for Research in Water Resources, University of Texas at Austin, Austin, TX, United States, 3 Mountain Hydrology and Mass Movements Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland, 4 Autoridad Nacional del Agua – Unidad de Glaciología y Recursos Hídricos (ANA-UGRH), Huaraz, Peru, 5 Área Glaciares, Instituto Nacional de Investigación Edited by: en Glaciares y Ecosistemas de Montaña (INAIGEM), Huaraz, Peru Davide Tiranti, Agenzia Regionale per la Protezione The Quillcay catchment in the Cordillera Blanca, Peru, contains several glacial lakes, Ambientale (ARPA), Italy including Lakes Palcacocha (with a volume of 17 × 106 m3), Tullparaju (12 × 106 m3), Reviewed by: 6 3 Dhananjay Anant Sant, and Cuchillacocha (2 × 10 m ). In 1941 an outburst of Lake Palcacocha, in one of Maharaja Sayajirao University of the deadliest historical glacial lake outburst floods (GLOF) worldwide, destroyed large Baroda, India Fabio Matano, parts of the city of Huaraz, located in the lowermost part of the catchment. Since Consiglio Nazionale Delle Ricerche this outburst, glaciers, and glacial lakes in Quillcay catchment have undergone drastic (CNR), Italy changes, including a volume increase of Lake Palcacocha between around 1990 and *Correspondence: 2010 by a factor of 34. In parallel, the population of Huaraz grew exponentially to more Holger Frey [email protected] than 120,000 inhabitants nowadays, making a comprehensive assessment and mapping of GLOF hazards for the Quillcay catchment and the city of Huaraz indispensable.
    [Show full text]
  • 476 the AMERICAN ALPINE JOURNAL Glaciers That Our Access Was Finally Made Through the Mountain Rampart
    476 THE AMERICAN ALPINE JOURNAL glaciers that our access was finally made through the mountain rampart. One group operated there and climbed some of the high-grade towers by stylish and demanding routes, while the other group climbed from a hid- den loch, ringed by attractive peaks, north of the valley and intermingled with the mountains visited by the 1971 St. Andrews expedition (A.A.J., 1972. 18: 1, p. 156). At the halfway stage we regrouped for new objec- tives in the side valleys close to Base Camp, while for the final efforts we placed another party by canoe amongst the most easterly of the smooth and sheer pinnacles of the “Land of the Towers,” while another canoe party voyaged east to climb on the islands of Pamiagdluk and Quvernit. Weather conditions were excellent throughout the summer: most climbs were done on windless and sunny days and bivouacs were seldom contem- plated by the parties abseiling down in the night gloom. Two mountains may illustrate the nature of the routes: Angiartarfik (1845 meters or 6053 feet; Grade III), a complex massive peak above Base Camp, was ascended by front-pointing in crampons up 2300 feet of frozen high-angled snow and then descended on the same slope in soft thawing slush: this, the easiest route on the peak, became impracticable by mid-July when the snow melted off to expose a crevassed slope of green ice; Twin Pillars of Pamiagdluk (1373 meters or 4505 feet; Grade V), a welded pair of abrupt pinnacles comprising the highest peak on this island, was climbed in a three-day sortie by traversing on to its steep slabby east wall and following a thin 300-metre line to the summit crest.
    [Show full text]
  • Folleto Inglés (1.995Mb)
    Impressive trails Trekking in Áncash Trekking trails in Santa Cruz © J. Vallejo / PROMPERÚ Trekking trails in Áncash Áncash Capital: Huaraz Temperature Max.: 27 ºC Min.: 7 ºC Highest elevation Max.: 3090 meters Three ideal trekking trails: 1. HUAYHUASH MOUNTAIN RANGE RESERVED AREA Circuit: The Huayhuash Mountain Range 2. HUASCARÁN NATIONAL PARK SOUTH AND HUARAZ Circuit: Olleros-Chavín Circuit: Day treks from Huaraz Circuit: Quillcayhuanca-Cójup 3. HUASCARÁN NATIONAL PARK NORTH Circuit: Llanganuco-Santa Cruz Circuit: Los Cedros-Alpamayo HUAYHUASH MOUNTAIN RANGE RESERVED AREA Circuit: Huayhuash Mountain Range (2-12 days) 45 km from Chiquián to Llámac to the start of the trek (1 hr. 45 min. by car). This trail is regarded one of the most spectacular in the world. It is very popular among mountaineering enthusiasts, since six of its many summits exceed 6000 meters in elevation. Mount Yerupajá (6634 meters) is one such example: it is the country’s second highest peak. Several trails which vary in length between 45 and 180 kilometers are available, with hiking times from as few as two days to as many as twelve. The options include: • Circle the mountain range: (Llámac-Pocpa-Queropalca Quishuarcancha-Túpac Amaru-Uramaza-Huayllapa-Pacllón): 180 km (10-12 days). • Llámac-Jahuacocha: 28 km (2-3 days). Most hikers begin in Llámac or Matacancha. Diverse landscapes of singular beauty are clearly visible along the treks: dozens of rivers; a great variety of flora and fauna; turquoise colored lagoons, such as Jahuacocha, Mitucocha, Carhuacocha, and Viconga, and; the spectacular snow caps of Rondoy (5870 m), Jirishanca (6094 m), Siulá (6344 m), and Diablo Mudo (5223 m).
    [Show full text]
  • Rutas Imponentes Rutas De Trekking En Áncash Ruta De Trekking Santa Cruz © J
    Rutas imponentes Rutas de trekking en Áncash de Santa Cruz © J. Vallejo / PROMPERÚ trekking Ruta de Rutas de trekking en Áncash Áncash Capital: Huaraz Temperatura Máx.: 27 ºC Mín.: 7 ºC Altitud Máx.: 3090 msnm Tres rutas ideales para la práctica de trekking: 1. ZONA RESERVADA CORDILLERA HUAYHUASH (ZRCH) Circuito: Cordillera Huayhuash 2. PARQUE NACIONAL HUASCARÁN (PNH) SUR Y HUARAZ Circuito: Olleros-Chavín Circuito: Trekkings de 1 día desde Huaraz Circuito: Quillcayhuanca-Cójup 3. PARQUE NACIONAL HUASCARÁN (PNH) NORTE Circuito: Llanganuco-Santa Cruz Circuito: Los Cedros-Alpamayo ZONA RESERVADA CORDILLERA HUAYHUASH (ZRCH) Circuito: Cordillera Huayhuash (2-12 días) A 45 km de Chiquián a Llámac, donde se inicia la caminata (1 h 45 min en auto). Esta ruta es considerada como uno de los 10 circuitos más espectaculares en el mundo para el trekking. Además, es muy popular entre los aficionados al andinismo, pues entre sus múltiples cumbres, seis superan los 6000 m.s.n.m. Tal es el caso del nevado Yerupajá (6634 m.s.n.m.), el segundo más alto del país. Se pueden realizar diversas rutas que demandan entre 2 a 12 días de camino, por lo que la longitud del trekking varía según el tiempo de recorrido, siendo los promedios entre 45 y 180 kilómetros, así tenemos: • Rodear la cordillera (Llámac-Pocpa-Queropalca Quishuarcancha-Túpac Amaru-Uramaza-Huayllapa- Pacllón): 180 km (10-12 días). • Llámac-Jahuacocha: 28 km (2-3 días). La mayoría de caminantes suelen iniciar el recorrido en Llámac o Matacancha. Durante el recorrido es posible apreciar diversos paisajes de singular belleza como los espectaculares nevados: Rondoy (5870 m), Jirishanca (6094 m), Siulá (6344 m), Diablo Mudo (5223 m), entre otros; decenas de ríos; lagunas color turquesa como Jahuacocha, Mitucocha, Carhuacocha y Viconga; una gran diversidad de flora y fauna.
    [Show full text]
  • ABSTRACTS Abstracts ~
    INSTITUTE of ANDEAN STUDIES ~ABSTRACTS Abstracts ~ 57th Annual Meeting JANUARY 6–7, 2017 BERKELEY, CALIFORNIA 2 Friday, January 6h RANDALL HAAS , University of Wyoming; JAMES WATSON , University of Arizona Dental evidence for tuber intensification in the Titicaca Basin, 7kya Recent DNA studies point to the South Central Andes as a likely center of potato domestication. We present independent support for this hypothesis with new observations on dental-wear patterns among a burial population of 7000-year-old foragers discovered at the site of Soro Mik’aya Patjxa, Lake Titicaca Basin. Five of sixteen individuals exhibit lingual surface attrition of the maxillary anterior teeth. This observation along with other dental observations, contextual material evidence, and ethnographic comparisons converge to suggest that the Middle Archaic Period foragers of Soro Mik’aya habitually engaged in intensive tuber processing. New questions and implications for Andean domestication are discussed. MARIA BRUNO , Dickinson College; CHRISTINE A. HASTORF , University of California, Berkeley; AMANDA SANTILLI , JAMES CIARROCCA , Dickinson College; JEWELL SORIANO , University of California, Berkeley; JOSÉ CAPRILES FLORES , Pennsylvania State University Palimpsests of Chiripa landscape management The most prominent Andean political and ceremonial centers were not isolated architectural complexes but places made more potent by being situated within meaningful and managed socio ‐natural landscapes. Fine ‐scale topographic mapping around the monumental center of Chiripa, Bolivia by the Taraco Archaeological Project sheds new light onto a palimpsest of long ‐term landscape management of the area. Here, we begin to unpack this complex landscape by examining modified hydraulic features including springs, streams, and raised ‐fields. While this is a first step towards a better understanding of pre ‐ Hispanic management practices, it also reveals significant modifications associated with historic and present ‐day Chiripa communities.
    [Show full text]
  • Glacial Flooding and Disaster Risk Management Knowledge Exchange and Field Training
    GLACIAL FLOODING AND DISASTER RISK MANAGEMENT KNOWLEDGE EXCHANGE AND FIELD TRAINING July 11-24, 2013 Huaraz, Peru July 16, 2013 Day 4 - Field Methods and Modules I Glacial lakes and emerging risks in the Cordillera Blanca Wilfred Haeberli, Marcelo Somos-Valenzuela and Cesar Portocarrero 1. Introduction Continued atmospheric warming induces striking changes of most glaciers around the world (WGMS 2008). The formation of new lakes in de-glaciating high-mountain regions (Linsbauer et al., 2012) strongly influences landscape characteristics and represents a significant hazard related to climate change (Haeberli et al. , 2010; Kattelmann 2003; Richardson and Reynolds 2000). An increasing number of numerical modeling studies indicate that mountain glaciers are likely to continue vanishing (Zemp et al. 2006); that a fifth of Canada's Arctic Archipelago glaciers may disappear by the end of the century (Lenearts et al. 2013); that up to 50 percent of the Andes glaciers may have already been lost to climate-induced melting (Rabatel et al. 2013); and that Himalayan glaciers are reported to be losing mass as well, although with notable exceptions in the Karakoram and Northwestern Himalaya (Bolch et al. 2012). Major effects of this trend in glacier recession are increased variability in water supplies in some regions (Huss, 2011) and flooding risks from lakes formed at receding glaciers (Clague and Evans, 2000; Haeberli et al., 2010). The goals of this module and visit to Laguna Llaca are to (a) Understand the formation, characteristics and further evolution of new lakes due to glacier retreat in the Cordillera Blanca; (b) exchange knowledge end experience regarding the assessment of potential hazards due to glacier floods and debris flows; (c) discuss corresponding possibilities of hazard prevention and safety systems; and (d) consider consequences of glacier retreat to fresh-water supply and related adaptation strategies.
    [Show full text]
  • Geografía Y Medio Ambiente
    ALMANAQUE DE ANCASH 2002-2003 103 GEOGRAFIA Y MEDIO AMBIENTE Silhueta del Mapa del Perú encima de la Laguna de Querococha (Recuay) II. GEOGRAFIA Y MEDIO AMBIENTE EN EL PERU EN EL MUNDO 104 ALMANAQUE DE ANCASH 2002-2003 SUMARIO GEOGRAFIA Y MEDIO AMBIENTE EN EL PERU EN EL MUNDO ALMANAQUE DE ANCASH 2002-2003 105 SUMARIO Página 2.1 Características geográficas ................................................................................................................................. 107 2.1.1 Superficie Territorial ................................................................................................................................. 107 2.1.1.1 Ancash: Superficie insular: 2002 .............................................................................................................. 107 2.1.1.2 Ancash: superficie, población total proyectada y desidad poblacional, según provincias: 2001- 2002 107 a) Mapa del Perú: Ubicación Geográfica del Departamento de Ancash ...................................................... 108 2.1.2 Ubicación geográfica .................................................................................................................................. 109 2.1.3 Clima y Temperatura ................................................................................................................................ 110 2.1.4 Hidrografía ................................................................................................................................................. 111 a) Vertiente de Pacífico.................................................................................................................................
    [Show full text]
  • Influencia Del Drenaje Ácido De Roca En
    UNIVERSIDAD PERUANA CAYETANO HEREDIA FACULTAD DE CIENCIAS Y FILOSOFÍA “INFLUENCIA DEL DRENAJE ÁCIDO DE ROCA EN LA COMUNIDAD DE MACROINVERTEBRADOS BENTÓNICOS, ÍNDICES BIÓTICOS DE CALIDAD DE AGUA Y GRUPOS FUNCIONALES ALIMENTICIOS EN RÍOS Y CABECERAS DE LA CORDILLERA BLANCA (SUBCUENCA DE QUILLCAY, ANCASH)” MSc. Fiorella Paola La Matta Romero TESIS PARA OPTAR EL TÍTULO DE LICENCIADA EN BIOLOGÍA LIMA - PERÚ 2020 ASESOR Dr. Raúl Loayza Muro 1 MIEMBROS DEL JURADO (Presidente) Dr. Armando Valdés-Velásquez (Secretario) MSc. Jerry Omar Arana Maestre (Vocal) Dr. Carlos Raúl Acosta Rivas 2 A mis padres. 3 AGRADECIMIENTOS A mis padres, por ser mis guías durante todo mi desarrollo personal y profesional y a quienes agradezco de corazón todo su amor y apoyo brindado. A la Universidad Peruana Cayetano Heredia, por ser mi primera casa educativa y por impulsar en mí el interés por la investigación. A mi asesor, Raúl Loayza Muro, por ser mi mentor y gran amigo. A mis colegas y amigos del Laboratorio de Ecotoxicología de la Universidad Peruana Cayetano Heredia. Y finalmente, a mis amigas incondicionales, quienes me brindaron mucho soporte emocional en los momentos más necesarios. A todos, ¡mil gracias! 4 RESUMEN La macrofauna de los ecosistemas dulceacuícolas se encuentra constantemente amenazada por el deterioro de la calidad de agua, ya que las características fisicoquímicas del ambiente pueden afectar su distribución y funcionalidad, sus ciclos de reproducción y desarrollo, su alimentación y comportamiento. Por ello, su permanencia está determinada por su capacidad de adaptación a las condiciones específicas de cada lugar. Los macroinvertebrados bentónicos son utilizados como herramientas indicadoras de cambios en el ambiente y son de suma utilidad para la evaluación in situ del grado de contaminación y alteración de ecosistemas dulceacuícolas.
    [Show full text]
  • CAP. IV Turismo
    ALMANAQUE DE ANCASH 2002-2003 199148 TURISMO Y CULTURA Tayapampa- Distrito de Olleros- Provincia de Huaraz- Ancash. paisaje de inmensa belleza natural . IV TURISMO Y CULTURA EN EL PERU EN EL MUNDO 200 ALMANAQUE DE ANCASH 2002-2003 TURISMO Y CULTURA EN EL PERU EN EL MUNDO ALMANAQUE DE ANCASH 2002-2003 201 SUMARIO Página 4.1 Principales Actividades de Turismo ................................................................................................................. 205 4.1.1 Turismo .............................................................................................................................................. 205 4.1.1.1 Ancash: Principales indicadores de la actividad turistica 1993- 2001 ................................................... 205 4.1.2 Flujo turístico nacional y extranjero en los establecimientos de hospedaje, según modalidad 1995 - 2000 ................................................................................................................. 206 4.1.2.1 Ancash: Arribos y pernoctaciones del turismo nacional y extranjero en los establecimientos de hospedaje: 1993 - 2002 ....................................................................................................................... 206 4.1.2.2 Ancash: Infraestructura de los establecimientos de hospedaje: 1995- 2000 .......................................... 207 4.2 Lugares turísticos .............................................................................................................................................. 208 4.2.1 Principales
    [Show full text]
  • USAID Glacial Lake Handbook 2014
    TECHNICAL REPORT THE GLACIAL LAKE HANDBOOK REDUCING RISK FROM DANGEROUS GLACIAL LAKES IN THE CORDILLERA BLANCA, PERU February 2014 This publication is made possible by the support of the American people through the United States Agency for International Development (USAID). It was prepared by Engility Corporation and the High Mountains Adaptation Partnership. ! This report has been prepared for the United States Agency for International Development (USAID), under the Climate Change Resilient Development Task Order No. AID-OAA-TO-11- 00040, under The Integrated Water and Coastal Resources Management Indefinite Quantity Contract (WATER IQC II) Contract No. AID-EPP-I-00-04-00024. Engility Corporation Contact: Glen Anderson, Chief of Party, [email protected] Engility Corporation 1211 Connecticut Ave., NW Suite 700 Washington, DC 20036 Cover Photo: César A. Portocarrero Rodríguez, The Mountain Institute ! THE GLACIAL LAKE HANDBOOK REDUCING RISK FROM DANGEROUS GLACIAL LAKES IN THE CORDILLERA BLANCA, PERU February 2014 Prepared for: United States Agency for International Development Global Climate Change Office, Climate Change Resilient Development Project Washington, DC Prepared by: César A. Portocarrero Rodríguez The Mountain Institute Washington, DC and Engility Corporation Washington, DC Editorial assistance: Betsy Armstrong, Glen Anderson, Alton Byers, Jamie Carson, Michael Cote, John Harlin, Meghan Hartman, Daene McKinney, and Jonathan Schwarz Contact: Michael Cote, Engility Corporation, [email protected] DISCLAIMER
    [Show full text]
  • USAID Peru Local Adaptation Plan of Action LAPA
    TECHNICAL REPORT QUILLCAY PLAN DE ACCION LOCAL PARA LA ADAPTACIÓN AL CAMBIO CLIMATICO SUBCUENCA DE QUILLCAY, MANCOMUNIDAD MUNICIPAL WARAQ DICIEMBRE 2014 This publication is made possible by the support of the American people through the United States Agency for International Development (USAID). It was prepared by Engility Corporation and University of Austin- Texas. This report has been prepared for the United States Agency for International Development (USAID), under the Climate Change Resilient Development Task Order No. AID-OAA-TO-11- 00040, under The Integrated Water and Coastal Resources Management Indefinite Quantity Contract (WATER IQC II) Contract No. AID-EPP-I-00-04-00024. Engility Corporation Contact: Glen Anderson, Chief of Party, [email protected] Engility Corporation 1320 Braddock Place Alexandria, VA 22314 Cover Photo: University of Austin-Texas 1. Introducción 4 1.1. De un proyecto de reducción del riesgo de avalanchas en lagos glaciares a la gestión integrada de cuencas 4 1.2. Una alianza estratégica 6 1.3. Proceso de la “Mesa de Trabajo Palcacocha” 7 2. Antecedentes 10 2.1 Relación con la política regional y nacional de adaptación 10 2.2 Objetivos y principios generales del proceso 13 2.3 Descripción general del proceso de 7 pasos 14 3. Peligros climáticos y no climáticos en la subcuenca de Quillcay 16 3.1 Características físicas, riesgos y vulnerabilidades 16 3.2 Características socioeconómicas, riesgos y vulnerabilidades 25 3.3 Capacidad institucional para abordar los riesgos y vulnerabilidades 35 4. Quillcay: Proceso de Consulta para el Plan de Adaptación Local en las zonas rural y urbana. 46 4.1 Paso 1.
    [Show full text]