ENTHALPY of VAPORIZATION References

Total Page:16

File Type:pdf, Size:1020Kb

ENTHALPY of VAPORIZATION References ENTHALPY OF VAPORIZATION The molar enthalpy (heat) of vaporization ∆vapH, which is de- 2. Chase, M. W., Davies, C. A., Downey, J. R., Frurip, D. J., McDonald, R. fined as the enthalpy change in the conversion of one mole of liq- A., and Syverud, A. N., JANAF Thermochemical Tables, Third Edition, uid to gas at constant temperature, is tabulated here for about 950 J. Phys. Chem. Ref. Data, 14, Suppl. 1, 1985. inorganic and organic compounds. Values are given, when avail- 3. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, Sixth Edition, II/4, Caloric Quantities of able, both at the normal boiling point tb, referred to a pressure of State, Springer-Verlag, Heidelberg, 1961. 101.325 kPa (760 mmHg), and at 25°C. 4. Daubert, T. E., Danner, R. P., Sibul, H. M., and Stebbins, C. C., The values in this table were measured either by calorimetric Physical and Thermodynamic Properties of Pure Compounds: Data techniques or by application of the Claperyon equation to the Compilation, extant 1994 (core with 4 supplements), Taylor & Francis, variation of vapor pressure with temperature. See Reference 1 for Bristol, PA. a discussion of the accuracy of different experimental techniques 5. Ruzicka, K., and Majer, V., Simultaneous Treatment of Vapor Pressures and methods of estimating enthalpy of vaporization at other tem- and Related Thermal Data Between the Triple and Normal Boiling peratures. Several of the references present empirical techniques Temperatures for n-Alkanes C5–C20, J. Phys. Chem. Ref. Data, 23, 1, 1994. for correlating enthalpy of vaporization with molecular structure. 6. Verevkin, S. P., Thermochemistry of Amines: Experimental Standard Compounds are listed by systematic name, with compounds not Molar Enthalpies of Formation of Some Aliphatic and Aromatic containing carbon preceding those that do contain carbon. To lo- Amines, J. Chem. Thermodynamics, 29, 891, 1997. cate a compound by molecular formula or CAS Registry Number, 7. Cady, G. H., and Hargreaves, G. B., The Vapor Pressure of Some Heavy use the indexes to the table “Physical Constants of Organic Transition Metal Hexafluorides, J. Chem. Soc., 1563, 1578, 1961. Compounds” in Section 3, which point to the entry in that table 8. Steele, W. V., Chirico, R. D., Knipmeyer, S. E., and Nguyen, A., J. Chem. from which the name can be determined. Eng. Data 41, 1255, 1996. 9. Nichols, G., et al., J. Chem. Eng. Data 51, 475, 2006. 10. Dias, A. M. A., et al., J. Chem. Eng. Data 50, 1328, 2005. References 11. Umnahanant, P., et al., J. Chem. Eng. Data 51, 2246, 2006. 12. Raganov, G. N., Pisarev, P. N., and Emel’yanenko, V. N., J. Chem. Eng. 1. Majer, V., and Svoboda, V., Enthalpies of Vaporization of Organic Data 50, 1114, 2005. Compounds, Blackwell Scientific Publications, Oxford, 1985. 13. Verevkin, S. P., et al., J. Chem. Eng. Data 51, 1896, 2006. 14. Verevkin, S. P., J. Chem. Thermodynamics 38, 1111, 2006. tb ΔvapH(tb) ΔvapH(25°C) Name Mol. Form. °C kJ/mol kJ/mol Compounds not containing carbon Aluminum Al 2519 294 Aluminum borohydride AlB3H12 44.5 30 Aluminum bromide AlBr3 255 23.5 Aluminum iodide AlI3 382 32.2 Ammonia H3N –33.33 23.33 19.86 Antimony(III) bromide Br3Sb 288 59 Antimony(III) chloride Cl3Sb 220.3 45.19 Antimony(III) iodide I3Sb 400 68.6 Argon Ar –185.85 6.43 Arsenic(III) bromide AsBr3 221 41.8 Arsenic(III) chloride AsCl3 130 35.01 Arsenic(III) fluoride AsF3 57.13 29.7 Arsenic(V) fluoride AsF5 –52.8 20.8 Arsenic(III) iodide AsI3 424 59.3 Arsine AsH3 –62.5 16.69 Barium Ba 1897 140 Beryllium chloride BeCl2 482 105 Beryllium iodide BeI2 590 70.5 Bismuth Bi 1564 151 Bismuth tribromide BiBr3 462 75.4 Bismuth trichloride BiCl3 441 72.61 Boron B 4000 480 Boron tribromide BBr3 91.3 30.5 Boron trichloride BCl3 12.5 23.77 23.1 Boron trifluoride BF3 –99.9 19.33 Boron triiodide BI3 209.5 40.5 6-101 6-102 Enthalpy of Vaporization tb ΔvapH(tb) ΔvapH(25°C) Name Mol. Form. °C kJ/mol kJ/mol Bromine Br2 58.8 29.96 30.91 Bromine fluoride BrF 20 25.1 Bromine pentafluoride BrF5 41.3 30.6 Bromine trifluoride BrF3 125.8 47.57 Bromosilane BrH3Si 1.9 24.4 Cadmium Cd 767 99.87 Cadmium bromide Br2Cd 863 115 Cadmium chloride CdCl2 964 124.3 Cadmium fluoride CdF2 1750 214 Cadmium iodide CdI2 744 115 Chlorine Cl2 –34.04 20.41 17.65 Chlorine dioxide ClO2 11 30 Chlorine fluoride ClF –101.1 24 Chlorine monoxide Cl2O 2.2 25.9 Chlorine trifluoride ClF3 11.75 27.53 Chlorosilane ClH3Si –30.4 21 Chlorotrifluorosilane ClF3Si –70.0 18.7 Chromium(II) chloride Cl2Cr 1120 197 Chromium(VI) dichloride dioxide Cl2CrO2 117 35.1 Diborane B2H6 –92.49 14.28 Dibromosilane Br2H2Si 66 31 Dichlorodifluorosilane Cl2F2Si –32 21.2 Dichlorosilane Cl2H2Si 8.3 25 24.2 Difluorine dioxide F2O2 –57 19.1 Difluorosilane F2H2Si –77.8 16.3 Digermane Ge2H6 29 25.1 Diphosphine H4P2 63.5 28.8 Disilane H6Si2 –14.8 21.2 Fluorine F2 –188.12 6.62 Fluorine monoxide F2O –144.3 11.09 Fluorosilane FH3Si –98.6 18.8 Gallium Ga 2204 254 Gallium(III) bromide Br3Ga 279 38.9 Gallium(III) chloride Cl3Ga 201 23.9 Gallium(III) iodide GaI3 340 56.5 Germane GeH4 –88.1 14.06 Germanium Ge 2833 334 Germanium(IV) bromide Br4Ge 186.35 41.4 Germanium(IV) chloride Cl4Ge 86.55 27.9 Gold Au 2856 324 Helium He –268.93 0.08 Hydrazine H4N2 113.55 41.8 44.7 Hydrazoic acid HN3 35.7 30.5 Hydrogen H2 –252.76 0.90 Hydrogen bromide BrH –66.38 12.69 Hydrogen chloride ClH –85 16.15 9.08 Hydrogen disulfide H2S2 70.7 33.78 Hydrogen iodide HI –35.55 19.76 17.36 Hydrogen peroxide H2O2 150.2 51.6 Hydrogen selenide H2Se –41.25 19.7 Hydrogen sulfide H2S –59.55 18.67 14.08 Hydrogen telluride H2Te –2 19.2 Indium(I) bromide BrIn 656 92 Indium(I) iodide IIn 712 90.8 Iodine I2 184.4 41.57 Enthalpy of Vaporization 6-103 tb ΔvapH(tb) ΔvapH(25°C) Name Mol. Form. °C kJ/mol kJ/mol Iodine pentafluoride F5I 100.5 41.3 Iridium(VI) fluoride F6Ir 53.6 30.9 Krypton Kr –153.34 9.08 Lead Pb 1749 179.5 Lead(II) bromide Br2Pb 892 133 Lead(II) chloride Cl2Pb 951 127 Lead(II) fluoride F2Pb 1293 160.4 Lead(II) iodide I2Pb 872 104 Lithium fluoride FLi 1673 147 Lithium hydroxide HLiO 1626 188 Mercury Hg 356.62 59.11 Mercury(II) bromide Br2Hg 318 58.89 Mercury(II) chloride Cl2Hg 304 58.9 Mercury(II) iodide HgI2 351 59.2 Molybdenum(V) chloride Cl5Mo 268 62.8 Molybdenum(V) fluoride F5Mo 213.6 51.8 Molybdenum(VI) fluoride F6Mo 34.0 29.0 Molybdenum(VI) oxide MoO3 1155 138 Molybdenum(VI) oxytetrafluoride F4MoO 186.0 50.6 Neon Ne –246.05 1.71 Niobium(V) chloride Cl5Nb 247.4 52.7 Niobium(V) fluoride F5Nb 234 52.3 Nitric acid HNO3 83 39.1 Nitric oxide NO –151.74 13.83 Nitrogen N2 –195.79 5.57 Nitrogen tetroxide N2O4 21.15 38.12 Nitrogen trifluoride F3N –128.75 11.56 Nitrosyl chloride ClNO –5.5 25.78 Nitrosyl fluoride FNO –59.9 19.28 Nitrous oxide N2O –88.48 16.53 Nitryl chloride ClNO2 –15 25.7 Nitryl fluoride FNO2 –72.4 18.05 Osmium(V) fluoride F5Os 233 65.6 Osmium(VI) fluoride F6Os 47.5 28.1 Oxygen O2 –182.95 6.82 Pentaborane(11) B5H11 65 31.8 Perchloryl fluoride ClFO3 –46.75 19.33 Phosphine H3P –87.75 14.6 Phosphorothioc trifluoride F3PS –52.25 19.6 Phosphorus P 280.5 12.4 14.2 Phosphorus(III) bromide Br3P 173.2 38.8 Phosphorus(III) chloride Cl3P 76 30.5 32.1 Phosphorus(III) chloride difluoride ClF2P –47.3 17.6 Phosphorus(III) dichloride fluoride Cl2FP 13.85 24.9 Phosphorus(III) fluoride F3P –101.8 16.5 Phosphorus(V) fluoride F5P –84.6 17.2 Phosphorus(III) iodide I3P 227 43.9 Phosphoryl bromide Br3OP 191.7 38 Phosphoryl chloride Cl3OP 105.5 34.35 38.6 Rhenium(VII) dioxytrifluoride F3O2Re 185.4 65.7 Rhenium(V) fluoride F5Re 221.3 58.1 Rhenium(VI) fluoride F6Re 33.8 28.7 Rhenium(VI) oxytetrafluoride F4ORe 171.7 61.0 Selenium Se 685 95.48 Selenium tetrafluoride F4Se 101.6 47.2 6-104 Enthalpy of Vaporization tb ΔvapH(tb) ΔvapH(25°C) Name Mol. Form. °C kJ/mol kJ/mol Silane H4Si –111.9 12.1 Silver(I) bromide AgBr 1502 198 Silver(I) chloride AgCl 1547 199 Silver(I) iodide AgI 1506 143.9 Sodium hydroxide HNaO 1388 175 Stannane H4Sn –51.8 19.05 Stibine H3Sb –17 21.3 Sulfur S 444.61 45 Sulfur dioxide O2S –10.05 24.94 22.92 Sulfur hexafluoride F6S 8.99 Sulfur tetrafluoride F4S –40.45 26.44 Sulfur trioxide O3S 44.5 40.69 43.14 Sulfuryl chloride Cl2O2S 69.4 31.4 30.1 Tantalum(V) bromide Br5Ta 348.8 62.3 Tantalum(V) chloride Cl5Ta 239 54.8 Tantalum(V) fluoride F5Ta 229.5 56.9 Tellurium Te 988 114.1 Tellurium tetrachloride Cl4Te 387 77 Tetraborane(10) B4H10 18 27.1 Tetrabromosilane Br4Si 154 37.9 Tetrachlorosilane Cl4Si 57.65 28.7 29.7 Tetrafluorodiborane B2F4 –34.0 28 Tetrafluorohydrazine F4N2 –74 13.27 Tetraiodosilane I4Si 287.35 50.2 Thallium(I) bromide BrTl 819 99.56 Thallium(I) chloride ClTl 720 102.2 Thallium(I) iodide ITl 824 104.7 Thallium(I) sulfide STl2 1367 154 Thionitrosyl fluoride (NSF) FNS 4.8 22.2 Thionyl chloride Cl2OS 75.6 31.7 31 Thionyl fluoride F2OS –43.8 21.8 Thorium(IV) chloride Cl4Th 921 146.4 Thorium(IV) fluoride F4Th 1680 258 Tin(II) bromide Br2Sn 639 102 Tin(IV) bromide Br4Sn 205 43.5 Tin(II) chloride Cl2Sn 623 86.8 Tin(IV) chloride Cl4Sn 114.15 34.9 Tin(II) iodide I2Sn 714 105 Tin(IV) iodide I4Sn 364.35 56.9 Titanium(IV) bromide Br4Ti 233.5 44.37 Titanium(II) chloride Cl2Ti 1500 232 Titanium(III) chloride Cl3Ti 960 124 Titanium(IV) chloride Cl4Ti 136.45 36.2 Titanium(IV) iodide I4Ti 377 58.4 Tribromosilane Br3HSi 109 34.8 Trichlorosilane Cl3HSi 33 25.7 Trifluorosilane F3HSi –95 16.2 Trigermane Ge3H8 110.5 32.2 Trisilane H8Si3 52.9 28.5 Tungsten(VI) chloride Cl6W 337 52.7 Tungsten(VI) fluoride F6W 17.1 26.5 Tungsten(VI) oxytetrachloride Cl4OW 230 67.8 Tungsten(VI) oxytetrafluoride F4OW 185.9 59.5 Vanadium(IV) chloride Cl4V 151 41.4 42.5 Vanadium(V) fluoride F5V 48.3 44.52 Enthalpy of Vaporization 6-105 tb ΔvapH(tb) ΔvapH(25°C) Name Mol.
Recommended publications
  • Use of Bismuth Compounds for the Manufacture of Medicaments for The
    Europäisches Patentamt *EP000805815B1* (19) European Patent Office Office européen des brevets (11) EP 0 805 815 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: A61K 33/24, C07F 9/94, of the grant of the patent: A61K 49/04 10.04.2002 Bulletin 2002/15 (86) International application number: (21) Application number: 96901066.9 PCT/GB96/00183 (22) Date of filing: 26.01.1996 (87) International publication number: WO 96/22994 (01.08.1996 Gazette 1996/35) (54) Use of bismuth compounds for the manufacture of medicaments for the treatment of gastric disorders caused by Helicobacter pylori Verwendung von WISMUTVERBINDUNGEN zur Herstellung eines Arzneimittels zur Behandlung von Magenverstimmungen, die durch Helicobacter pylori verursacht werden Utilisation de COMPOSES DE BISMUTH pour la fabrication de médicaments pour le traitement de troubles gastriques associées avec Helicobacter pylori (84) Designated Contracting States: EP-A- 0 480 691 EP-A- 0 716 091 DE DK ES FR GB IE IT SE WO-A-91/03241 WO-A-93/02713 WO-A-95/06053 WO-A-96/16677 (30) Priority: 26.01.1995 GB 9501560 WO-A-96/16678 BE-A- 782 105 07.06.1995 US 486225 DE-A- 2 216 725 (43) Date of publication of application: • TETRAHEDRON LETT. (TELEAY,00404039);94; 12.11.1997 Bulletin 1997/46 VOL.35 (44); PP.8197-200, KYOTO UNIV.;FAC. SCI.; KYOTO; 606-01; JAPAN (JP), SUZUKI H ET (73) Proprietor: NYCOMED IMAGING A/S AL ’Ultrasonic reaction of triarylbismuthines 0401 Oslo (NO) and triarylstibines with iodosylbenzene. Mild oxidizing ability of the organobismuth oxide (72) Inventors: function for organic substrates’ • KLAVENESS, Jo • DATABASE CHEMABS CHEMICAL ABSTRACTS N-1166 Oslo (NO) SERVICE, COLUMBUS, OHIO, US ASTHANA A • BERG, Arne ’Reactions of triphenyl antimony, bismuth and N-1300 Sandvika (NO) their dibromides with pentachlorophenol and • ALMEN, Torsten pentachlorothiophenol’ & INDIAN J.
    [Show full text]
  • United States Patent (19) ’11) 4,095,037 Stapp 45) June 13, 1978
    United States Patent (19) ’11) 4,095,037 Stapp 45) June 13, 1978 54 METHOD FOR THE oxIDATION OF A 56) References Cited CONJUGATED DOLEFN U.S. PATENT DOCUMENTS 3,238,225 3/1966 Brill................................ 260/346.1 (75) Inventor: Paul R. Stapp, Bartlesville, Okla. 3,432,558 3/1969 Ryland ................................. 260/604 3,670,014 6/1972 Fernholz .......................... 260/497 A 73 Assignee: Phillips Petroleum Company, 3,755,423 8/1973 Onoda .............................. 260/497 A. Bartlesville, Okla. 3,922,300 11/1975 Onoda .............................. 260/497. A Primary Examiner-James O. Thomas, Jr. 21 Appl. No.: 721,645 Assistant Examiner-Michael Shippen 22 Filed: Sep. 8, 1976 57 ABSTRACT A conjugated diolefin is reacted with a carboxylic acid, (51) Int, C.’......................... CO7C 67/05; B01J 23/16 a carboxylic acid anhydride, or a mixture thereof, in the (52) U.S.C. .................................... 560/246; 260/410; presence of oxygen and a catalyst comprising a com 260/410.6; 260/465.4; 560/1; 560/106; pound of bismuth, an alkali metal compound and a 560/112; 560/122; 560/228; 560/230; 252/438 source of nitrate ion. 58 Field of Search ........... 260/497 R, 497 A, 476 R, 260/410, 40.6, 465.4, 468 R, 487 11 Claims, No Drawings 4,095,037 1. METHOD FOR THE OXDATION OF A . R. R. R. 1) CONJUGATED DOLEFN C-CEC as R. BACKGROUND OF THE INVENTION The invention relates to a method suitable for the In said formula (1), R- is selected from the group oxidation of a conjugated diolefin. In another aspect, consisting of H-, F-, CL-, Br-, -, -CsN, the invention relates to a composition useful as a cata lyst.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 6,117,412 Klaveness Et Al
    USOO6117412A United States Patent (19) 11 Patent Number: 6,117,412 Klaveness et al. (45) Date of Patent: *Sep. 12, 2000 54) NON-CLUSTER TYPE BISMUTH 5,417,958 5/1995 Deutsch et al. ........................ 424/9.42 COMPOUNDS 5,482,669 1/1996 Shah. 5,482,700 1/1996 Deutsch et al.. 75 Inventors: Jo Klaveness, Oslo; Ame Berg, 5,730,953 3/1998 Suzuki et al. .......................... 424/9.42 Sandvika, both of Norway; Torsten 5,817,289 10/1998 Klaveness et al. .................... 424/1.11 Almen, Falstorbo, Sweden; Klaes FOREIGN PATENT DOCUMENTS Golman, Rungsted Kyst, Denmark; 809388 5/1974 Belgium. Michael Droege, Livermore; Shi-bao O O217 577 Yu, Campbell, both of Calif. A2 9/1986 European Pat. Off.. O 230 893 A2 1/1987 European Pat. Off.. 73 Assignee: Nycomed Imaging AS, Norway O 445 743 A2 9/1991 European Pat. Off.. 0 480 691 A2 4/1992 European Pat. Off.. * Notice: This patent is Subject to a terminal dis O OS33 281 claimer. A1 9/1992 European Pat. Off.. 0 716 091 A1 8/1994 European Pat. Off.. 21 Appl. No.: 08/875,305 2216725 10/1973 Germany. 63-225381 9/1988 Japan. 22 PCT Filed: Jan. 26, 1996 81/7456 4/1983 South Africa. 86 PCT No.: PCT/GB9600183 1003685 9/1965 United Kingdom. 1341331 12/1973 United Kingdom. S371 Date: Oct. 22, 1997 2 248 185 1/1992 United Kingdom. 2 262 036 6/1993 United Kingdom. S 102(e) Date: Oct. 22, 1997 WO 89/00557 1/1989 WIPO. WO 89/03219 4/1989 WIPO.
    [Show full text]
  • 5.157 TABLE 5.29 Van Der Waals' Constants for Gases the Van Der
    DEAN #37261 (McGHP) RIGHT INTERACTIVE top of rh PHYSICAL PROPERTIES 5.157 base of rh cap height TABLE 5.29 Van der Waals’ Constants for Gases base of text The van der Waals’ equation of state for a real gas is: na2 ͩͪP ϩ (V Ϫ nb) ϭ nRT for n moles V2 where P is the pressure, V the volume (in liters per mole ϭ 0.001 m3 per mole in the SI system), T the temperature (in degrees Kelvin), n the amount of substance (in moles), and R the gas constant. To use the values of a and b in the table, P must be expressed in the same units as in the gas constant. Thus, the pressure of a standard atmosphere may be expressed in the SI system as follows: 1 atm ϭ 101,325 N · mϪ2 ϭ 101,325 Pa ϭ 1.01325 bar The appropriate value for the gas constant is: 0.083 144 1 L · bar · KϪ1 · molϪ1 or 0.082 056 L · atm · KϪ1 · molϪ1 The van der Waals’ constants are related to the critical temperature and pressure, tc and Pc, in Table 6.5 by: 27 RT22 RT a ϭ ccand b ϭ 64 Pcc8 P Substance a,L2 · bar · molϪ2 b,L·molϪ1 Acetaldehyde 11.37 0.08695 Acetic acid 17.71 0.1065 Acetic anhydride 26.8 0.157 Acetone 16.02 0.1124 Acetonitrile 17.89 0.1169 Acetyl chloride 12.80 0.08979 Acetylene 4.516 0.05218 Acrylic acid 19.45 0.1127 Acrylonitrile 18.37 0.1222 Allene 8.235 0.07467 Allyl alcohol 15.17 0.1036 Aluminum trichloride 42.63 0.2450 2-Aminoethanol 7.616 0.0431 Ammonia 4.225 0.03713 Ammonium chloride 2.380 0.00734 Aniline 29.14 0.1486 Antimony tribromide 42.08 0.1658 Argon 1.355 0.03201 Arsenic trichloride 17.23 0.1039 Arsine 6.327 0.06048 Benzaldehyde 30.30 0.1553 Benzene 18.82
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,596,206 B2 Lee (45) Date of Patent: *Jul
    USOO6596206B2 (12) United States Patent (10) Patent No.: US 6,596,206 B2 Lee (45) Date of Patent: *Jul. 22, 2003 (54) GENERATION OF PHARMACEUTICAL FOREIGN PATENT DOCUMENTS AENESSING FOCUSED WO WO OO/37169O542314 6/20007/1998 (75) Inventor: partson-Hui Lee, Mountain View, W W s: 2: OTHER PUBLICATIONS (73) Assignee: Picoliter Inc., Sunnyvale, CA (US) Debenedetti et al. (1993), “Application of Supercritical Fluids for the Production of Sustained Delivery Devices.” (*) Notice: Subject to any disclaimer, the term of this Journal of Controlled Release 24:27–44. patent is extended or adjusted under 35 Tom et al. (1991), “Formation of Bioerodible Polymeric U.S.C. 154(b) by 14 days. Microspheres and Microparticles by Rapid Expansion of Supercritical Solutions,” Biotechnol. Prog. 7(5):403-411. This patent is Subject to a terminal dis- Chattopadhyay et al. (2001), “Production of Griseofulvin claimer. Nanoparticles Using Supercritical CO2 Antisolvent with Enhanced Mass Transfer.” International Journal of Phar (21) Appl. No.: 09/823,899 maceutics 228:19-31. (22) Filed: Mar 30, 2001 Jung et al. (2001), “Particle Design Using Supercritical e a Vs Fluids: Literature and Patent Survey,” Journal of Supercriti (65) Prior Publication Data cal Fluids 20:179-219. Primary Examiner Mary Lynn Theisen US 2002/0142049 A1 Oct. 3, 2002 (74) Attorney, Agent, or Firm-Dianne E. Reed; Reed & (51) Int. Cl." .................................................. B29C 9/00 Eberle LLP (52) U.S. Cl. ....................... 264/9; 264/5; 2647. (57) ABSTRACT (58) Field of Search ......................... 264/9, 7, 5; 425/6, A method and device for generating pharmaceutical agent 425/10 particles using focused acoustic energy are provided.
    [Show full text]
  • The Radiochemistry of Bismuth
    NAS-NS-3061 RA OFBISMUTH NUCLEAR SCIENCE SERIES National Academy of Sciences - National Research Council Published by Technical Information Center ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION COMMITTEE ON NUCLEAR SCIENCE John Huizenga, Chairman, Nuclear WrUcture Re=arch Laboratory Thomas A. Tombrello, Vice Chairman, California institute of T=hnology C. K. Reed, Executive Secretary,Netional Academy of Sciences Lowell M. Bollinger, Argonne Nationel Laboratow Peggy Dyer, UnivarsiW of Washington Rusaall Heath, Aerojet Nuclear Co., Inc. Roy K. Middlaton, University of Pennsylvania 1: Lon Morgan, Columbie Scientific Industries G. Davis O’Kelley, Oek Ridge National Laboratow G. C. Phillips, Rice University Henry N. Wagner, Jr., The Johns Hopkins Medial Institutions Joseph Wen~, Brookhaven National Laboratory Sheldon’ Wolff, University of California Chien-Shiung Wu, Columbia Univar?@ Alexander Zuckar, Oak Ridga National Laborato~ Liaison Members William S. Rodney, National science Foundation George L. ROWS, Energy Research and Development Admini-ration SUBCOMMITTEE ON RAD1OCHEMISTRY G. Davis O’Kelley, Chairmsrr, Oak Ridge National Laboratory Glen E. Gordon, UnivwsiW of Maryler& ‘“- ,-. Rolfa H. Hw*r, Rutgers Univemity John A. Miskel, Lawrence Livermore LaboratoW Harold A. O’Brien, Jr., Los Alamos Scientific Laboratory Richard W. Perkins. Bettafle Pacific Northwest Laboratories Andrew F. Stehney, Argonne National Laboratory Kurt Wotfsbarg, Los Alanros Scientific Laboratow LiaisonMembers ~ John L. Burnatte, Energy Research and Davelopmant Administration FTed Findeis, National Scienca Foundation i.,.~.. Radiochemistry of Bismuth Kashinath S. Bhatki Tata Instituteof Fundamental Research Homi Bhabha Road, Bombay 400005 and Bhabha Atomic ResearchC-entre Trornbay,Bombay 400085 (India) Prepared for Subcommittee on Radiochemistry National Academy of Sciences - Natiorial Research Council IssuanceDate:September 1977 Published by Technical 1nform,ation center ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION Price$4.75.Availablefrom: NationalTechnicalInformationservice U.
    [Show full text]
  • Semiconductive Coordination Networks from Bismuth(III) Bromide and 1,2-Bis(Methylthio)Phenylacetylene-Based Ligands
    Inorg. Chem. XXXX, XX, Semiconductive Coordination Networks from Bismuth(III) Bromide and 1,2-Bis(methylthio)phenylacetylene-Based Ligands Kunhao Li,† Hanhui Xu,† Zhengtao Xu,*,†,‡ Matthias Zeller,§ and Allen D. Hunter§ Department of Chemistry, the George Washington UniVersity, 725 21st Street NW, Washington, D.C. 20052, Department of Biology and Chemistry, City UniVersity of Hong Kong, 83 Tat Chee AVenue, Kowloon, Hong Kong, P. R. China, and Department of Chemistry, Youngstown State UniVersity, 1 UniVersity Plaza, Youngstown, Ohio 44555 Received July 28, 2005 This paper reports our initial efforts to integrate phenylacetylene-based conjugate π-electron systems into hybrid semiconductive coordination networks, as part of the larger scheme to fully synergize organic functionalities and electronic properties in crystalline solid-state materials. On the basis of a well-established Pd-catalyzed procedure, ligands of 3,3′,4,4′-tetrakis(methylthio)tolan (L1) and 1,3,5-tris{[3,4-bis(methylthio)phenyl]ethynyl}benzene (L2) were efficiently synthesized in relatively simple procedures. Molecule L1 reacts with BiBr3 to form a 2D semiconductive coordination network (L1‚2BiBr3), which consists of infinite chains of the BiBr3 component cross-linked by L1 through the chelation between the 1,2-bis(methylthio) groups and the Bi(III) centers. Molecule L2 reacts with BiBr3 to from a 1D semiconductive coordination network (L2‚2BiBr3), which features discrete tetrameric Bi4Br12 units linked by the thioether groups from L2 [only two of the three 1,2-bis(methylthio) groups from each L2 molecule are bonded to the Bi(III) centers]. Diffuse reflectance spectra of both L1‚2BiBr3 and L2‚2BiBr3 feature strong optical absorptions at energy levels significantly lower than those of the corresponding molecular solids (L1 and L2) and BiBr3, indicating significant electronic interaction between the organic π-electron systems and the BiBr3 components.
    [Show full text]
  • Convenient, Bismuth Mediated, One-Pot, Two Component Synthesis of 2,6-Disubstituted-3,4-Dihydropyrans
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 5-2011 Convenient, Bismuth Mediated, One-pot, Two Component Synthesis of 2,6-Disubstituted-3,4-Dihydropyrans Robert Frederick Lambert College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Chemistry Commons Recommended Citation Lambert, Robert Frederick, "Convenient, Bismuth Mediated, One-pot, Two Component Synthesis of 2,6-Disubstituted-3,4-Dihydropyrans" (2011). Undergraduate Honors Theses. Paper 371. https://scholarworks.wm.edu/honorstheses/371 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Convenient, Bismuth Mediated, One-pot, Two Component Synthesis of 2,6- Disubstituted-3,4-Dihydropyrans A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science with Honors in Chemistry from the College of William and Mary in Virginia, by Robert Frederick Lambert May, 2011 Accepted for_____________________ _________________________________ Robert J. Hinkle, Director, Chemistry _________________________________ Lisa M. Landino, Chemistry _________________________________ Julie G. Galambush, Religious Studies Williamsburg, VA May 3, 2011 Table of Contents Abstract……………………………………………………………………………1 List of Figures……………………………………………………………………..2
    [Show full text]
  • The Bismuth Bromido Clusters In
    Main Group Met. Chem. 2014; 37(5-6): 119–124 Katarzyna Wójcik, Ana Maria Preda, Tobias Rüffer, Heinrich Lang and Michael Mehring* Two in one: the bismuth bromido clusters * in [Bi6Cp 6Br9][Bi7Br24] * 4- Abstract: The reaction of [FeCp (CO)2]2 in CH2Cl2 with BiBr3 [Bi4Br16] (Norman, 1998). Diverse cations were used to + in a 1:1 molar ratio gave the novel bismuth compound stabilize such bromido bismuthates, e.g., [Ph4P] (Ahmed * + + [Bi6Cp 6Br9][Bi7Br24] (1), which is composed of a cationic et al., 2001a,b), [Me3HP] (Clegg et al., 1991), [Me2NH2] , + 5 + and an anionic bismuth bromido cluster: the cation is [Et2NH2] , and even [Fe(η -C5H5)2] (Norman, 1998). based on a hexanuclear bismuth {Bi6}-octahedron and the We report on the synthesis and structure of * 3- anion showing the first heptanuclear bismuth-bromido [Bi6Cp 6Br9][Bi7Br24] (1), containing heptanuclear [Bi7Br24] , cluster within the class of bromido bismuthates. which is not reported for bismuth bromido complexes. The iodide analog was only recently described by Monakhov Keywords: crystal structure; bismuth bromide; penta- et al. as anionic part of the crystal structure of [Bi(OAc)2 methylcyclopentadienyl; polynuclear clusters. (thf)4]3[Bi7I24], which was obtained by the reaction of BiI3 with [Pd(OAc)2] (Monakhov et al., 2012). However, the first report on [Bi I ]3- dates back to 1996, but details on syn- DOI 10.1515/mgmc-2014-0036 7 24 Received September 29, 2014; accepted October 22, 2014 thesis and structure were not given (Carmalt et al., 1996). In addition to the anionic cluster in 1, a cationic bismuth complex with Cp*Bi moieties is observed in the solid state.
    [Show full text]
  • Structrural Peculiarities and Some Electrical-And-Physical Properties of Bismuth Oxide and Antimony Trichloride and Tribromide
    240 Nanomaterials: Applications and Properties (NAP-2011). Vol. 1, Part I STRUCTRURAL PECULIARITIES AND SOME ELECTRICAL-AND-PHYSICAL PROPERTIES OF BISMUTH OXIDE AND ANTIMONY TRICHLORIDE AND TRIBROMIDE Kurban R. Kurbanov, Natalya N. Kurbanova KNUAP, Lenina 59a, 100012, Karaganda, Kazakhstan ABSTRACT The systems of antimony oxide (III) – antimony chloride (III), antimony oxide (III) – antimony bromide ɛɪɨɦɢɞ (III), bismuth oxide (III) – bismuth chloride (III) and bismuth oxide (III) – bismuth bromide (III) are the sections of the triple systems metal - oxygen - halogen. In the present report there is considered the information found in literature of the phase diagrams of binary systems components: metal – oxygen, metal – halogen – and literature data of methods of obtaining, structures and properties of the compounds in the systems. The analysis of the elementary cells parameters permitted to suppose their laminated structure and to build these compounds structures models. By the NQR method there was established the absence of the inversion center in some bismuth oxo-halogenides (by the presence of piezoelectric resonance lines) and revealed a significant dependence of NQR spectra transitions intensity on weak magnetic fields. From the practical point of view the interest presents further studying of crystal structures and physical properties of some bismuth oxo-halogenides, as due to the defect oxygen sublattice they can appear to be efficient solid electrolytes. INTRODUCTION For the first time crystal structure of Į – Bi2O3 modification was defined by Sillen [1, 2] according to Weisenberg’s X-ray photographs. Bismuth atoms position were defined from the analysis of interatom function of Paterson and of oxygen atoms – from space considerations. Repeated studies confirmed the positions of the two oxygen atoms and verified the position of the third oxygen atom [3, 4].
    [Show full text]
  • Flame Retardant Concentrates and Process for Their Preparation
    Europaisches Patentamt European Patent Office © Publication number: 0 482 600 A2 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 91118055.2 int. Ci.5; C08K 5/16, C08L 23/02 @ Date of filing: 23.10.91 ® Priority: 23.10.90 IT 2183790 © Applicant: Himont Incorporated 2801 Centerville Road @ Date of publication of application: New Castle County Delaware(US) 29.04.92 Bulletin 92/18 @ Inventor: Bertelli, Guido © Designated Contracting States: 56, Via R. Angelini AT BE CH DE DK FR GB IT LI NL SE 1-44100 Ferrara(IT) Inventor: Goberti, Paolo 53, Via Fondo Reno I-44049 Vigarano Mainarda, Ferrara(IT) © Representative: Zumstein, Fritz, Dr. et al Dr. F. Zumstein Dipl.-lng. F. Klingseisen Brauhausstrasse 4 W-8000 Munchen 2(DE) © Flame retardant concentrates and process for their preparation. © Concentrate of a flame retardant additive, in the form of nonextruded particles, each one comprising: A) a matrix of a nonextruded, as polymerized particle, preferably spheroidal, of a polymer or copolymer of olefins having porosity greater than or equal to 15%, expressed as a percent of the void volume on the total volume of the particle, B) the product of reaction between bismuth or antimony trichloride or tribromide, or their mixtures, and one or more amines; wherein said product (B) is made "in situ" and deposited on the surface of the matrix and inside the pores thereof. CM CO CM 00 Rank Xerox (UK) Business Services [-12. 17/2.0) EP 0 482 600 A2 The present invention relates to nonextruded concentrates of a flame retardant additive, which can be used in the manufacture of polymers, and in particular of polyolefins, and the process for their preparation.
    [Show full text]
  • Molecular Structures of Gas-Phase Polyatomic Molecules Determined by Spectroscopic Methods
    Molecular Structures of Gas-Phase Polyatomic Molecules Determined by Spectroscopic Methods Marlin D. Harmony Department of Cherni..str)', The University of Kansas, Lawrence, KS 66045 Victor W. Laurie Department of Chemistry, Princeton Unit'er.it)", Princeton, NJ 08540 Robert L. Kuczkowski Department of Chemistry, University of Michigan, Ann Arbor, Ml48109 R. H. Schwendeman Department of Chemistry, Michigan State University, East Lansing, MI 48824 D. A. Ramsay Her::;berg institute of Astrophysics, National Research COl/neil of Canada, OIlf1l<'U, KIA ORG, Canada Frank J. Lovas, Walter J. Lafferty, and Arthur G. Maki National Bureau of Standards, Washing/Oil, DC 20334 Spectroscopic data related to the structures of polyatomic molecules in the gas phase have been reviewed, critically evaluated, and compiled. All reported bond distances and angles have been classified as equilibrium (r 0)' average (r,), substitution (r.), or effective (ro) parameters, and have been given a quality rating which is a measure of the parameter uncertainty. The surveyed literature includes work from all of the areas of gas-phase spectroscopy from which precise quantitative struc· tural information can be derived. Introductory material includes definitions of the various types of parameters and a description of the evaluation procedure. Key words: Bond angles; bond distances; gas·phase polyatomic molecules; gas·phase spectroscopy; microwave spectroscopy; molecular conformation; molecular spectroscopy; molecular structure; molecules; SLrUClure. Contents Page Page 1. Introduction.... .. ............. 619 Inorganic Molecules ....................... 628 2. Definitions of Structural Parameters ......... 620 C1 Molecules ............................. 650 3. Uncertainties ............................ 623 C~ Molecules ............................. 668 4,. Evaluation Procedure ..................... 625 C3 Molecules ............................. 688 5. Description of Tables ..................... 625 c.! Molecules ............................. 702 Appendix: Selected Diatomic Molecule Distances .
    [Show full text]