Multiscale Modeling of Thermochemical Conversion of Bio-Oils Chourouk Nait Saidi
Total Page:16
File Type:pdf, Size:1020Kb
Multiscale modeling of thermochemical conversion of bio-oils Chourouk Nait Saidi To cite this version: Chourouk Nait Saidi. Multiscale modeling of thermochemical conversion of bio-oils. Chemical and Process Engineering. Institut Polytechnique de Paris, 2020. English. NNT : 2020IPPAE010. tel- 03195809 HAL Id: tel-03195809 https://tel.archives-ouvertes.fr/tel-03195809 Submitted on 12 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Modelisation´ de la conversion thermique de carburants verts de type bio-huiles These` de doctorat de l’Institut Polytechnique de Paris prepar´ ee´ a` l’ecole´ nationale superieure´ de techniques avancees´ Ecole´ doctorale n◦626 de l’Institut Polytechnique de Paris (IP Paris) Specialit´ e´ de doctorat : Biologie et Chimie (Genie´ des proced´ es´ et energ´ etique)´ NNT : 2020IPPAE010 These` present´ ee´ et soutenue a` Palaiseau, le 14 decembre´ 2020, par CHOUROUK NAIT SAIDI Composition du Jury : Christophe Coquelet Professeur, Mines ParisTech (CTP) President´ Christelle Miqueu Maitre de conferences´ (HDR), UPPA (LCFR) Rapportrice Jean Philippe Passarello Professeur, Universite´ Paris 13 (LSPM) Rapporteur Amparo Galindo Professeur, Imperial College of London (CPSE) Examinatrice Pierre Millet Professeur, Universite´ Paris-Sud (ICMMO) - AREVA H2Gen Examinateur Patrice Paricaud Professeur, ENSTA Paris (UCP) Directeur de these` Julian Garrec Enseignant-Chercheur, ENSTA Paris (UCP) Co-directeur de these` 626 Multiscale Modeling of Thermochemical Conversion of Bio-oils Dr. Chourouk NAIT SAIDI “He Who created from a green tree a fire for you, a fire to light your stoves with” The Quran, (36:80) اﻟﱠ ِﺬي َﺟﻌَ َﻞ ﻟَ ُﻜﻢ ِّﻣ َﻦ اﻟ ﱠﺸ َﺠ ِﺮ ا ْﻷَ ْﺧ َﻀ ِﺮ ﻧَﺎ ًرا ﻓَﺈِذَا أَﻧﺘُﻢ ِّﻣ ْﻨﮫُ ﺗُﻮﻗِﺪُو َن ( رﻮﺳ ة ﺲﯾ : ﯾآﺔ 80) “If you want to find the secrets of the universe, think in terms of energy, frequency and vibration.” Nikola Tesla (1856-1943) Dédicace À ceux qui m’ont toujours épaulé et aimé inconditionnellement. À ceux qui ont toujours cru en moi, À toi ma chère maman Amel Mahai, À toi mon cher papa Nacer Nait Saidi, À mes sœurs adorées Wiam et Nada, À mon cher frère Islem, Sans vous je n’aurais pas connu l’amour, sans vous je n’aurais jamais réussi à aller de l’avant. J’aurais beau essayer de trouver les mots pour vous remercier d’être la meilleure famille que l’un peut avoir. J’aurais beau essayer, je ne pourrais vous exprimer ma grande affection et ma profonde reconnaissance. Les mots m’échappent alors je préfère simplement vous dire je vous aime infiniment. À toi ma chère tante Hamida Mahai, tu es bien plus qu’une tante pour moi, tu es une maman à mes yeux et je ne saurais te remercier pour le soutien moral que tu m’as apporté cette année. À ceux que j’aime, à mes amis, merci d’avoir cru en moi et d’avoir été patient durant ces 3 années d’aventure. Vous êtes à la fois une richesse et une bénédiction. Je vous dédie ce travail humblement. Puisse Dieu vous protéger, vous accorder la santé et une longue vie remplie de Bonheur. Chourouk Acknowledgments First, I would like to thank the committee for accepting to evaluate this work. In particular, my reviewers Professor Jean Philippe Passarello from Université Paris 13 and Doctor Christelle Miqueu from Université de Pau et des Pays de l’Adour (UPPA) for accepting to review my thesis. I also thank all committee members, Professor Christophe Coquelet from Mines Paris, Professor Pierre Millet from Uni- versité Paris-Sud and Professor Amparo Galindo from Imperial College of London for their interest in this topic. I would like to thank my supervisor, Professor Patrice Paricaud whose expertise was invaluable in formulating the research methodology. A deep gratitude goes to Doctor Julian Garrec for his insightful feedback that pushed me to sharpen my think- ing and brought my work to a higher level. A special thanks to Professor Laurent Catoire as the laboratory head of UCP for his help and advice. All my gratitude goes to my colleagues Doctor Detlev Conrad Mielczarek and Doctor Boyang Xu which without them this research study could not be done. This research was funded by Institut Polytechnique de Paris. I am also thankful to Professor Eliseo Ranzi from Politecnico di Milano, Doctor Antony Dufour from LRGP - CNRS and Professor Andreas Klamt from Regensburg University for the valuable discussion that I had with each one of them. I would also like to thank the one who encouraged and advised me before my presentation, the wonderful doctor Assia Asrir. My appreciation also extends to my laboratory researchers and colleagues, Pro- fessor Johnny Deschamps, Doctor Diévart Pascal, Doctor Kerim Mansour Dolè, Fincias-Aguilera Nicolas, Belblidia Naila-Besma and Brialix Kévin for their help and encouragement during the last three years. II Contents Acknowledgment II Nomenclature XV Context and Scope 1 1 Literature Review 6 1.1 Biomass . .6 1.2 Biomass thermal conversion . .9 1.2.1 Combustion . 10 1.2.2 Gasification . 11 1.2.3 Pyrolysis . 11 1.2.4 Liquefaction . 12 1.3 Pyrolysis . 12 1.3.1 Pyrolysis operating parameters . 12 1.3.2 Pyrolysis type . 15 1.3.3 Pyrolysis reactors . 16 1.3.4 Pyrolysis products . 16 1.3.5 Biomass pyrolysis mechanisms . 19 1.4 Thermochemistry and Kinetic Modeling . 23 1.4.1 Thermochemistry . 25 1.4.2 Transition state theory . 26 1.4.3 Solvent effect . 28 1.4.4 Electronic Structure Calculation . 30 1.5 Modeling tools . 34 1.5.1 Reaction Mechanism Generator (RMG) . 34 1.5.2 Gaussian/ ORCA . 35 1.5.3 KiSThelP . 36 1.5.4 Cantera . 37 III 2 Prediction of Enthalpies of Formation 38 2.1 Introduction . 38 2.2 Methodology . 41 2.2.1 Quantum chemistry method . 41 2.2.2 Mathematical Implementation of Regression Parameter Fitting 43 2.2.3 Determination of Scaling Factors Based on Ideal Gas Heat Capacities . 46 2.3 Results & Discussion . 48 2.3.1 H, C, N, O . 49 2.3.2 H, C, N, O, F, Cl, Br . 52 2.3.3 H, C, N, O, F, Si, Cl, Br . 54 2.3.4 H, C, N, O, F, Si, P, Cl, Br . 57 2.3.5 H, C, N, O, F, Si, P, S, Cl, Br . 59 2.3.6 Deriving scaling parameters from Heat Capacities . 68 2.4 Application to Bio-oil Compounds . 68 2.5 Conclusion . 71 3 Prediction of Solvation Energy 72 3.1 Introduction . 72 3.2 Solvation Energy . 74 3.2.1 Estimation of solvation energy from activity coefficients at infinite dilution . 76 3.2.2 Abraham’s model . 77 3.3 COSMO-SAC model . 77 3.3.1 CPCM cavities . 79 3.3.2 휎´profile . 80 3.3.3 Hydrogen bonding . 81 3.3.4 Dispersion term . 82 3.3.5 Parameter optimization . 83 3.4 Results & discussion . 84 3.4.1 Reoptimization of Lin and Sandler COSMO-SAC model . 85 3.4.2 COSMO-SAC 2006 . 88 3.4.3 Re-optimised COSMO-SAC 2010 and COSMO-SAC dsp . 91 3.5 Application to Bio-oil compounds . 95 3.6 Conclusion . 96 4 Kinetic Modeling 97 4.1 Introduction . 97 4.2 Methodology . 99 4.2.1 Mechanism Generation . 100 4.2.2 Microscopic scale improvement . 102 4.3 Results & Discussion . 108 4.3.1 Mechanism generation . 108 4.3.2 Kinetic improvement from molecular scale modeling . 113 4.4 Conclusion . 117 Conclusion and Perspectives 118 A Reference species for Enthalpies of formation predictions 120 A.1 H, C, N, O . 120 A.2 H, C, N, O, F, Cl . 122 A.3 H, C, N, O, F, Cl, Br . 124 A.4 H, C, N, O, F, S, Cl, Br . 125 A.5 H, C, N, O, F, Si, S, Cl, Br . 127 A.6 H, C, N, O, F, Si, P, S, Cl, Br . 128 B Heat capacities Plots: Fitting Results 129 C Solvation energies and activity coefficients predictions 136 C.1 Abraham’s model prediction of Δ퐺푠표푙푣 for binary systems (kcal/mol) 136 C.2 Activity coefficients predictions . 174 D Quantum chemistry geometries and frequencies 177 E Kinetic: reactions and products structures 185 E.1 Initiation reactions kinetic . 185 E.2 Predicted products structures . 186 List of Figures 1 World total primary energy supply by sources in 20171.........1 2 Biomass resources. .2 3 Influence of solvent on potential energy surface (PES) for a reaction in the gas phase and in solution (reprinted from Fleming 20122). .4 4 Cellulose, hemicellulose and lignin plant cells (reprinted from Wang et al.3). ..................................7 5 Structure of cellulose, hemicellulose and lignin linkages on plant cells (reprinted from Bohdan et al.4)......................9 6 Biomass conversion processes and products. 10 7 Broido and Nelson model for cellulose pyrolysis. 19 8 Broido–Shafizadeh model of cellulose pyrolysis. 20 9 Kinetic scheme of biomass pyrolysis with the consideration of water evaporation proposed by Chan and Krieger (1983). 21 10 Semidetailed kinetic mechanism of biomass pyrolysis developed by Ranzi and coworkers (reprinted from Zhou et al.5)........... 22 11 Structures of cellulose, hemicellulose and lignin used in the global kinetic model by Ranzi et al.6–8 ..................... 23 12 Computation of thermodynamics for chemical reactions in the condensed phase as a circular process involving desolvation and solvation as well as the actual chemical reaction in the gas phase9,10.