Biodiversity in the Madrean Archipelago of Sonora, Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity in the Madrean Archipelago of Sonora, Mexico Merging Science and United States Department Management in a Rapidly of Agriculture Forest Service Changing World: Rocky Mountain Research Station Biodiversity and Management of the Proceedings RMRS-P-67 Madrean Archipelago III July 2013 May 1–5, 2012 Tucson, Arizona Biodiversity in the Madrean Archipelago of Sonora, Mexico Thomas R. Van Devender, Sergio Avila-Villegas, and Melanie Emerson Sky Island Alliance, Tucson, Arizona Dale Turner The Nature Conservancy, Tucson, Arizona Aaron D. Flesch University of Montana, Missoula, Montana Nicholas S. Deyo Sky Island Alliance, Tucson, Arizona Introduction open to incursions of frigid Arctic air from the north, and the Sierra Madres Oriental and Occidental create a double rain shadow and Flowery rhetoric often gives birth to new terms that convey images the Chihuahuan Desert. Madrean is a general term used to describe and concepts, lead to inspiration and initiative. On the 1892-1894 things related to the Sierra Madres. In a biogeographical analysis of expedition to resurvey the United States-Mexico boundary, Lieutenant the herpetofauna of Saguaro National Monument, University of Arizona David Dubose Gaillard described the Arizona-Sonora borderlands as herpetologist and ecologist Charles H. Lowe was probably the first to “bare, jagged mountains rising out of the plains like islands from the use the term ‘Madrean Archipelago’ to describe the Sky Island ranges sea” (Mearns 1907; Hunt and Anderson 2002). Later Galliard was between the Sierra Madre Occidental in Sonora and Chihuahua and the the lead engineer on the Panama Canal construction project. Mogollon Rim of central Arizona (Lowe, 1992). Warshall (1995) and In 1951, Weldon Heald, a resident of the Chiricahua Mountains, McLaughlin (1995) expanded and defined the area and concept. coined the term ‘Sky Islands’ for the ranges in southeastern Arizona (Heald 1951). Frederick H. Gehlbach’s 1981 book, Mountain Islands and Desert Seas: A Natural History of the US-Mexican Borderlands, Biodiversity provided an overview of the natural history of the Sky Islands in In 2007, Conservation International named the Madrean Pine-oak the southwestern United States. The ‘desert seas’ in the valleys are Woodlands as a global biodiversity hotspot. This was a very large desert grassland and Chihuahuan desertscrub in the north, Sonoran area that included the Sierra Madre Oriental in eastern Mexico, the desertscrub to the west, and foothills thornscrub in the south. Variants Sierra Madre Occidental (SMO) in western Mexico, and the Sky Is- of the term include Sky Island region (McLaughlin 1995; Gottfried land ranges north of them into Texas, New Mexico, and Arizona. The and others 2005; Skroch 2008), sky-island ranges (Felger and Wilson Sierra Madre Occidental extends in western Mexico from Zacatecas 1995, Fishbein and others 1995), and sky island bioregion (Fishbein and and Jalisco north to Chihuahua and Sonora. The southwestern United others 1995; Skroch 2008). Today we mostly use ‘Sky Island Region’ States is famous for its diversity of animals and plants, and in many with capital letters. The best name in Spanish is Islas Serranas, rather groups diversity increases southward in Sonora into the Sierra Madre than the literal translation Islas del Cielo, because cielo means both Occidental and the New World tropics. ‘sky’ and ‘heaven.’ The analogy to oceanic islands (Warshall 1995) Species richness is enhanced in the Sky Island Region for many is limited because Sky Islands differ from true insular areas in high reasons. The western half of North America is mountainous, with species diversity, low local and regional endemism, and low percent- topographically diverse habitats and vegetation zoned along eleva- ages of non-native species (McLaughlin 1995). While any isolated tional-climatic gradients. Biotic communities are concentrated in area is a potential area for speciation in small populations, there are small geographic areas compared to the eastern United States where relatively few species restricted to the Sky Island Mountains. vegetation mostly changes along a north-south latitudinal gradient. The term ‘Madrean’ comes from the Sierra Madre. The Mexican The Madrean Archipelago is a convergence zone for five biotic Plateau is a vast area of grasslands and desertscrub between the provinces (fig. 1). The Rocky Mountains and Colorado Plateaus to the Rocky Mountains in New Mexico and ca. 1,300 km to the south the north have temperate climates. In the mid-continent, the grasslands of Trans-Mexican Volcanic Belt in south-central Mexico. The Plateau is the Great Plains extend from Canada south to New Mexico, Texas, and the Mexican Plateau. In the south, a mosaic with desert grassland in the valleys and Chihuahuan desertscrub on adjacent limestone slopes extends westward into southeastern Arizona and northeastern Sonora. In: Gottfried, Gerald J.; Ffolliott, Peter F.; Gebow, Brooke S.; Eskew, Lane On the western edge of the Sky Island Region, Sonoran desertscrub G.; Collins, Loa C., comps. 2013. Merging science and management in surrounds Sky Island ranges. In the south, more tropical oak wood- a rapidly changing world: Biodiversity and management of the Madrean lands and pine-oak forests are in the Sierra Madre Occidental and Archipelago III; 2012 May 1-5; Tucson, AZ. Proceedings. RMRS-P-67. Sky Island mountaintops. In the lowlands, foothills thornscrub (FTS) Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky and tropical deciduous forest are present. The transition between the Mountain Research Station. New World tropics and the northern temperate zone is at about 29°N in 10 USDA Forest Service Proceedings RMRS-P-67. 2013 Biodiversity in the Madrean Archipelago of Sonora, Mexico Van Devender, Avila-Villegas, Emerson, and others B C A Figure 2—(A) The U.S.-Mexico Boundary and Gadsden Purchase Figure 1—Map of the biotic convergence in the Madrean Archipelago Surveys of 1848-1857 went through Guadalupe Canyon (photo by T. (map by Nick Deyo). R. Van Devender). (B) Arthur C.V. Schott and (C) Charles Wright were expedition botanists. east-central Sonora. The northern limits of FTS in Sonora are at about 30°11’N east of Sinoquipe in the Río Sonora Valley and 30°26’N at B Presa Angostura on the Río Bavispe at the southern end of the Sierra El Tigre. FTS does not reach Arizona, but the distributions of quite a few FTS species cross the border into southern Arizona in desert grassland or oak woodland. Sky Island Bioblitzes Today the term ‘bioblitz’ is popular, meaning an intensive effort in a short period to document the diversity of animals and plants in an area. The first bioblitz in the southwestern United States was the 1848-1855 survey of the new boundary between the United States and Mexico after the Treaty of Guadalupe Hidalgo of 1848 ended the Mexican-American War. The border between El Paso, Texas, and A the Colorado River in Arizona was surveyed in 1855-1856, following the Gadsden Purchase in 1853. Besides surveying and marking the border with monuments, these expeditions made extensive animal and plant collections, often by army physicians. Botanists John M. Figure 3—(A) The second U.S.-Mexico Boundary Survey in 1892- 1894 was led by Edgar A. Mearns. (B) The Arizona-Sonora Boundary Bigelow, Charles C. Parry, Arthur C. V. Schott, Edmund K. Smith, is between the Sierra San José and the Huachuca Mountains (photo George Thurber, and Charles Wright (fig. 2) and zoologist John H. by T. R. Van Devender). Clark collected between the Santa Rita Copper Mines (= Silver City), New Mexico and Santa Cruz, Sonora in the modern Arizona-Sonora borderlands. On the second United States-Mexico Boundary Survey in 1892-1894, Edgar A. Mearns (fig. 3) collected 30,000 animal and plant collections were published in the book Río Mayo Plants (Gentry plant specimens. The mammals were published in the book Mammals 1942). In the 1970s, 80s, and 90s, Paul S. Martin led expeditions from of the Mexican Boundary of the United States (Mearns 1907). In the University of Arizona, which retraced Gentry’s travels, explored 1890, Norwegian Carl S. Lumholtz led an anthropological expedition new areas, and resulted in a revision of the Río Mayo flora (Martin through northeastern Sonora. He published a popular travelogue in and others 1998). This large area includes the Sierra Madre Occidental 1902. Sweden’s Carl V. Hartman was a botanist in charge of general in eastern Sonora and western Chihuahua. biological collections (fig. 4). Studies of the flora and fauna of the Yécora area in the SMO in eastern Sonora provide baseline information needed to compare Río Mayo-Yécora Baseline biotas in the Madrean Archipelago with the mainland Sierra Madre Occidental, putting the biodiversity of Sky Island ranges in regional In the 1930s, Howard Scott Gentry was a recent graduate from the context. Mexican Federal Highway 16 (MEX 16), one of the few University of California at Berkeley. In search of employment, he highways that crosses the SMO, provides a west-to-east elevational went to the New World tropics in the Álamos area in southern Sonora, transect from the Río Yaqui (180 m) east to the Chihuahua border, in hopes of selling biological specimens to museum collections. His 42 km east of Yécora (fig. 5). USDA Forest Service Proceedings RMRS-P-67. 2013 11 Van Devender, Avila-Villegas, Emerson, and others Biodiversity in the Madrean Archipelago of Sonora, Mexico C A B Figure 4—The Lumholtz Expedition. (A) Carl S. Lumholtz. (B) Botanist Carl V. Hartman. (C) Sketch of the church in Bacadéhuachi in Lumholtz (1902). de Yécora region on 36 fieldtrips from 1995 to 2008. This flora with 1,776 taxa in 3,300 km2 is very diverse, ca. 30% more diverse than the Huachuca Mountains in southeastern Arizona (Reina-G. and Van Devender 2005). There are 2,125 observations of 301 species of birds from the Municipio de Yécora in the Madrean Archipelago Biodiversity Assessment (MABA) database (http://www.Madrean.org).
Recommended publications
  • The Plant Press the ARIZONA NATIVE PLANT SOCIETY
    The Plant Press THE ARIZONA NATIVE PLANT SOCIETY Volume 36, Number 1 Summer 2013 In this Issue: Plants of the Madrean Archipelago 1-4 Floras in the Madrean Archipelago Conference 5-8 Abstracts of Botanical Papers Presented in the Madrean Archipelago Conference Southwest Coralbean (Erythrina flabelliformis). Plus 11-19 Conservation Priority Floras in the Madrean Archipelago Setting for Arizona G1 Conference and G2 Plant Species: A Regional Assessment by Thomas R. Van Devender1. Photos courtesy the author. & Our Regular Features Today the term ‘bioblitz’ is popular, meaning an intensive effort in a short period to document the diversity of animals and plants in an area. The first bioblitz in the southwestern 2 President’s Note United States was the 1848-1855 survey of the new boundary between the United States and Mexico after the Treaty of Guadalupe Hidalgo of 1848 ended the Mexican-American War. 8 Who’s Who at AZNPS The border between El Paso, Texas and the Colorado River in Arizona was surveyed in 1855- 9 & 17 Book Reviews 1856, following the Gadsden Purchase in 1853. Besides surveying and marking the border with monuments, these were expeditions that made extensive animal and plant collections, 10 Spotlight on a Native often by U.S. Army physicians. Botanists John M. Bigelow (Charphochaete bigelovii), Charles Plant C. Parry (Agave parryi), Arthur C. V. Schott (Stephanomeria schotti), Edmund K. Smith (Rhamnus smithii), George Thurber (Stenocereus thurberi), and Charles Wright (Cheilanthes wrightii) made the first systematic plant collection in the Arizona-Sonora borderlands. ©2013 Arizona Native Plant In 1892-94, Edgar A. Mearns collected 30,000 animal and plant specimens on the second Society.
    [Show full text]
  • Bio 308-Course Guide
    COURSE GUIDE BIO 308 BIOGEOGRAPHY Course Team Dr. Kelechi L. Njoku (Course Developer/Writer) Professor A. Adebanjo (Programme Leader)- NOUN Abiodun E. Adams (Course Coordinator)-NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA BIO 308 COURSE GUIDE National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja Office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja e-mail: [email protected] URL: www.nou.edu.ng Published by National Open University of Nigeria Printed 2013 ISBN: 978-058-434-X All Rights Reserved Printed by: ii BIO 308 COURSE GUIDE CONTENTS PAGE Introduction ……………………………………......................... iv What you will Learn from this Course …………………............ iv Course Aims ……………………………………………............ iv Course Objectives …………………………………………....... iv Working through this Course …………………………….......... v Course Materials ………………………………………….......... v Study Units ………………………………………………......... v Textbooks and References ………………………………........... vi Assessment ……………………………………………….......... vi End of Course Examination and Grading..................................... vi Course Marking Scheme................................................................ vii Presentation Schedule.................................................................... vii Tutor-Marked Assignment ……………………………….......... vii Tutors and Tutorials....................................................................... viii iii BIO 308 COURSE GUIDE INTRODUCTION BIO 308: Biogeography is a one-semester, 2 credit- hour course in Biology. It is a 300 level, second semester undergraduate course offered to students admitted in the School of Science and Technology, School of Education who are offering Biology or related programmes. The course guide tells you briefly what the course is all about, what course materials you will be using and how you can work your way through these materials. It gives you some guidance on your Tutor- Marked Assignments. There are Self-Assessment Exercises within the body of a unit and/or at the end of each unit.
    [Show full text]
  • Illustrated Flora of East Texas Illustrated Flora of East Texas
    ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D.
    [Show full text]
  • Euphorbiaceae)
    Polish Botanical Journal 60(2): 147–161, 2015 DOI: 10.1515/pbj-2015-0024 PHYTOGEOGRAPHICAL ANALYSIS OF EUPHORBIA SUBGENUS ESULA (EUPHORBIACEAE) Dmitry V. Geltman Abstract. Euphorbia subg. Esula is one of four major clades within the genus. A geographical analysis of the 466 species in the subgenus is reported here. Every species was assigned to one of 29 geographical elements clustered in ten groups of ele- ments. This geographical analysis showed that the Tethyan group (comprising nine geographical elements) clearly dominates the subgenus and contains 260 species (55.79% of the total number of species). The most numerous geographical elements are Irano-Turanian (105 species) and Mediterranean (85). Other significant groups of elements are Boreal (91 species, 19.54%), East Asian (40 species, 8.58%), Madrean (26 species, 5.58%), Paleotropical (23 species, 4.94%) and South African (16 species, 3.43%). The area of the Tethyan floristic subkingdom is the center of the modern diversity of E. subg. Esula. It is likely that such diversity is the result of intensive speciation that took place during the Eocene–Miocene. Key words: Euphorbia subg. Esula, geographical elements, Irano-Turanian floristic region, Mediterranean floristic region, phytogeographical analysis, Tethyan floristic subkingdom Dmitry V. Geltman, Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Street, 2, St. Petersburg, 197376, Russia; e-mail: [email protected] Introduction genus euphorbia and its taxonomy cantly differ from traditional ones. For subgenus Esula (Riina et al. 2013), 21 sections were ac- The giant genus Euphorbia L. (Euphorbiaceae) re- cepted on the basis of analyses of the combined cently became a subject of detailed phylogenetic and ITS + ndhF dataset (Fig.
    [Show full text]
  • Chapter 3 MATERIAL and METHODS
    Chapter 3 MATERIAL AND METHODS 3.1. Introduction The study of flora consists of plant and situation of plant habitat. There are many definitions for word "flora". The word "flora" refers to the plants occurring within a given region. A Flora may contain anything from a simple list of the plants occurring in an area to a very detailed account of those plants. Floras are different from popular manuals in that they attempt to cover all of the plants, rather than only the most common or conspicuous ones. When a researcher wants to study Flora he/or she can understand many things from that. A Flora ahnost always contains scientific names, and it may also include common names, literature references, descriptions, habitats, geographical distribution, illustrations, flowering times, and notes. Less often, Floras includes such specialized information as data on plant chemistry, reproduction, chromosome numbers, and population occurrences. Sometimes, the plants are listed alphabetically, and sometimes they are represented within a classification system that indicates which plants are most similar or are thought to be related. Floras often also include devices called "keys" that enable the user to identify an unknown plant. Floristic elements are most often defined subjectively by grouping plant ranges into types based on descriptions provided by floras and manuals (McLaughlin and Bowers, 1990). By study of floristic traits of an area, it is possible to describe floristic province and phytogeographical regions. The delimitation of floristic provinces and sub-provinces is mainly based on the distribution boundaries of vascular plant species (Yurtsev, 1994) which is known as true plants.
    [Show full text]
  • Ecosystems and Diversity of the Sierra Madre Occidental
    Ecosystems and Diversity of the Sierra Madre Occidental M. S. González-Elizondo, M. González-Elizondo, L. Ruacho González, I.L. Lopez Enriquez, F.I. Retana Rentería, and J.A. Tena Flores CIIDIR I.P.N. Unidad Durango, Mexico Abstract—The Sierra Madre Occidental (SMO) is the largest continuous ignimbrite plate on Earth. Despite its high biological and cultural diversity and enormous environmental and economical importance, it is yet not well known. We describe the vegetation and present a preliminary regionalization based on physio- graphic, climatic, and floristic criteria. A confluence of three main ecoregions in the area corresponds with three ecosystems: Temperate Sierras (Madrean), Semi-Arid Highlands (Madrean Xerophylous) and Tropical Dry Forests (Tropical). The Madrean region harbors five major vegetation types: pine forests, mixed conifer forests, pine-oak forests, oak forests and temperate mesophytic forests. The Madrean Xerophylous region has oak or pine-oak woodlands and evergreen juniper scrub with transitions toward the grassland and xerophylous scrub areas of the Mexican high plateau. The Tropical ecosystem, not discussed here, includes tropical deciduous forests and subtropical scrub. Besides fragmentation and deforestation resulting from anthropogenic activities, other dramatic changes are occurring in the SMO, including damage caused by bark beetles (Dendroctonus) in extensive areas, particularly in drought-stressed forests, as well as the expansion of chaparral and Dodoneaea scrub at the expense of temperate forest and woodlands. Comments on how these effects are being addressed are made. Introduction as megacenters of plant diversity: northern Sierra Madre Occidental and the Madrean Archipelago (Felger and others 1997) and the Upper The Sierra Madre Occidental (SMO) or Western Sierra Madre is the Mezquital River region (González-Elizondo 1997).
    [Show full text]
  • Flora of North Central Texas Flora of North Central Texas
    SHINNERS & MAHLER’S FLOR A OF NORTH CENTRAL TEXAS GEORGE M. DIGGSIGGS,, JJR.. BBARNEY L. LIPSCOMBIPSCOMB ROBERT J. O’KENNON D VEGETATIONAL AREAS OF TEXAS MODIFIED FROM CHECKLIST OF THE VASCULAR PLANTS OF TEXAS (HATCH ET AL. 1990). NEARLY IDENTICAL MAPS HAVE BEEN USED IN NUMEROUS WORKS ON TEXAS INCLUDING GOULD (1962) AND CORRELL AND JOHNSTON (1970). 1 PINEYWOODS 2 GULF PRAIRIES AND MARSHEs 3 POST OAK SAVANNAH 4 BLACKLAND PRAIRIES 5 CROSS TIMBERS AND PRAIRIES 6 SOUTH TEXAS PLAINS 7 EDWARDS PLATEAU 8 ROLLING PLAINS 9 HIGH PLAINS 10 TRANS-PECOS, MOUNTAINS AND BASINS D VEGETATIONAL AREAS OF NORTH CENTRAL TEXAS D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D SHINNERS & MAHLER’S ILLUSTRATED FLORA OF NORTH CENTRAL TEXAS Shinners & Mahler’s ILLUSTRATED FLORA OF NORTH CENTRAL TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) BASS FOUNDATION ROBERT J. O’KENNON RUTH ANDERSSON MAY MARY G. PALKO AMON G. CARTER FOUNDATION MARGRET M. RIMMER MIKE AND EVA SANDLIN INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE OTHER CONTRIBUTORS: PEG AND BEN KEITH FRIENDS OF HAGERMAN NAT IONAL WILDLIFE REFUGE SUMMERLEE FOUNDATION JOHN D.
    [Show full text]
  • Merging Science and Management in a Rapidly Changing World
    Biodiversity in the Madrean Archipelago of Sonora, Mexico Thomas R. Van Devender, Sergio Avila-Villegas, and Melanie Emerson Sky Island Alliance, Tucson, Arizona Dale Turner The Nature Conservancy, Tucson, Arizona Aaron D. Flesch University of Montana, Missoula, Montana Nicholas S. Deyo Sky Island Alliance, Tucson, Arizona Introduction open to incursions of frigid Arctic air from the north, and the Sierra Madres Oriental and Occidental create a double rain shadow and Flowery rhetoric often gives birth to new terms that convey images the Chihuahuan Desert. Madrean is a general term used to describe and concepts, lead to inspiration and initiative. On the 1892-1894 things related to the Sierra Madres. In a biogeographical analysis of expedition to resurvey the United States-Mexico boundary, Lieutenant the herpetofauna of Saguaro National Monument, University of Arizona David Dubose Gaillard described the Arizona-Sonora borderlands as herpetologist and ecologist Charles H. Lowe was probably the first to “bare, jagged mountains rising out of the plains like islands from the use the term ‘Madrean Archipelago’ to describe the Sky Island ranges sea” (Mearns 1907; Hunt and Anderson 2002). Later Galliard was between the Sierra Madre Occidental in Sonora and Chihuahua and the the lead engineer on the Panama Canal construction project. Mogollon Rim of central Arizona (Lowe, 1992). Warshall (1995) and In 1951, Weldon Heald, a resident of the Chiricahua Mountains, McLaughlin (1995) expanded and defined the area and concept. coined the term ‘Sky Islands’ for the ranges in southeastern Arizona (Heald 1951). Frederick H. Gehlbach’s 1981 book, Mountain Islands and Desert Seas: A Natural History of the US-Mexican Borderlands, Biodiversity provided an overview of the natural history of the Sky Islands in In 2007, Conservation International named the Madrean Pine-oak the southwestern United States.
    [Show full text]
  • Pull-Apart Basins at Releasing Bends of the Sinistral Late Jurassic Mojave-Sonora Fault System
    spe393-03 page 97 Geological Society of America Special Paper 393 2005 Pull-apart basins at releasing bends of the sinistral Late Jurassic Mojave-Sonora fault system Thomas H. Anderson* Department of Geology and Planetary Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA Jonathan A. Nourse Geological Sciences Department, California State Polytechnic University, Pomona, California 91768, USA ABSTRACT A 200–500-km-wide belt along the southwestern margin of cratonic North America is pervaded by northwest- and east-trending faults that fl ank basins con- taining thick deposits of locally derived conglomerate and sedimentary breccia. These deposits that crop out mainly in the northern part of mainland Mexico, or southern parts of Arizona and New Mexico are unconformable at their bases, have similar Upper Jurassic and/or Lower Cretaceous stratigraphic ages, and commonly preserve volcanic components in the lower parts of upward-fi ning sections. We argue that these basins share a common structural origin, based on: (1) the presence of faults, locally preserved, that generally defi ne the basin margins, (2) similar basal units comprised of coarse conglomeratic strata derived from adjacent basement, and (3) locally preserved syntectonic relationships to bounding faults. Fault orientations, and our observation that the faults (and their associated basins) extend south to the inferred trace of the Late Jurassic Mojave-Sonora megashear, suggest that the basins formed in response to transtension associated with sinistral movement along the megashear. Northwest-striking left-lateral strike-slip faults that terminate at east-striking normal faults defi ne releasing left steps at which crustal pull-apart structures formed.
    [Show full text]
  • Floristic Regions of the World
    - "52 ^ A FLORISTIC REGIONS OF THE WORLD Armen Takhtajan Translated by Theodore J. Crovello with the assistance and collaboration of the author and under the editorship of Arthur Cronquist UNIVERSITY OF CALIFORNIA PRESS Berkeley Los Angeles London CONTENTS Editor's Preface xv Author's Preface to the English Translation xvii PREFACE xxi INTRODUCTION 1 I. HOLARCnC KINGDOM (HOLARCTIS) 9 A. BOREAL SUBKINGDOM 10 1. Circumboreal Region 10 1. Arctic Province 12 2. Atlantic-European Province 16 3. Central European Province • 17 4. Illyrian or Balkan Province 21 5. Euxine Province 22 6. Caucasian Province 25 7. Eastern European Province 27 8. Northern European Province 29 9. Western Siberian Province 29 10. Altai-Sayan Province 30 11. Middle Siberian Province 31 12. Transbaikalian Province 32 vti Vtii CONTENTS 13. Northeastern Siberian Province 33 14. Okhotsk-Kamchatka Province 33 15. Canadian Province 34 2. Eastern Asiatic Region 39 1. Manchurian Province 48 2. Sakhalin-Hokkaido Province 52 3. lapanese-Korean Province 53 4. Volcano-Bonin Province 56 5. Ryukyu or Tokara-Okinawa Province 58 6. Taiwanian Province 59 7. Northern Chinese Province 62 8. Central Chinese Province 63 9. Southeastern Chinese Province 65 10. Sikang-Yunnan Province 65 11. Northern Burmese Province 68 12. Eastern Himalayan Province 70 13. Khasi-Manipur Province 73 3. North American Atlantic Region 78 1. Appalachian Province 84 2. Atlantic and Gulf Coastal Plain Province 91 3. North American Prairies Province 95 4. Rocky Mountain Region 99 1. Vancouverian Province 101 2. Rocky Mountain Province 105 B. TETHYAN (ANCIENT MEDITERRANEAN) SUBKINGDOM 110 5. Macaronesian Region 112 1.
    [Show full text]
  • A Preliminary Description of the Mogollon Highlands Ecoregion by Thomas Fleischner1, David Hanna1, and Lisa Floyd-Hanna2
    A Preliminary Description of the Mogollon Highlands Ecoregion by Thomas Fleischner1, David Hanna1, and Lisa Floyd-Hanna2 In this paper, we describe and present the results of our efort southern counterpart, the Sonoran Desert, and its northern to establish a spatial delineation of the Mogollon Highlands neighbor, the Colorado Plateau. Tis region roughly follows the region—an ecologically fascinating North American transition interface of two great physiographic provinces of the American zone of continental importance. Tis dramatic landscape of West — the Basin and Range and the Colorado Plateau (Hunt escarpments, canyons, mesas, deserts, and high conifer 1967). Due to great geologic diversity (Nations and Stump forests—where the Sonoran Desert of the Basin and Range 1996), it presents dramatic topographic diversity—varying Province meets the redrock country of the Colorado Plateau several thousand feet in elevation and including a series of and the Southern Rocky Mountains, where the northern limits deep canyon systems that drain of the Colorado Plateau and of some species coexist with the southern limits of others—is a emerge into the low Sonoran Desert. land of high biological, ecological, and cultural diversity. Tis Te region’s positioning at a continental-scale biogeographic area of dramatic elevational gradients, at a continental-scale crossroads contributes to its tremendous ecological diversity. biogeographic crossroads, is especially well-suited for studies Te southern extent of the Rocky Mountains intersects the that can provide understanding of global climate change and eastern portion of the Mogollon Highlands. All four of North the capacity of species and ecological communities to adapt. America’s deserts connect directly with the region: the Great The Region Basin Desert to the north, the Mojave to the west, and the Sonoran and Chihuahuan to the south.
    [Show full text]
  • Carbon and Co-Benefits from Sustainable Land-Use Management
    Report submitted to the United States Agency for International Development Cooperative Agreement No. EEM-A-00-03-00006-00 Carbon and Co-Benefits from Sustainable Land-Use Management November 2005 Submitted by: Sandra Brown, Project Coordinator Ecosystem Services Unit 1621 N. Kent St, Suite 1200 Arlington, VA 22209 Email: [email protected] Deliverable13a: Impact of logging on carbon stocks of forests: Chihuahua Mexico as a case study Timothy Pearson, Sandra Brown, Aaron Dushku and Sarah Walker Executive Summary Commercial logging of native forests is integral to the economies, and central to the development, of many nations. Monitoring changes in carbon stocks serves as a method of assessing the impact of forest management activities, and also helps determine the role forest harvesting plays in the global carbon cycle. Land-use changes are a significant source of atmospheric CO 2, contributing up to about 25% of current fossil fuel CO 2 emissions. It is hard to quantify the impact of logging particularly selective logging, so current estimates of the effects of forest management are likely to be inaccurate. In this study, the impact of logging on the carbon balance of the temperate pine forests in the Ejido of Chocachi, Chihuahua State in Mexico was assessed. Seven trees were harvested to verify the relationship between biomass and diameter at breast height. One hundred and thirty-five felled trees were measured to correlate the relationship between extracted volume, and extracted carbon and carbon in dead wood after harvesting. The forest in Chihuahua consisted of relatively short trees (< 20 m height) in an open low density pattern.
    [Show full text]