Circular of the Bureau of Standards No

Total Page:16

File Type:pdf, Size:1020Kb

Circular of the Bureau of Standards No UtanTiaST-** Reference book not to be j4jLiit» taken irom the Library nbs circular 518 Molecular Microwave Spectra Tables UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS Related Publications Atomic Energy Levels A critically evaluated compilation of all known data on the energy levels of elements, designed to meet th< needs of workers in nuclear and atomic physics, astrophysics, chemistry, and industry. Energy levels o: elements of atomic No. 1 through No. 41 appear in the first two volumes. Future volumes will contair those of the other elements. Spectra are presented in order of increasing atomic number, and under a given atomic number they are listec in order of increasing stages of ionization. For each spectrum there is a selected bibliography covering the analysis. The energy levels are tabulated in the related groups that form spectroscopic terms, counting upward from the lowest as zero. Also given in the tables are electron configurations, term intervals, Land* g-values, and term designations in a uniform notation. For the more complex spectra, arrays of observed terms and their electron configurations are included. The introduction contains similar arrays of the terms predicted by theory for important isoelectronic sequences. National Bureau of Standards Circular 467: Volume I, $2.75. Nuclear Data A comprehensive collection of experimental values of half-lives, radiation energies, relative isotopic abun¬ dances, nuclear moments, and cross sections. Decay schemes and level diagrams are provided wherever possible. The tables are a valuable tool for nuclear physicists and engineers, radiochemists, biophysicists, and other workers in nuclear physics. At present over 1,000 new measurements of different nuclear properties are being reported each year in some thirty different journals and in the reports of dozens of different laboratories. Supplements appearing at 6-month intervals will keep these tables current. References to literature in the field, a list of journals surveyed in compiling the tables, and a current list of fission and spallation papers are included. National Bureau of Standards Circular 499 arid the first three supplements, $4.25. Electric Quadrupole Coupling of the Nuclear Spin with the Rotation of a Polar Diatomic Molecule in an External Electric Field This paper first reviews the qualitative aspects of molecular rotation in an electric field, disregarding the effects that give rise to a hyperfine spectrum. It then gives formulas that serve to determine the hyperfine spectrum of a rotating molecule in various cases, depending on the external field strength and on the rotational quantum number. Also included are applications of the general expression for the quadrupole interaction matrix to several special cases. National Bureau of Standards Research Paper RP1866, 15 cents. Order all publications from the Superintendent of Documents, United States Government Printing Office, Washington 25, D. C., at listed prices. Foreign remittances must be in United States exchange and should include one-third the publication price to cover mailing costs. UNITED STATES DEPARTMENT OF COMMERCE • Charles Sawyer, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astm, Acting Director Molecular Microwave Spectra Tables Paul Kisliuk and Charles H. Townes National Bureau of Standards Circular 518 Issued June 23, 1952 For sale by the Superintendent of Documents, U. S. Goverrnment Printing Office Washington 25, D. C. - Price 65 cents Contents Page 1. Introduction_ i 2. Description of tables_ m Symbols_ vi References___ vi 3. Molecular microwave spectra tables: I. Molecules listed alphabetically by chemical symbol_ 1 II. Lines listed in order of frequency_ 91 III. Casimir’s Function for J=1 —> 10, 1=1 —» 9/2, values of [3/4C(C +1)—1(1 + 1) J(J -f l)]/2l(2l —1)(2J— 1)(2J + 3), where C=F(F+1) —1(1 + 1)—J(J+1)_ 115 4. Indexes: I. Molecules by chemical symbol_ 120 II. Molecules by name_ 122 III. Authors listed alphabetically, including a list of the molecules with the reference numbers_ 124 Acknowledgment The authors are grateful for the encouragement and interest of H. Lyons and R. G. Nuckolls, and for the latter’s considerable aid in editing the tables. J. R. Madigan and L. J. Rueger of the National Bureau of Standards, and L. C. Aamodt and G. Dousmanis of Columbia University have also helped substantially in calculating, compiling, and checking the information in these tables. Molecular Microwave Spectra Tables Paul Kisliuk and Charles H. Townes1 This group of tables gives the frequencies, assignment of quantum numbers, and intensities of about 1,800 microwave absorption lines. The best available values of other pertinent molecular data, such as rotational constants, dipole moments, quadrupole coupling constants, and rotation-vibration interaction constants are also included. The frequencies are listed once for each molecule, and again in consecutive ascending order of frequency. References are given for all data included. For easy calculation of quadrupole hypernne structure, Casimir’s function is tabulated up to J = 10, and 1 = 9/2. Explanations of the tables and a short discussion of microwave spectra and important formulas are given in the introduction. 1. Introduction These tables of microwave spectra are a modern¬ atomic hydrogen and cesium that fall in the micro- ization and revision of those published in the wave region. Microwave absorption in para¬ Journal of Research of the National Bureau of magnetic gases due to transitions between Zeeman Standards [l].2 They are up to date as of Novem¬ components has also been observed, but is not ber 15, 1950, so far as published material is con¬ included here. cerned, and include a considerable amount of The considerable activity in microwave spec¬ otherwise unpublished information. However, troscopy makes obsolescence of the present tables since many of the published results have been inevitable, arid it is expected that they will be reported rather briefly, it is clear that for certain revised and republished from time to time. Sug¬ molecules more detailed information is available gestions or additions for future editions of these in the experimental laboratories than is included tables will be gladly received, by either the authors or the Microwave Standards Section, National here. Only molecular lines of frequency greater than Bureau of Standards, Washington, D. C. It is 1,000 megacycles have been listed. This excludes especially hoped that information obtained on nuclear resonances found by molecular beam microwave spectral lines that is not otherwise techniques rather than the usual microwave published will be received so that it may be absorption measurements, as well as the lines of included in the tables, and thus made available. 2. Description of Tables The primary information is presented in an seemed no reason for preference. Frequencies alphabetic listing of the molecules, which is sub¬ listed to the nearest megacycle were generally divided according to the major quantum numbers measured with a cavity wavemeter and are subject involved in the transition. Hyperfine components to an error of 10 or more megacycles, whereas and unidentified transitions are presented in order those given to a fraction of a megacycle are gener¬ of frequency. With the listing of each molecule, ally known to an accuracy of about 0.1 megacycle. all available molecular constants are given that In addition to the absorption lines actually are needed in interpreting the spectra. These observed and listed, a large number of lines may include rotational constants, dipole moments, be readily and accurately predicted with the help quadrupole coupling constants, and rotation- of molecular constants given in the tables. vibration interaction constants. In addition to Another listing of all the lines in order of fre¬ quency, with sufficient information to locate the the observed frequency and the transition assigned lines in table I, is included together with a classi¬ to each line, there is included a calculated value for fication of the lines as strong, medium, or weak. the intensity, and references to the latest sources The authors have arbitrarily taken lines of maxi¬ of data from each laboratory that has measured mum absorption coefficient less than 5X10 Tun the line. The most precise reported values of the as weak, those from 5X10-7 to 10-5cm 1 as medium frequencies were used, or the average, if there and those greater than 10-5cm_l as strong. The general characteristics of the microwave 1 Consultant, National Bureau of Standards, Washington 25, D. C. spectra of most molecules may be explained on 2 Figures in brackets indicate the literature references given on page vi. the basis of a nearly rigid rotator model. Mole¬ cules are conveniently divided into three classes: linear molecules, symmetric tops, and asymmetric tops. For linear molecules the frequency of pure 3/4 C(C+!)-/(/+1)J(J+1)1 rotational lines is given to a good approximation 2(2J+3)(2«7-1)7(27-1) J’ by [2]: where vj_^j+1 = 2(J-\-\)Bv—^I)j{ («7-f l)3—(«7+l)Z2} sec"1 C=F(F+1)-/(/+!)-J(J+1) F=J+I, J+I-1 .... \J-I\ while for symmetric top molecules, where the selection rule AK = 0 applies; eqQ=quadrupole coupling constant as defined in reference [7] vj->j+i = 2(e7 + l)Bv—4Dj(J +1)3 K= projection of J on molecular symmetry axis — 2Djk(J+ 1)K2 sec-1. (zero for linear molecules in the ground vibrational state). In both cases: A tabulation of the function in square brackets for J= 1 to 10 is given in table III. The some¬ p_A/l\ ~ what more complex situation when two nuclei have ' 8tT2 \7»/„ = quadrupole coupling is discussed in [7]. N uclear quadrupole effects in a symmetric mol¬ where ecule may be described by a single coupling con¬ stant (eqQ), where e is the protonic charge, Q the *7= the total rotational momentum quantum nuclear quadrupole moment, and q=d2V/da2 is number the second derivative along the molecular axis of l, 7C=the rotational momenta quantum num¬ the potential at the nucleus due to all charges out¬ bers along the figure axis for linear side the nucleus.
Recommended publications
  • Operation Permit Application
    Un; iy^\ tea 0 9 o Operation Permit Application Located at: 2002 North Orient Road Tampa, Florida 33619 (813) 623-5302 o Training Program TRAINING PROGRAM for Universal Waste & Transit Orient Road Tampa, Florida m ^^^^ HAZARDOUS WAb 1 P.ER^AlTTlNG TRAINING PROGRAM MASTER INDEX CHAPTER 1: Introduction Tab A CHAPTER 2: General Safety Manual Tab B CHAPTER 3: Protective Clothing Guide Tab C CHAPTER 4: Respiratory Training Program Tab D APPENDIX 1: Respiratory Training Program II Tab E CHAPTER 5: Basic Emergency Training Guide Tab F CHAPTER 6: Facility Operations Manual Tab G CHAPTER 7: Land Ban Certificates Tab H CHAPTER 8: Employee Certification Statement Tab. I CHAPTER ONE INTRODUCTION prepared by Universal Waste & Transit Orient Road Tampa Florida Introducti on STORAGE/TREATMENT PERSONNEL TRAINING PROGRAM All personnel involved in any handling, transportation, storage or treatment of hazardous wastes are required to start the enclosed training program within one-week after the initiation of employment at Universal Waste & Transit. This training program includes the following: Safety Equipment Personnel Protective Equipment First Aid & CPR Waste Handling Procedures Release Prevention & Response Decontamination Procedures Facility Operations Facility Maintenance Transportation Requirements Recordkeeping We highly recommend that all personnel involved in the handling, transportation, storage or treatment of hazardous wastes actively pursue additional technical courses at either the University of South Florida, or Tampa Junior College. Recommended courses would include general chemistry; analytical chemistry; environmental chemistry; toxicology; and additional safety and health related topics. Universal Waste & Transit will pay all registration, tuition and book fees for any courses which are job related. The only requirement is the successful completion of that course.
    [Show full text]
  • Prohibited and Restricted Chemical List
    School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List PROHIBITED AND RESTRICTED CHEMICAL LIST Introduction After incidents of laboratory chemical contamination at several schools, DCPS, The American Association for the Advancement of Science (AAAS) and DC Fire and Emergency Management Services developed an aggressive program for chemical control to eliminate student and staff exposure to potential hazardous chemicals. Based upon this program, all principals are required to conduct a complete yearly inventory of all chemicals located at each school building to identify for the removal and disposal of any prohibited/banned chemicals. Prohibited chemicals are those that pose an inherent, immediate, and potentially life- threatening risk, injury, or impairment due to toxicity or other chemical properties to students, staff, or other occupants of the school. These chemicals are prohibited from use and/or storage at the school, and the school is prohibited from purchasing or accepting donations of such chemicals. Restricted chemicals are chemicals that are restricted by use and/or quantities. If restricted chemicals are present at the school, each storage location must be addressed in the school's written emergency plan. Also, plan maps must clearly denote the storage locations of these chemicals. Restricted chemicals—demonstration use only are a subclass in the Restricted chemicals list that are limited to instructor demonstration. Students may not participate in handling or preparation of restricted chemicals as part of a demonstration. If Restricted chemicals—demonstration use only are present at the school, each storage location must be addressed in the school's written emergency plan. Section 7: Appendices – October 2009 37 School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List Following is a table of chemicals that are Prohibited—banned, Restricted—academic curriculum use, and Restricted—demonstration use only.
    [Show full text]
  • 5.157 TABLE 5.29 Van Der Waals' Constants for Gases the Van Der
    DEAN #37261 (McGHP) RIGHT INTERACTIVE top of rh PHYSICAL PROPERTIES 5.157 base of rh cap height TABLE 5.29 Van der Waals’ Constants for Gases base of text The van der Waals’ equation of state for a real gas is: na2 ͩͪP ϩ (V Ϫ nb) ϭ nRT for n moles V2 where P is the pressure, V the volume (in liters per mole ϭ 0.001 m3 per mole in the SI system), T the temperature (in degrees Kelvin), n the amount of substance (in moles), and R the gas constant. To use the values of a and b in the table, P must be expressed in the same units as in the gas constant. Thus, the pressure of a standard atmosphere may be expressed in the SI system as follows: 1 atm ϭ 101,325 N · mϪ2 ϭ 101,325 Pa ϭ 1.01325 bar The appropriate value for the gas constant is: 0.083 144 1 L · bar · KϪ1 · molϪ1 or 0.082 056 L · atm · KϪ1 · molϪ1 The van der Waals’ constants are related to the critical temperature and pressure, tc and Pc, in Table 6.5 by: 27 RT22 RT a ϭ ccand b ϭ 64 Pcc8 P Substance a,L2 · bar · molϪ2 b,L·molϪ1 Acetaldehyde 11.37 0.08695 Acetic acid 17.71 0.1065 Acetic anhydride 26.8 0.157 Acetone 16.02 0.1124 Acetonitrile 17.89 0.1169 Acetyl chloride 12.80 0.08979 Acetylene 4.516 0.05218 Acrylic acid 19.45 0.1127 Acrylonitrile 18.37 0.1222 Allene 8.235 0.07467 Allyl alcohol 15.17 0.1036 Aluminum trichloride 42.63 0.2450 2-Aminoethanol 7.616 0.0431 Ammonia 4.225 0.03713 Ammonium chloride 2.380 0.00734 Aniline 29.14 0.1486 Antimony tribromide 42.08 0.1658 Argon 1.355 0.03201 Arsenic trichloride 17.23 0.1039 Arsine 6.327 0.06048 Benzaldehyde 30.30 0.1553 Benzene 18.82
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,596,206 B2 Lee (45) Date of Patent: *Jul
    USOO6596206B2 (12) United States Patent (10) Patent No.: US 6,596,206 B2 Lee (45) Date of Patent: *Jul. 22, 2003 (54) GENERATION OF PHARMACEUTICAL FOREIGN PATENT DOCUMENTS AENESSING FOCUSED WO WO OO/37169O542314 6/20007/1998 (75) Inventor: partson-Hui Lee, Mountain View, W W s: 2: OTHER PUBLICATIONS (73) Assignee: Picoliter Inc., Sunnyvale, CA (US) Debenedetti et al. (1993), “Application of Supercritical Fluids for the Production of Sustained Delivery Devices.” (*) Notice: Subject to any disclaimer, the term of this Journal of Controlled Release 24:27–44. patent is extended or adjusted under 35 Tom et al. (1991), “Formation of Bioerodible Polymeric U.S.C. 154(b) by 14 days. Microspheres and Microparticles by Rapid Expansion of Supercritical Solutions,” Biotechnol. Prog. 7(5):403-411. This patent is Subject to a terminal dis- Chattopadhyay et al. (2001), “Production of Griseofulvin claimer. Nanoparticles Using Supercritical CO2 Antisolvent with Enhanced Mass Transfer.” International Journal of Phar (21) Appl. No.: 09/823,899 maceutics 228:19-31. (22) Filed: Mar 30, 2001 Jung et al. (2001), “Particle Design Using Supercritical e a Vs Fluids: Literature and Patent Survey,” Journal of Supercriti (65) Prior Publication Data cal Fluids 20:179-219. Primary Examiner Mary Lynn Theisen US 2002/0142049 A1 Oct. 3, 2002 (74) Attorney, Agent, or Firm-Dianne E. Reed; Reed & (51) Int. Cl." .................................................. B29C 9/00 Eberle LLP (52) U.S. Cl. ....................... 264/9; 264/5; 2647. (57) ABSTRACT (58) Field of Search ......................... 264/9, 7, 5; 425/6, A method and device for generating pharmaceutical agent 425/10 particles using focused acoustic energy are provided.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Fluorine in Organic Chemistry Final Proof 7.8.2004 10:34Am Page I
    Chambers: Fluorine in Organic Chemistry Final Proof 7.8.2004 10:34am page i Fluorine in Organic Chemistry Fluorine in Organic Chemistry Richard D. Chambers © 2004 Blackwell Publishing Ltd. ISBN: 978-1-405-10787-7 Chambers: Fluorine in Organic Chemistry Final Proof 7.8.2004 10:34am page iii Fluorine in Organic Chemistry Richard D. Chambers FRS Emeritus Professor of Chemistry University of Durham, UK Chambers: Fluorine in Organic Chemistry Final Proof 7.8.2004 10:34am page iv ß 2004 by Blackwell Publishing Ltd Editorial offices: Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK Tel: þ44 (0)1865 776868 Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton, Victoria 3053, Australia Tel: þ61 (0)3 8359 1011 ISBN 1-4051-0787-1 Published in the USA and Canada (only) by CRC Press LLC, 2000 Corporate Blvd., N.W., Boca Raton, FL 33431, USA Orders from the USA and Canada (only) to CRC Press LLC USA and Canada only: ISBN 0-8493-1790-8 The right of the Author to be identified as the Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated.
    [Show full text]
  • Acute Exposure Guideline Levels
    Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 5 Committee on Acute Exposure Guideline Levels, Committee on Toxicology, National Research Council ISBN: 0-309-66687-2, 292 pages, 6 x 9, (2007) This free PDF was downloaded from: http://www.nap.edu/catalog/11774.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online, free • Sign up to be notified when new books are published • Purchase printed books • Purchase PDFs • Explore with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll-free at 888-624-8373, visit us online, or send an email to [email protected]. This free book plus thousands more books are available at http://www.nap.edu. Copyright © National Academy of Sciences. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the Web address of the online, full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the National Academies Press. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 5 http://www.nap.edu/catalog/11774.html Committee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology Division on Earth and Life Studies Copyright © National Academy of Sciences.
    [Show full text]
  • CHEM Safety Manual
    Department of Chemistry Safety Manual October 2018 Safety Committee Department of Chemistry Hong Kong University of Science and Technology Table of Contents 1.0 Introduction 2.0 Safety Policy and Responsibility for Safety 2.1 Department Head 2.2 Department of Chemistry Safety Committee 2.3 Laboratory Supervisors 2.4 Researchers 2.5 HSEO 3.0 Information, Training, Safety Clearance, and Safety Clearance at Termination 3.1 Initial Training 3.2 Information on Hazardous Substances 3.3 Additional Safety Information 3.4 Safety Clearance at Termination 4.0 Personal Protective Equipment and Safety Engineering Controls 4.1 Eye Protection 4.2 Protective Apparel 4.3 Respirators 4.4 Laboratory Fume Cupboards 4.5 Fire Extinguishers, Safety Showers, and Eyewash Facilities 5.0 Standard Operating Procedures for Work with Hazardous Substances 5.1 Classes of Hazardous Substances 5.2 General Procedures for Work with Toxic Substances 5.3 General Procedures for Work with Flammable and Explosive Substances 6.0 Procedures for Work with Particularly Hazardous Substances 6.1 Identification and Classification of Particularly Hazardous Substances 6.2 Designated Areas 6.3 General Procedures for Work with Substances of Moderate to High Chronic or High Acute Toxicity 6.4 Additional Procedures for Work with Substances of Known High Chronic Toxicity 6.5 Specific Handling Procedures for Some Common Particularly Hazardous Substances 7.0 Proper Planning of Laboratory Work 7.1 Recognition and Assessment 7.2 Planning for the Unexpected: What Could Go Wrong? 7.3 Site Selection
    [Show full text]
  • Physical Properties and Association of the Liquid Halogen Fluorides
    PHYSICAL PROPERTIES AND ASSOCIATION OF THE LIQUID HALOGEN FLUORIDES By Emerson E. Garver A THESIS Submitted to the School for Advanced Graduate Studies of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry 1957 ProQuest Number: 10008509 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10008509 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKNOWLEDGMENT The author wishes to express his sincere appreciation to Professor Max T. Rogers, without whom this manuscript could not have been written. Throughout the course of this investigation he has offered encouragement, helpfulness and much-needed advice. He also wishes to make known his debt to J. L, Speirs for aid in instrumentation, to H. B, Thompson for his cogent observations, and to E, Forest Hood for some excellent glass blowing. The Atomic Energy Commission has made this work possible through a research grant. VITA Emerson E, Garver was born May 1, 1929 at Akron, Ohio. After attending Western Reserve Academy located at Hudson, Ohio, he spent one year at Swarthmore College and received the Bachelor of Science degree from Kent State University in 1951* He attended graduate school at the Ohio State University for a year and the following year enrolled at Michigan State University.
    [Show full text]
  • Molecular Structures of Gas-Phase Polyatomic Molecules Determined by Spectroscopic Methods
    Molecular Structures of Gas-Phase Polyatomic Molecules Determined by Spectroscopic Methods Marlin D. Harmony Department of Cherni..str)', The University of Kansas, Lawrence, KS 66045 Victor W. Laurie Department of Chemistry, Princeton Unit'er.it)", Princeton, NJ 08540 Robert L. Kuczkowski Department of Chemistry, University of Michigan, Ann Arbor, Ml48109 R. H. Schwendeman Department of Chemistry, Michigan State University, East Lansing, MI 48824 D. A. Ramsay Her::;berg institute of Astrophysics, National Research COl/neil of Canada, OIlf1l<'U, KIA ORG, Canada Frank J. Lovas, Walter J. Lafferty, and Arthur G. Maki National Bureau of Standards, Washing/Oil, DC 20334 Spectroscopic data related to the structures of polyatomic molecules in the gas phase have been reviewed, critically evaluated, and compiled. All reported bond distances and angles have been classified as equilibrium (r 0)' average (r,), substitution (r.), or effective (ro) parameters, and have been given a quality rating which is a measure of the parameter uncertainty. The surveyed literature includes work from all of the areas of gas-phase spectroscopy from which precise quantitative struc· tural information can be derived. Introductory material includes definitions of the various types of parameters and a description of the evaluation procedure. Key words: Bond angles; bond distances; gas·phase polyatomic molecules; gas·phase spectroscopy; microwave spectroscopy; molecular conformation; molecular spectroscopy; molecular structure; molecules; SLrUClure. Contents Page Page 1. Introduction.... .. ............. 619 Inorganic Molecules ....................... 628 2. Definitions of Structural Parameters ......... 620 C1 Molecules ............................. 650 3. Uncertainties ............................ 623 C~ Molecules ............................. 668 4,. Evaluation Procedure ..................... 625 C3 Molecules ............................. 688 5. Description of Tables ..................... 625 c.! Molecules ............................. 702 Appendix: Selected Diatomic Molecule Distances .
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2008/0135817 A1 Luly Et Al
    US 20080135817A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0135817 A1 Luly et al. (43) Pub. Date: Jun. 12, 2008 (54) GASEOUS DIELECTRICS WITH LOW (22) Filed: Dec. 12, 2006 GLOBAL WARMING POTENTIALS Publication Classification (75) Inventors: Matthew H. Luly, Hamburg, NY (51) Int. Cl. (US); Robert G. Richard, HOIB 3/20 (2006.01) Hamburg, NY (US) (52) U.S. Cl. ........................................................ 252/571 Correspondence Address: (57) ABSTRACT Honeywell International Inc. A dielectric gaseous compound which exhibits the following Patent Services Department properties: a boiling point in the range between about -20° 101 Columbia Road C. to about -273°C.; non-ozone depleting; a GWP less than Morristown, NJ 07962 about 22,200; chemical stability, as measured by a negative standard enthalpy of formation (dElf<0); a toxicity level such (73) Assignee: Honeywell International Inc. that when the dielectric gas leaks, the effective diluted con centration does not exceed its PEL; and a dielectric strength (21) Appl. No.: 11/637,657 greater than air. US 2008/O 135817 A1 Jun. 12, 2008 GASEOUS DELECTRICS WITH LOW –63.8°C., which allows pressures of 400 kPa to 600 kPa (4 GLOBAL WARMING POTENTIALS to 6 atmospheres) to be employed in SF-insulated equip ment. It is easily liquefied underpressure at room temperature 1. FIELD allowing for compact storage in gas cylinders. It presents no handling problems, is readily available, and reasonably inex 0001. The present disclosure relates generally to a class of pensive. gaseous dielectric compounds having low global warming 0006 SF replaced air as a dielectric in gas insulated potentials (GWP).
    [Show full text]
  • Supplementary Information Cocrystal Design by Network-Based Link Prediction
    Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2019 Supplementary Information Cocrystal design by network-based link prediction Jan-Joris Devogelaer, Sander J.T. Brugman, Hugo Meekes, Paul Tinnemans, Elias Vlieg, René de Gelder Table of Contents S1 Materials and syntheses page 1 S2 Single-crystal X-ray structure determinations, ORTEP plots and H-Bonding page 6 a) CCDC 1940959 = p1812d: 4,4’-bipyridine + resorcinol b) CCDC 1940950 = p1823c: 1,2-di(4-pyridyl)ethylene + 4-aminobenzoic acid c) CCDC 1940956 = p1823a: 1,2-di(4-pyridyl)ethylene + 4-aminobenzoic acid dihydrate d) CCDC 1940954 = p1907a: 1,2-di(4-pyridyl)ethylene + sebacic acid e) CCDC 1940949 = p1818a: 4,4’-bipyridine + suberic acid f) CCDC 1940953 = p1922b: 1,2-di(4-pyridyl)ethylene + oxalic acid g) CCDC 1940955 = p1914b: 1,2-di(4-pyridyl)ethylene + oxalic acid dihydrate i) CCDC 1940951 = p1908a: 1,2-bis(4-pyridyl)ethane + salicylic acid j) CCDC 1940958 = p1926b: 1,2-di(4-pyridyl)ethylene + 4-nitrobenzoic acid k) CCDC 1940952 = p1910a: 1,2-di(4-pyridyl)ethylene + phthalic acid l) CCDC 1940957 = p1913a: 1,2-di(4-pyridyl)ethylene + malonic acid S3 Top 100 predictions of the scoring method page 17 S4 Predefined lists of common solvents and gases page 21 S1 - Materials and syntheses We first present the materials in Table S1, after which we discuss the protocol used to obtain crystals suitable for single-crystal X-ray diffraction. Besides the two-component structures shown in Table 2, an additional cocrystal dihydrate (c) and salt dihydrate (g) were found.
    [Show full text]