MARYLAND Case Study: the X-Prize

Total Page:16

File Type:pdf, Size:1020Kb

MARYLAND Case Study: the X-Prize Case Study: The X-Prize • Overview of requirements • Underlying physics • Competitors U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design X-Prize Rules (synopsis) • Must be privately financed • Have to launch with three people (one crew, two passengers) [For flight test purposes, passengers may be replaced by ballast] • Must reach altitude of 100 km • Must return to launch site • Must make two flights within two weeks • Must be “substantially reusable” (no more than 10% of non-propellant mass replaced between flights) U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Minimum Vertical Trajectory - Losses 2500 2000 1500 1000 500 DeltaV losses (m/sec) 0 2 2.2 2.4 2.6 2.8 3 3.2 Sensed Acceleration (g's) Gravity Losses Drag Losses Total Losses U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Advent Launch Services • Sea launched, vertical rocket flight • Recovery? • Plans to scaling to commercial launch U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design ARCA (Romania) • Vertical rocket launch • Parachute recovery into water U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Armadillo Aerospace (Texas) • Vertical rocket launch (H2O2 monopropellant) • Parachute recovery onto land • Sponsored by John Carmack (”Doom”) U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Arrow (Canada) • Vertical rocket launch (LOX/alcohol and solids) • Parachute landing into water • Modeled on V-2 rocket • Have performed full- power (57Klb thrust) static engine firings U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Arrow 57Klb Thrust Static Test U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Da Vinci (Canada) • Launch from hot-air balloon • Parachute landing U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Da Vinci Prototype U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Da Vinci Prototype U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design HARC (Alabama) • Vertical launch from ocean-going barge • Parachute landing U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Interorbital Systems (California) • Sea launch, vertical rocket • Parachute landing U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Interorbital Systems U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Starchaser (England) • LOX-kerosine vertical launch • Parachute landing U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Starchaser Thunderbird Vehicle Concept U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Gauchito (Argentina) • Hybrid rocket, vertical launch • Parachute recovery U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Pioneer Rocketplane (California) • Horizontal takeoff (turbojet engines) • Rocket zoom • Horizontal landing • (Out of money) U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Space Transport (Washington) • Vertical rocket launch • Parachute landing into water • Static-tested 12Klb solid engine U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Scaled Composites (Burt Rutan) • Two-staged – Subsonic air- launched – Rocket-powered winged • Supported by Paul Allen (Microsoft) • Flown to 106Kft, Mach 1.6 U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design SpaceShip One with Thermal Protection U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design “White Knight” Launch Aircraft U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design SpaceShip One U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design White Knight with SpaceShip One U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Powered Test - 8 Apr 04 U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design Feathered Entry Configuration U N I V E R S I T Y O F Case Study: The X-Prize MARYLAND Principles of Space Systems Design.
Recommended publications
  • Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports
    Commercial Space Transportation 2006 Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports January 2006 HQ003606.INDD 2006 U.S. Commercial Space Transportation Developments and Concepts About FAA/AST About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encour- age, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Federal Aviation Administration Office of Commercial Space Transportation i About FAA/AST 2006 U.S. Commercial Space Transportation Developments and Concepts NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Federal Aviation Administration Office of Commercial Space Transportation 2006 U.S. Commercial Space Transportation Developments and Concepts Contents Table of Contents Introduction . .1 Significant 2005 Events . .4 Space Competitions . .6 Expendable Launch Vehicles . .9 Current Expendable Launch Vehicle Systems . .9 Atlas 5 - Lockheed Martin Corporation .
    [Show full text]
  • Reusable Launch Vehicles Exos Aerospace Is Making
    Reusable Launch Vehicles Exos Aerospace is making SPACEavailable…TM The 4 FAA/AST The other 6 of 10 Licensed Reusable EXOS AEROSPACE is… “Non-Reusable Rocket Launch Rocket” Launch Providers Providers companies of companies of 1 4 IN THE 1 10 in the United WORLD with a licensed States with an Active reusable rocket. Launch License $ <10% reuse cost Access to space $$ 25% reuse cost is too inflexible Air Launch Provides for increased flexibility $$ reuse cost… % unknown (Exos, Virgin Orbit, Lockheed Martin) Reusability Enables increased ROI through cost reductions (Exos, SpaceX, Blue Origin) 1- Ignition 2- Clean Lox Ethanol Engine (launch) Apogee SARGE Flight 1 3- Drogue Return to 4.- Canopy Return from reenter the atmosphere Rocket flight 3 Our team has built hundreds of rocket engines and dozens of suborbital flying vehicles designed for reusability TEAM’S PAST EXPERIENCE Vehicle Evolution (20+ Years) Armadillo 4 Launches and 3 Rocket Racing st J Aerospace Lunar recoveries on 1 League SARGE vehicle Founded by Lander development SARGE a st John Carmack Challenge 1 Today program Super Mod Aug 2018 – Oct 2019 SARGE-LW Place g u a r 2000 2006 2008 2009 2010 2011 2015 2020 Apr 2020 Air Force X-Prize Lunar lander 2010-2013 Stig Exos Aerospace Hypersonic Challenge2009 flies to 95km acquires assets of Contract Competition Armadillo Aerospace Armadillo prize $ w/Pixel and and brings on the team Testing SARGE R2 J Texel Round 1 winner- NASA with new management for return to flight Winners Morpheus Sale supporting commercial post COVID 19 a objectives
    [Show full text]
  • Small Launch Vehicles a 2015 State of the Industry Survey Carlos Niederstrasser
    Small Launch Vehicles A 2015 State of the Industry Survey Carlos Niederstrasser An update to this survey will be presented at the 2016 Internaonal Astronau9cal Congress 1 Agenda Overview of Small Launch Vehicles Launch Method/Locations Launch Performance Projected Launch Costs Individual Rocket Details Copyright © 2015 by Orbital ATK, Inc. 2 Listing Criteria Have a maximum capability to LEO of 1000 kg (definition of LEO left to the LV provider). The effort must be for the development of an entire launch vehicle system (with the exception of carrier aircraft for air launch vehicles). Mentioned through a web site update, social media, traditional media, conference paper, press release, etc. sometime after 2010. Have a stated goal of completing a fully operational space launch (orbital) vehicle. Funded concept or feasibility studies by government agencies, patents for new launch methods, etc., do not qualify. Expect to be widely available commercially or to the U.S. Government No specific indication that the effort has been cancelled, closed, or otherwise disbanded. Correc&ons, addi&ons, and comments are welcomed and encouraged! Copyright © 2015 by Orbital ATK, Inc. 3 We did not … … Talk to the individual companies … Rely on any proprietary/confidential information … Verify accuracy of data found in public resources Ø Primarily relied on companies’ web sites Funding sources, when listed, are not implied to be the vehicles sole or even majority funding source. We do not make any value judgements on technical or financial credibility
    [Show full text]
  • Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
    Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.
    [Show full text]
  • 0.0 a New Way to Look at Things George Nield FINAL
    A NEW WAY TO LOOK AT THINGS by ∗ George C. Nield ood evening everyone. I am not sure how many of you are aware of it, but today is the anniversary of a very significant event G in the development of mankind’s understanding of the Universe. It was on 24 May 1543, that Nicolaus Copernicus is said to have published his most important work, which was titled "On the Revolutions of the Celestial Spheres." Previously, based on the writings of Aristotle and Ptolemy, it had been assumed that the Earth was located at the very center of the universe. Copernicus rejected that approach. Instead, he showed how a model of the Solar System in which the Earth and other planets traveled in orbits around the Sun was better able to account for the observed motions of the heavenly bodies. Although Copernicus did not attempt to explain what would cause such motions, the publication of his heliocentric theory provided a new way to look at things, and it is often hailed as marking the beginning of the scientific revolution. We have come a long way since then in our knowledge of physics, mathematics, and astronomy. At the same time, with the recent retirement of the Space Shuttle, we are currently in the process of undergoing a huge change ∗ Associate Administrator, Commercial Space Transportation, Federal Aviation Administration, Washington, DC, USA. REGULATION OF EMERGING MODES OF AEROSPACE TRANSPORTATION in how we travel to and operate in outer space, and how we think about spaceflight. Ever since the very beginning of the space age, more than 50 years ago, almost every space activity, milestone, and accomplishment has been under the direction and control of national governments, which in the US has meant NASA or the Department of Defense.
    [Show full text]
  • 103 *ADITYA KUMAR PANDEY & *HARSHIT TIWARI It Is Very Evident
    SPACE TOURISM – EXPANDING THE HORIZON 1 *ADITYA KUMAR PANDEY & *HARSHIT TIWARI INTRODUCTION It is very evident that after the first successful operational flights the number of tourists willing to go in space will be more and proportionately the tickets for such space flights will also increase. Such increase in demand of interest of tourists will give a boost to the confidence of the commercial space flights to increase the facilities and design of their spacecrafts. Such increase in the market will create a competition among various commercial companies which will lead to enhancement and development of new technology as that is the basis on which they can claim better prices. The companies will focus on increased safety which is the key in commercial flights business. Enhanced performance and increase in the flight time will play a major role as this activity will attract more people and this is what tourists demand. BRIEF HISTORY OF SPACE TOURISM : While tracing history one thing which is evident is that travel has always been a charm for humans. To seek new places is not new for humans and this very habit of humans forms the basis for growth in tourism sector. Today earth became a small place to explore for humans and now humans are exploring outer space. So now the concept of Space tourists is no more a dream rather it is now *4 th Year, B.A.LL.B. (Hons.), University of Petroleum and Energy Studies, Dehradun. 103 Published in Articles section of www.manupatra.com reality. Since the 1960s, around 450 astronauts have gone into outer space but very few rich individuals have gone into space as tourists.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • The Emergence of Newspace
    THE EMERGENCE OF NEWSPACE 1 THE IMPACT ON THE SPACE INDUSTRY AND THE NEXT GENERATION OF ENGINEERS IEEE Region 8 SYP Congress 2016 Regensburg, Germany 20 August 2016 Burton Dicht [email protected] 2 Discussion Items • Introduction – My Background and Why I’m Interested in Space • The History of Spaceflight 101 – Understanding How Governments Got Involved in Space • A New Space Age - Understanding the Factors that Created and Shaped NewSpace • Global Space Today and Tomorrow – What does the current Space Landscape Look Like and What About the Near Future? • Job Search Strategies and Resources 3 Some Background on Me and My Interest in Space 4 Apollo 11 – July 20, 1969 Astronaut Buzz Aldrin on the Moon https://www.youtube.com/watch?v=E96EPhqT-ds 5 My Perspective as a 10-Year Old Full Moon in July 6 How Did They Do That? 7 400,000 Engineers, Scientists and Technicians Made Apollo Possible 8 That Was My Inspiration: I Wanted to Learn How to Do That! High School Space Program – Edwards Air Force Base, Project SPARC 1977 California – 1983 Burt 9 My Engineering Career NASA Intern Facilities Design Kennedy Space Center Lead Engineer Configuration/Systems Integration Northrop Grumman Member of Technical Staff Payload Integration Rockwell STSD – Space Shuttle 10 A Fun Aerospace Career Landing of STS 26 at EAFB – Oct 1988 Arrival of Enterprise at JFK Airport - April 2012 Northrop – Flying with Lockheed friends Open House – EAFB - 1991 11 The History of Spaceflight 101 12 Spaceflight Timeline: The Beginning Sputnik, the first NASA is formed and Alan
    [Show full text]
  • Sale Price Drives Potential Effects on DOD and Commercial Launch Providers
    United States Government Accountability Office Report to Congressional Addressees August 2017 SURPLUS MISSILE MOTORS Sale Price Drives Potential Effects on DOD and Commercial Launch Providers Accessible Version GAO-17-609 August 2017 SURPLUS MISSILE MOTORS Sale Price Drives Potential Effects on DOD and Commercial Launch Providers Highlights of GAO-17-609, a report to congressional addressees Why GAO Did This Study What GAO Found The U.S. government spends over a The Department of Defense (DOD) could use several methods to set the sale billion dollars each year on launch prices of surplus intercontinental ballistic missile (ICBM) motors that could be activities as it strives to help develop a converted and used in vehicles for commercial launch if current rules prohibiting competitive market for space launches such sales were changed. One method would be to determine a breakeven and assure its access to space. Among price. Below this price, DOD would not recuperate its costs, and, above this others, one launch option is to use price, DOD would potentially save. GAO estimated that DOD could sell three vehicles derived from surplus ICBM Peacekeeper motors—the number required for one launch, or, a “motor set”—at motors such as those used on the Peacekeeper and Minuteman missiles. a breakeven price of about $8.36 million and two Minuteman II motors for about The Commercial Space Act of 1998 $3.96 million, as shown below. Other methods for determining motor prices, such prohibits the use of these motors for as fair market value as described in the Federal Accounting Standards Advisory commercial launches and limits their Board Handbook, resulted in stakeholder estimates ranging from $1.3 million per use in government launches in part to motor set to $11.2 million for a first stage Peacekeeper motor.
    [Show full text]
  • Non-Traditional Flight Safety Systems and IVHM
    Non-Traditional Flight Safety Systems & Integrated Vehicle Health Management Systems Descriptions of Proposed & Existing Systems and Enabling Technologies & Verification Methods Final Report Produced for: The Office of the Associate Administrator for Commercial Space Transportation, Federal Aviation Administration Section AST-300 Produced by: Michael Fudge Thomas Stagliano Sunny Tsiao ITT Industries, Advanced Engineering & Sciences Division 2560 Huntington Avenue Alexandria, Virginia 22303 Contract DTFA01-01-D-03013 Delivery Order #3 August 26, 2003 i EXECUTIVE SUMMARY This paper describes present and future flight safety systems (FSS) and integrated vehicle health management (IVHM) systems relevant to reusable launch vehicle (RLV) design and operation. FSS design and implementation for RLVs in the launch-regime will be based mainly upon the evolving flight safety infrastructure presently utilized for expandable launch vehicles (ELV)s and the Space Shuttle. The evolution towards a more autonomous “space-based” range is the most significant issue within the RLV launch-phase flight safety paradigm, and the ability to confidently use Global Positioning System (GPS) receivers on both ELVs and RLVs to conduct real-time vehicle tracking and trajectory assessment is the key enabling technology towards this vision. Experiments utilizing sounding rockets to test this technology are currently ongoing. A flight safety paradigm for RLVs in the post-reentry phase of operations (atmospheric powered or gliding-flight ) is postulated in this paper; it is based upon current Unmanned Aerial Vehicle (UAV) flight safety practices and designs. The emphasis in this paper is placed upon flight safety for uncrewed RLVs; however, pertinent post-reentry flight safety issues and possible system operations for crewed RLVs are also addressed.
    [Show full text]
  • Federal Aviation Administration Definitions Administration
    Federal Aviation Federal Aviation Administration Definitions Administration Presented to: Legal Subcommittee of the United Nations Committee on the Peaceful Uses of Outer Space By: Laura Montgomery, Senior Attorney, FAA Statutory Authority • 51 U.S.C. chapter 509 (Ch. 509) – Authorizes the Secretary of Transportation to authorize launch and reentry and operation of launch and reentry sites as carried out by U.S. citizens or within the United States. – Directs the Secretary to • Exercise this responsibility consistent with public health and safety, safety of property, and national security and foreign policy interests of the United States. • Encourage, facilitate and promote commercial space launches and reentries by the private sector. Federal Aviation 2 Administration April 2011 Statutory Mission ELV Air Launch Launch & Reentry Sites RLV Launch & Reentry Sea Launch Human Space Flight Federal Aviation 3 3 Administration April 2011 Launch • Launch – to place or try to place a launch vehicle or reentry vehicle and any payload, crew or space flight participant from Earth in a suborbital trajectory; in Earth orbit in outer space; or otherwise in outer space. • Launch Vehicle – a vehicle built to operate in, or place a payload or human beings in, outer space • Suborbital Rocket – a vehicle, rocket propelled in whole or in part, intended for flight on a suborbital trajectory, and the thrust of which is greater than its lift for the majority of the rocket-powered portion of its ascent. Federal Aviation 4 4 Administration April 2011 Suborbital RLVs In Development Blue Origin XCOR Aerospace Armadillo Aerospace Sierra Nevada (SpaceDev) Virgin Galactic Federal Aviation 5 5 Administration April 2011 Reentry • Reentry – to return or attempt to return, purposefully, a reentry vehicle and any payload, crew or space flight participant from Earth orbit or from outer space to Earth place or try to place a launch vehicle or reentry vehicle and any.
    [Show full text]
  • Suborbital Reusable Launch Vehicles and Applicable Markets
    SUBORBITAL REUSABLE LAUNCH VEHICLES AND APPLICABLE MARKETS Prepared by J. C. MARTIN and G. W. LAW Space Launch Support Division Space Launch Operations October 2002 Space Systems Group THE AEROSPACE CORPORATION El Segundo, CA 90245-4691 Prepared for U. S. DEPARTMENT OF COMMERCE OFFICE OF SPACE COMMERCIALIZATION Herbert C. Hoover Building 14th and Constitution Ave., NW Washington, DC 20230 (202) 482-6125, 482-5913 Contract No. SB1359-01-Z-0020 PUBLIC RELEASE IS AUTHORIZED Preface This report has been prepared by The Aerospace Corporation for the Department of Commerce, Office of Space Commercialization, under contract #SB1359-01-Z-0020. The objective of this report is to characterize suborbital reusable launch vehicle (RLV) concepts currently in development, and define the military, civil, and commercial missions and markets that could capitalize on their capabilities. The structure of the report includes a brief background on orbital vs. suborbital trajectories, as well as an overview of expendable and reusable launch vehicles. Current and emerging market opportunities for suborbital RLVs are identified and discussed. Finally, the report presents the technical aspects and program characteristics of selected U.S. and international suborbital RLVs in development. The appendix at the end of this report provides further detail on each of the suborbital vehicles, as well as the management biographies for each of the companies. The integration of suborbital RLVs with existing airports and/or spaceports, though an important factor that needs to be evaluated, was not the focus of this effort. However, it should be noted that the RLV concepts discussed in this report are being designed to minimize unique facility requirements.
    [Show full text]