Experimental and Theoretical Study of the Polynuclear Bismuth Compounds – Dimers, Clusters, Molecular Self-Assemblies and Polyhedral Cage Molecules
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Application with the Even-Odd Rule and a Specific Periodic Table for Organic and Inorganic Atoms
Open Journal of Physical Chemistry, 2021, 11, 54-63 https://www.scirp.org/journal/ojpc ISSN Online: 2162-1977 ISSN Print: 2162-1969 First Step in Dissociation Process in the Gas Phase for Small Molecules with Neutral Atoms: Application with the Even-Odd Rule and a Specific Periodic Table for Organic and Inorganic Atoms Geoffroy Auvert Grenoble Alpes University, Grenoble, France How to cite this paper: Auvert, G. (2021) Abstract First Step in Dissociation Process in the Gas Phase for Small Molecules with Neutral Dissociations in the gas phase of small molecules have been intensively stu- Atoms: Application with the Even-Odd died and dissociation energies of various gases are available in reference Rule and a Specific Periodic Table for Or- works. Configurations of compounds before and after the dissociation are ganic and Inorganic Atoms. Open Journal of Physical Chemistry, 11, 54-63. usually known, but local charges are not defined. Building on the even-odd https://doi.org/10.4236/ojpc.2021.112003 rule, the topic of a series of previous articles by the same author, the objective of this paper is to show how it can be used to give electronic rules for dissoci- Received: March 17, 2021 Accepted: May 17, 2021 ations in gases. To this end, a specific periodic table is created and used. The Published: May 20, 2021 rules are applied to a selection of more than 30 common molecules, showing that the even-odd rule and its consequences are useful in explaining the phe- Copyright © 2021 by author(s) and nomenon of dissociation in gases. -
Periodic Table and Bonding Notes 2
Periodic Table and Bonding 1. Handout: Periodic Table and Bonding Notes 2. Periodic Properties and the Development of the Periodic Table 1. The first periodic table was arranged by Dimitri Mendeleev in 1869. 1. He was a professor of Chemistry. at the University of St. Petersburg in Russia and was confronted with the problem of how to teach about the various elements known at that time. He decided to organized the elements by arranging them into groups that reacted similarly. 2. He also noticed that various properties would repeat "periodically" so he arranged a table of elements order of atomic mass such that properties would change regularly if you moved across a row while maintaining groups with similar chemical properties in a column. 3. Go to: http://www.periodic.lanl.gov/mendeleev.htm to see a version of Mendeleev's first table. 2. Groups with similar properties 1. All the elements in a group (or column) are called families. 2. Group 8: The Noble Gases, don't react with other elements. 3. Group 1: The Alkali Earth Metals, all react with water in the following manner 2 Li + H2O ---> H2 + 2 LiOH 2 Na + H2O ---> H2 + 2 NaOH ... 2 Fr + H2O ---> H2 + 2 FrOH page 1 4. These are just a few examples of how Mendeleev organized the columns or families. 3. Periodic Properties 1. As you move across a row various properties change regularly click on the images below to see a visualization of the various properties. All of these images are from www.webelements.com, one of the best periodic table sites on the web. -
Use of Bismuth Compounds for the Manufacture of Medicaments for The
Europäisches Patentamt *EP000805815B1* (19) European Patent Office Office européen des brevets (11) EP 0 805 815 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: A61K 33/24, C07F 9/94, of the grant of the patent: A61K 49/04 10.04.2002 Bulletin 2002/15 (86) International application number: (21) Application number: 96901066.9 PCT/GB96/00183 (22) Date of filing: 26.01.1996 (87) International publication number: WO 96/22994 (01.08.1996 Gazette 1996/35) (54) Use of bismuth compounds for the manufacture of medicaments for the treatment of gastric disorders caused by Helicobacter pylori Verwendung von WISMUTVERBINDUNGEN zur Herstellung eines Arzneimittels zur Behandlung von Magenverstimmungen, die durch Helicobacter pylori verursacht werden Utilisation de COMPOSES DE BISMUTH pour la fabrication de médicaments pour le traitement de troubles gastriques associées avec Helicobacter pylori (84) Designated Contracting States: EP-A- 0 480 691 EP-A- 0 716 091 DE DK ES FR GB IE IT SE WO-A-91/03241 WO-A-93/02713 WO-A-95/06053 WO-A-96/16677 (30) Priority: 26.01.1995 GB 9501560 WO-A-96/16678 BE-A- 782 105 07.06.1995 US 486225 DE-A- 2 216 725 (43) Date of publication of application: • TETRAHEDRON LETT. (TELEAY,00404039);94; 12.11.1997 Bulletin 1997/46 VOL.35 (44); PP.8197-200, KYOTO UNIV.;FAC. SCI.; KYOTO; 606-01; JAPAN (JP), SUZUKI H ET (73) Proprietor: NYCOMED IMAGING A/S AL ’Ultrasonic reaction of triarylbismuthines 0401 Oslo (NO) and triarylstibines with iodosylbenzene. Mild oxidizing ability of the organobismuth oxide (72) Inventors: function for organic substrates’ • KLAVENESS, Jo • DATABASE CHEMABS CHEMICAL ABSTRACTS N-1166 Oslo (NO) SERVICE, COLUMBUS, OHIO, US ASTHANA A • BERG, Arne ’Reactions of triphenyl antimony, bismuth and N-1300 Sandvika (NO) their dibromides with pentachlorophenol and • ALMEN, Torsten pentachlorothiophenol’ & INDIAN J. -
Molecular Clusters of the Main Group Elements
Matthias Driess, Heinrich No¨th (Eds.) Molecular Clusters of the Main Group Elements Matthias Driess, Heinrich No¨th (Eds.) Molecular Clusters of the Main Group Elements Further Titles of Interest: G. Schmid (Ed.) Nanoparticles From Theory to Application 2003 ISBN 3-527-30507-6 P. Jutzi, U. Schubert (Eds.) Silicon Chemistry From the Atom to Extended Systems 2003 ISBN 3-527-30647-1 P. Braunstein, L. A. Oro, P. R. Raithby (Eds.) Metal Clusters in Chemistry 1999 ISBN 3-527-29549-6 U. Schubert, N. Husing€ Synthesis of Inorganic Materials 2000 ISBN 3-527-29550-X P. Comba, T. W. Hambley Molecular Modeling of Inorganic Compounds 2001 ISBN 3-527-29915-7 Matthias Driess, Heinrich No¨th (Eds.) Molecular Clusters of the Main Group Elements Prof. Matthias Driess 9 This book was carefully produced. Ruhr-Universita¨t Bochum Nevertheless, authors, editors and publisher Fakulta¨tfu¨r Chemie do not warrant the information contained Lehrstuhl fu¨r Anorganische Chemie I: therein to be free of errors. Readers are Cluster- und Koordinations-Chemie advised to keep in mind that statements, 44780 Bochum data, illustrations, procedural details or Germany other items may inadvertently be inaccurate. Prof. Heinrich No¨th Ludwig-Maximilians-Universita¨tMu¨nchen Library of Congress Card No.: applied for Department Chemie A catalogue record for this book is available Butenandt Str. 5-13 (Haus D) from the British Library. 81377 Munich Bibliographic information published by Die Germany Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http:// dnb.ddb.de ( 2004 WILEY-VCH Verlag GmbH & Co. -
Physics of Soft Colloidal Matter
Physics of Soft Colloidal Matter {Interaction potentials and colloidal stability{ Peter Lang Spring term 2017 Contents 1 Interactions 3 1.1 Molecular Interactions . 3 1.1.1 Interaction between a charge and a dipole . 3 1.1.2 Dipole{Dipole Interactions . 7 1.1.3 Induced Dipolar Interactions . 8 1.1.4 Dispersion Interactions . 9 1.1.5 Van der Waals Interactions . 13 1.2 Van der Waals Interaction Between Colloidal Bodies . 14 1.2.1 Interaction between a single molecule and a wall . 14 1.2.2 Interaction between two planar walls . 15 1.2.3 Interaction between a sphere and a wall . 18 1.2.4 Interaction between two spheres . 20 1.2.5 The Hamaker constant and the Lifshitz continuum theory . 21 1.3 Repulsive interaction and Colloidal Stability . 23 1.3.1 Electrostatic Repulsion in the Debye{H¨uckel Limit . 24 1 Contents 1.3.2 Addition of Van der Waals and Electrostatic Potential: The DLVO Theory . 37 1.4 Non DLVO Interactions . 40 1.4.1 Depletion interaction . 40 1.5 Exercises . 49 1.6 Solutions to Exercises . 52 2 1 Interactions 1.1 Molecular Interactions As the interaction energy between large bodies like colloidal particles is composed of the interaction between their atomic or molecular constituents we will first briefly discuss interactions between molecular • a charge and a permanent dipole • permanent dipoles • induced dipoles • fluctuating dipoles 1.1.1 Interaction between a charge and a dipole Fixed Orientation According to Figure 1.1, a point particle with charge Q = Ze (Z is the number of elementary charges e)at position A shall interact with a permanent dipole at distance 3 1 Interactions C q+ Q=ze r q A l/2 q- B Figure 1.1: For the calculation of the interaction between a point charge and a permanent dipole r with the length l and two partial charges of equal magnitude but opposite sign. -
Download Article
Volume 10, Issue 3, 2020, 5412 - 5417 ISSN 2069-5837 Biointerface Research in Applied Chemistry www.BiointerfaceResearch.com https://doi.org/10.33263/BRIAC103.412417 Original Research Article Open Access Journal Received: 26.01.2020 / Revised: 02.03.2020 / Accepted: 03.03.2020 / Published on-line: 09.03.2020 Obtaining salts of resin acids from Cuban pine by metathesis reactions Olinka Tiomno-Tiomnova 1 , Jorge Enrique Rodriguez-Chanfrau 2 , Daylin Gamiotea-Turro 2 , Thayná Souza Silva 3 , Carlos Henrique Gomes Martins 3 , Alexander Valerino-Diaz 2 , Yaymarilis Veranes-Pantoja 4 , Angel Seijo-Santos 1 , Antonio Carlos Guastaldi 2 1Center of Engineering and Chemical Investigations. Havana. CP 10600, Cuba 2Group of Biomaterials, Department of Physical Chemistry, Institute of Chemistry, Sao ~ Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil 3Laboratory of Research on Antimicrobial Trials (LaPEA), Institute of Biomedical Sciences – ICBIM, Federal University of Uberlândia, Uberlândia, Brazil 4Biomaterials Center. University of Havana. Havana. CP 10600, Cuba *corresponding author e-mail address: [email protected] | Scopus ID 7801488065 ABSTRACT The resin acids obtained from the Cuban pine rosin are the starting material for the development and application of metathesis reactions. These reactions allow the obtaining of salts with high added value which could be used in the development of biomaterials for dental use. The objective of this work was to obtain calcium, magnesium and zinc resinates from the resin acid obtained from the Cuban pine resin by metathesis reaction for possible use in the development of biomaterials. The products obtained were evaluated by elemental analysis, X-ray powder diffraction, infrared spectroscopy, scanning electron microscopy associated with electron dispersion spectroscopy, nuclear magnetic resonance and biological tests (antibacterial activity). -
A Metal-Free Approach to Biaryl Compounds: Carbon-Carbon Bond Formation from Diaryliodonium Salts and Aryl Triolborates
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 4-3-2015 A Metal-Free Approach to Biaryl Compounds: Carbon-Carbon Bond Formation from Diaryliodonium Salts and Aryl Triolborates Kuruppu Lilanthi Jayatissa Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Catalysis and Reaction Engineering Commons Let us know how access to this document benefits ou.y Recommended Citation Jayatissa, Kuruppu Lilanthi, "A Metal-Free Approach to Biaryl Compounds: Carbon-Carbon Bond Formation from Diaryliodonium Salts and Aryl Triolborates" (2015). Dissertations and Theses. Paper 2229. https://doi.org/10.15760/etd.2226 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. A Metal-Free Approach to Biaryl Compounds: Carbon-Carbon Bond Formation from Diaryliodonium Salts and Aryl Triolborates. by Kuruppu Lilanthi Jayatissa A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Chemistry Thesis Committee: David Stuart, Chair Robert Strongin Theresa McCormick Portland State University 2015 Abstract Biaryl moieties are important structural motifs in many industries, including pharmaceutical, agrochemical, energy and technology. The development of novel and efficient methods to synthesize these carbon-carbon bonds is at the forefront of synthetic methodology. Since Ullmann’s first report of stoichiometric Cu-mediated homo-coupling of aryl halides, there has been a dramatic evolution in transition metal catalyzed biaryl cross-coupling reactions. -
Triazole, and Coumarin Bearing 6,8-Dimethyl
Article Volume 12, Issue 1, 2022, 809 - 823 https://doi.org/10.33263/BRIAC121.809823 Synthesis, Molecular Characterization, Biological and Computational Studies of New Molecule Contain 1,2,4- Triazole, and Coumarin Bearing 6,8-Dimethyl Pelin Koparir 1,* , Kamuran Sarac 2 , Rebaz Anwar Omar 3,4,* 1 Forensic Medicine Institute, Department of Chemistry, 44100 Malatya, Turkey; [email protected] (P.K.); 2 Bitlis Eren University, Faculty of Art and Sciences, Department of Chemistry, 13000 Bitlis, Turkey; [email protected] (K.S.); 3 Department of Chemistry, Faculty of Science & Health, Koya University, Koya KOY45, Kurdistan Region – F.R. Iraq 4 Fırat University, Faculty of Sciences, Department of Chemistry, 23000 Elazığ, Turkey; [email protected] (R.O.); * Correspondence: [email protected] (P.K.); [email protected] (R.O.); Scopus Author ID 57222539130 Received: 22.02.2021; Revised: 5.04.2021; Accepted: 9.04.2021; Published: 26.04.2021 Abstract: Synthesis 4-(((4-ethyl-5-(thiophen-2-yl)-4H-1,2,4-triazol-3-yl)thio)methyl)-6,8-dimethyl- coumarin and spectral analysis is carried out using the FT-IR and NMR with the help of quantum chemical calculation by DFT/6-311(d,p). The molecular electrostatic potentials and frontier molecular orbitals of the title compound were carried out at the B3LYP/6-311G(d,p) level of theory. Antimicrobial, antioxidant activity, and In vitro cytotoxic for cell lines were observed. The result shows that the theoretical vibrational frequencies, 1H-NMR and 13C-NMR chemical shift, agree with experimental data. In vitro studies showed that antimicrobial activity was weak, particularly against bacteria such as E. -
United States Patent (19) ’11) 4,095,037 Stapp 45) June 13, 1978
United States Patent (19) ’11) 4,095,037 Stapp 45) June 13, 1978 54 METHOD FOR THE oxIDATION OF A 56) References Cited CONJUGATED DOLEFN U.S. PATENT DOCUMENTS 3,238,225 3/1966 Brill................................ 260/346.1 (75) Inventor: Paul R. Stapp, Bartlesville, Okla. 3,432,558 3/1969 Ryland ................................. 260/604 3,670,014 6/1972 Fernholz .......................... 260/497 A 73 Assignee: Phillips Petroleum Company, 3,755,423 8/1973 Onoda .............................. 260/497 A. Bartlesville, Okla. 3,922,300 11/1975 Onoda .............................. 260/497. A Primary Examiner-James O. Thomas, Jr. 21 Appl. No.: 721,645 Assistant Examiner-Michael Shippen 22 Filed: Sep. 8, 1976 57 ABSTRACT A conjugated diolefin is reacted with a carboxylic acid, (51) Int, C.’......................... CO7C 67/05; B01J 23/16 a carboxylic acid anhydride, or a mixture thereof, in the (52) U.S.C. .................................... 560/246; 260/410; presence of oxygen and a catalyst comprising a com 260/410.6; 260/465.4; 560/1; 560/106; pound of bismuth, an alkali metal compound and a 560/112; 560/122; 560/228; 560/230; 252/438 source of nitrate ion. 58 Field of Search ........... 260/497 R, 497 A, 476 R, 260/410, 40.6, 465.4, 468 R, 487 11 Claims, No Drawings 4,095,037 1. METHOD FOR THE OXDATION OF A . R. R. R. 1) CONJUGATED DOLEFN C-CEC as R. BACKGROUND OF THE INVENTION The invention relates to a method suitable for the In said formula (1), R- is selected from the group oxidation of a conjugated diolefin. In another aspect, consisting of H-, F-, CL-, Br-, -, -CsN, the invention relates to a composition useful as a cata lyst. -
คม 331 เคมีอนินทรีย์1 ปีการศึกษา 1-2561
Chemical Bondings คม 331 เคมีอนินทรีย์ 1 ปีการศึกษา 1-2561 1. บทน า พันธะเคมี (Chemical Bondings) • พันธะเคมี → แรงดึงดูดระหว่างอะตอม โมเลกุล หรือไอออน ท าให้มีความเสถียรเพิ่มขึ้นกว่าเมื่อ อยู่เป็นอะตอม โมเลกุล หรือไอออนเดี่ยวๆ - หัวข้อ • พันธะเคมีเกิดจากการใช้อิเล็กตรอนวงนอก (valence e ) ได้แก่ (1) การให้-รับ valence e- หรือ (2) การใช้ valence e- ร่วมกันระหว่างคู่ที่เกิดพันธะ 1. บทน า 5. เรโซแนนซ์ • พันธะระหว่างอะตอมหรือไอออน มีความแข็งแรงมากกว่าพันธะระหว่างโมเลกุล 2. ประเภทของพันธะเคมี 6. ประจุฟอร์มอล • พันธะเคมี เป็นแรงดึงดูดที่แข็งแรงกว่าแรงทางเคมี 3. แรงระหว่างโมเลกุล 7. กฎ 18 อิเล็กตรอน • พันธะเคมีระหว่างอะตอมหรือไอออน ได้แก่ พันธะไอออนิก พันธะโควาเลนต์ และพันธะโลหะ 4. ทฤษฎีพันธะเคมี 8. พันธะ 3 อะตอม 2 อิเล็กตรอน → เกี่ยวข้องกับสมบัติทางเคมีหรือปฏิกิริยาเคมีของธาตุหรือสารประกอบ • พันธะระหว่างโมเลกุล ได้แก่ พันธะไฮโดรเจนและแรงแวนเดอร์วาลส์ → เกี่ยวข้องกับสมบัติ ทางกายภาพของสารมากกว่าสมบัติทางเคมี เนื้อหาบรรยาย รายวิชา คม 331 เคมีอนินทรีย์ 1 เนื้อหาบรรยาย รายวิชา คม 331 เคมีอนินทรีย์ 1 http://www.chemistry.mju.ac.th/wtms_documentAdminPage.aspx?bID=4093 อ.ดร.เพชรลดา กันทาดี อ.ดร.เพชรลดา กันทาดี 2 พันธะเคมี อาจารย์ ดร.เพชรลดา กันทาดี 1 Chemical Bondings Chemical Bondings 1. บทน า 2. ประเภทของพันธะเคมี • พันธะเคมีระหว่างอะตอม → ระยะระหว่างสองอะตอมจะต้องไม่ไกลเกินไปจนนิวเคลียสของ 1. พันธะไอออนิก (Ionic bond) สองอะตอมไม่ดึงดูดกัน และไม่ใกล้เกินไปจนเกิดแรงผลักระหว่างอิเล็กตรอนของสองนิวเคลียส - บางครั้งเรียกว่า พันธะอิเล็กโทรเวเลนซ์ (electrovalence bond) หรือพันธะ → ระยะที่เหมาะสมนี้ เรียกว่า ความยาวพันธะ ไฟฟ้าสถิตย์ (electrostatic bond) -
Competition of Van Der Waals and Chemical Forces on Gold–Sulfur Surfaces and Nanoparticles
Downloaded from orbit.dtu.dk on: Oct 01, 2021 Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles Reimers, Jeffrey R.; Ford, Michael J.; Marcuccio, Sebastian M.; Ulstrup, Jens; Hush, Noel S. Published in: Nature Reviews. Chemistry Link to article, DOI: 10.1038/s41570-0017 Publication date: 2017 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Reimers, J. R., Ford, M. J., Marcuccio, S. M., Ulstrup, J., & Hush, N. S. (2017). Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles. Nature Reviews. Chemistry, 1(2), [0017]. https://doi.org/10.1038/s41570-0017 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. REVIEW ARTICLE: Competition of van der Waals and chemical forces on gold-sulfur surfaces and nanoparticles Jeffrey R. Reimers1,2, Michael J. Ford2, Sebastian M. Marcuccio3,4, Jens Ulstrup5, and Noel S. -
Open Dissertation Xiang Li 07032018.Pdf
The Pennsylvania State University The Graduate School Department of Chemistry MECHANOCHEMICAL SYNTHESIS OF CARBON AND CARBON NITRIDE NANOTHREAD SINGLE CRYSTALS A Dissertation in Chemistry by Xiang Li 2018 Xiang Li Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2018 The dissertation of Xiang Li was reviewed and approved* by the following: John V. Badding Professor of Chemistry, Physics and Materials Science and Engineering Dissertation Advisor Chair of Committee Vincent H. Crespi Professor of Physics, Materials Science and Engineering, and Chemistry Paul S. Cremer Professor of Chemistry and Biochemistry and Molecular Biology Mauricio Terrones Professor of Physics, Chemistry and Materials Science and Engineering Thomas E. Mallouk Professor of Chemistry, Biochemistry and Molecular Biology, Physics, and Engineering Science and Mechanics Head of the Department of Chemistry *Signatures are on file in the Graduate School iii ABSTRACT Carbon nanomaterials such as fullerenes, nanotubes, and graphene have been widely studied in recent decades. Benefitting from their unique bonding, they possess extraordinary physical and chemical properties. Compared with sp2 hybridized carbon allotropes, there are significantly fewer new carbon materials dominated by sp3 bonding that have been developed. Adamantane and graphane represent the smallest unit and thinnest sheet of diamond possible, respectively. One-dimensional, mostly sp3 hybridized nanocarbon, did not yet exist in 2013, when the first synthesis of carbon nanothreads finally filled up the last remaining entry in the matrix of dimensionality and hybridization of carbon nanomaterials that year. Carbon nanothread was first made by compressing benzene to ~25 GPa in a large-volume anvil cell and slowly decompressing back to ambient pressure by an alumnus of the Badding group.