Investigating Proglacial Groundwater Systems in the Quilcayhuanca and Yanamarey Pampas, Cordillera Blanca, Peru
Total Page:16
File Type:pdf, Size:1020Kb
Investigating proglacial groundwater systems in the Quilcayhuanca and Yanamarey Pampas, Cordillera Blanca, Peru Laura Maharaj Department of Earth and Planetary Sciences McGill University Montréal, Québec, Canada July 2011 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science © Laura Maharaj 2011 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-83995-9 Our file Notre référence ISBN: 978-0-494-83995-9 NOTICE: AVIS: The author has granted a non- L'auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distrbute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriété du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission. In compliance with the Canadian Conformément à la loi canadienne sur la Privacy Act some supporting forms protection de la vie privée, quelques may have been removed from this formulaires secondaires ont été enlevés de thesis. cette thèse. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. Abstract High-elevation Andean water storage is extremely important for water resources for the arid western coast of South America. Pampas (a subset of pàramos) are a freshwater reservoir in the Cordillera Blanca, Peru. These organic-rich clay systems buffer stream and river runoff to the Rio Santa and provide water to surrounding communities. More than 50% of dry season discharge from pampas is groundwater derived, however little is known about their geomorphology and subsurface sedimentology. Watertable measurements, streambed temperature sensors, and ground penetrating radar (GPR) were used to characterize the subsurface and develop a formational model for the Yanamarey and Quilcayhuanca pampas, Cordillera Blanca, Peru. The water table in July 2009 was found on average to be 0.35 m and 0.57 m below the land surface at Quilcayhuanca and Yanamarey respectively. In the Yanamarey Pampa, streambed temperature sensors showed that upstream, water flows from the stream into the ground and further downstream, water flows upwards recharging the stream. From watertable measurements, a watertable map was produced that showed steeper watertable gradients further up valley. GPR was an effective tool for imaging the subsurface to a depth of 8 meters in the high permittivity material and delineated four stratigraphic units at both sites. In sequence the units are; dry sandy peat soils with pebbles at the surface, water saturated soil with sand and pebbles, linear stratified clay and glacial outwash intermixed with colluviums deposits. The identification of the subsurface sedimentary units allowed for the creation of formation models of both sites. The valley walls of Quilcayhuanca are steeper than Yanamarey, which caused more landslides and consequently more extensive colluvial deposits throughout the Quilcayhuanca valley subsurface. These connected colluvial deposits are likely the primary zone for groundwater flow and storage. ii Résumé Les réservoirs hydrologiques des hautes Andes constituent une partie importantee des ressources d'eau de la région aride de la côte ouest de l'Amérique du Sud. Les Pampas, un sous ensemble des pàramos, représentent un des réservoirs d'eau fraîche de la Cordillère Blanche du Pérou. Ces systèmes riches en argile et en matière organique modulent le ruissellement des rivières et des cours d'eau, et offrent de l'eau fraîche aux communautés voisines. Plus de 50 % du volume d’eau provenant des Pampas durant la saison sèche sont d’origine souterraine, cependant peu d'études se sont penchées sur la géomorphologie et la sédimentologie de ces systèmes. Des relevés du niveau de la nappe, des mesures de température dans le lit de la rivière, et des profils obtenus a l’aide de radars a pénétration du sol (RPS) ont été utilisés pour décrire le sous-sol et développer un modèle pour expliquer le fonctionnement des pampas de Yanamarey et de Quilcayhuancas de la Cordillère Blanche. Le niveau de la nappe se situe en moyenne a 0,35 m et 0,57m de profondeur à Quilcayhuanca et Yanamarey respectivement. Dans le Pampa du Yanamarey, les capteurs de température du lit du cours d'eau mettent en évidence un flux d’eau positif de la rivière vers le sol dans la partie supérieure des pampas, ce flux s’inversant dans sa partie inferieure. La carte du niveau de la nappe, réalisées a partir des mesures effectuées sur le terrain, montrent que les gradients du niveau d'eau sont plus forts en amont du système . L'outil RPS c'est montré utile pour produire des images du soul-sol jusqu'à une profondeur de huit mètres dans le matériau à haute permittivité, distinguant quatre unités stratigraphiques. Du sol aux profondeurs nous trouvons: de la tourbe sèche avec des galets superficiels; du sol saturé en eau avec du sable et des galets; de l'argile stratifiée linéairement et finalement divers dépôts glaciaires et paraglaciaires. L'identification de la géologie souterraine a permis la création du modèle pour chacun des deux sites. Les flancs de la vallée de Quilcayhunca sont plus pentus que ceux du Yanamarey, ce qui induit plus de glissement de terrain et par conséquence, plus de dépôts paraglaciaires dans le sous-sol de la vallée du Quilcayhunca. Ces dépôts et leurs interconnections forment vraisemblablement le passage privilégié de l’eau souterraine et forment possiblement les zones de stockage primaires de ces systèmes. iii Preface The following thesis presents original research by the author at the Department of Earth and Planetary Sciences, McGill University during the 2009-2011 academic years. It is submitted in a traditional thesis format, and is ultimately intended to form a manuscript to be submitted to a peer-reviewed journal. Data acquisition, analysis and interpretation were advised by Professor Jeffrey M. McKenzie, who acted as principal research supervisor along with Professor Sarah Hall, the additional committee member. The acquisition of the light detection and radar data took place in 2008 and was supervised by Professor Bryan Mark at The Ohio State University. Fieldwork took place during July 2009 and July 2010 in the Cordillera Blanca, Peru. Data were collected in the Cordillera Blanca, Peru, and analysis and interpretation were done by the author at McGill University, Montréal, Québec, Canada. ESRI ArcGIS was used by Sara Knox to identify pampas throughout the Cordillera Blanca. iv Acknowledgements I would like to express my heartfelt gratitude to the entire Department of Earth and Planetary Sciences (EPS). This department has been my second family during my years at McGill University. At such a large university, it can be hard to find your place, but the friendly faces of the faculty, staff and students of EPS made that task easy by creating a wonderful social and academic environment. I count myself lucky to have been able to be a part of the EPS community. I extend my gratitude to Jeffrey M. McKenzie, my principal supervisor, who gave me the freedom to take risks and expand my project into new, uncertain, directions. Although, no one travels as much as Jeff does, he still managed to always make himself readily available. He has been a constant source of inspiration and dedicated his time and energy to ensure that I reached my goals. I could not have asked for a better advisor. Many thanks go out to my vibrant research group, namely Michel Baraer, Stephanie Palmer, Bernardo Brixel, Rob Carver and Elizabeth Walsh along with my many other office mates of the first floor in Frank Dawson Adams. You have all been my rock, and I could not have completed my thesis without your advice, support, and most of all your cheerfulness, which made this office a place I loved walking into each day. EPS would not function if it weren’t for our dynamic administrative office trio of Anne Kosowski, Kristy Thornton and Angela Di Ninno. You ladies have been there to answer all of my questions throughout the years, and I will be at a loss of where to turn for advice once I have graduated. Brigitte Dionne, I also thank you for your patience with my countless computer questions. Throughout my fieldwork I had the help of many individuals from various institutions. Firstly, thank you to Fiona Darbyshire and Eric Rosa from L’Université du Québec à Montréal for all their help with the rental and use of their ground penetrating radar equipment. Secondly, great appreciation to Bryan Mark, KyungIn Huh, Jeffrey La Frenierre, Alyssa Singer and Shawn Stone from Ohio State University and Jeffrey Bury and Adam French from University of v California Santa Cruz, for making my two field seasons in Peru a great success.