Open Dissertation Xiang Li 07032018.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Open Dissertation Xiang Li 07032018.Pdf The Pennsylvania State University The Graduate School Department of Chemistry MECHANOCHEMICAL SYNTHESIS OF CARBON AND CARBON NITRIDE NANOTHREAD SINGLE CRYSTALS A Dissertation in Chemistry by Xiang Li 2018 Xiang Li Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2018 The dissertation of Xiang Li was reviewed and approved* by the following: John V. Badding Professor of Chemistry, Physics and Materials Science and Engineering Dissertation Advisor Chair of Committee Vincent H. Crespi Professor of Physics, Materials Science and Engineering, and Chemistry Paul S. Cremer Professor of Chemistry and Biochemistry and Molecular Biology Mauricio Terrones Professor of Physics, Chemistry and Materials Science and Engineering Thomas E. Mallouk Professor of Chemistry, Biochemistry and Molecular Biology, Physics, and Engineering Science and Mechanics Head of the Department of Chemistry *Signatures are on file in the Graduate School iii ABSTRACT Carbon nanomaterials such as fullerenes, nanotubes, and graphene have been widely studied in recent decades. Benefitting from their unique bonding, they possess extraordinary physical and chemical properties. Compared with sp2 hybridized carbon allotropes, there are significantly fewer new carbon materials dominated by sp3 bonding that have been developed. Adamantane and graphane represent the smallest unit and thinnest sheet of diamond possible, respectively. One-dimensional, mostly sp3 hybridized nanocarbon, did not yet exist in 2013, when the first synthesis of carbon nanothreads finally filled up the last remaining entry in the matrix of dimensionality and hybridization of carbon nanomaterials that year. Carbon nanothread was first made by compressing benzene to ~25 GPa in a large-volume anvil cell and slowly decompressing back to ambient pressure by an alumnus of the Badding group. Background about high-pressure chemistry will be introduced in Chapter 1. An overview of basic principles and the core instrumental techniques employed in this dissertation will be provided in Chapter 2. In Chapter 3, I will present the progress of carbon nanothread synthesis since 2013. Before my thesis work, only polycrystalline quality carbon nanothreads had been made. With my optimized synthetic protocol, a single crystal carbon nanothread has been successfully synthesized both in large-scale and in standard high-pressure apparatuses. High- pressure x-ray diffraction illustrating the first direct in situ observation of nanothread formation during compression will be presented in this chapter as well. The result of this experiment demonstrates that the transformation from benzene to carbon nanothread is a unique non- topochemical solid state reaction. In Chapter 4, I will report the synthesis and structural characterization of the second member in the nanothread family. Carbon nitride nanothread has been obtained by compressing pyridine with the same slow compression/decompression method, suggesting that this iv mechanochemical synthetic approach is possibly quite general. The shift of the fluorescence emission wavelength compared with carbon nanothread indicates that tuning the physical properties of nanothreads can be realized by introducing heteroatoms or functional groups to the benzene precursor. A new high-pressure phase of pyridine has been discovered from the in situ diffraction study of the carbon nitride nanothread reaction pathway. Preliminary analysis and provisional crystal structures will be presented in Chapter 5. Chapter 6 includes a concluding summary as well as an outlook, with a broader picture than the insight sections at the end of Chapters 3, 4 and 5 provided. v TABLE OF CONTENTS List of Figures .......................................................................................................................... vii List of Tables ........................................................................................................................... xiv Acknowledgements .................................................................................................................. xv Chapter 1 Carbon Materials and High-Pressure Chemistry ..................................................... 1 1.1 Natural Carbon Allotropes: Graphite and Diamond .................................................. 2 1.1.1 Bonding Environments and Crystal Structures ............................................... 3 1.1.2 Structural Properties and Applications ............................................................ 5 1.2 Era of Synthetic Carbon Allotropes: Nanocarbons .................................................... 8 1.3 Molecular Crystals under High Pressure .................................................................... 11 1.3.1 Introduction of Pressure Effects ...................................................................... 11 1.3.2 Pressure Dependence of Chemical Equilibrium and Reaction Rates .............. 15 1.3.3 Pressure Effects on Electronic Structure ......................................................... 17 1.4 Goals of the Dissertation ............................................................................................ 20 References ........................................................................................................................ 22 Chapter 2 Instrumentation and Characterization Techniques .................................................. 26 2.1 High Pressure Cells .................................................................................................... 26 2.1.1 Diamond Anvil Cell ........................................................................................ 26 2.1.2 Paris-Edinburgh Cell ....................................................................................... 28 2.2 Pressure Control System ............................................................................................ 30 2.3 High Pressure X-ray Diffraction ................................................................................ 33 2.3.1 Single Crystal Crystallography under Pressure ............................................... 34 2.3.2 Determine the Pressure in Diamond Anvil Cell .............................................. 36 2.3.3 High Pressure Single Crystal Diffraction at Synchrotron Beamline ............... 38 2.4 Vibrational Spectroscopy ........................................................................................... 40 2.4.1 Principles of Infrared Spectroscopy ................................................................ 40 2.4.2 Principles of Raman Spectroscopy .................................................................. 42 2.4.3 Application of Polarized Raman Spectroscopy ............................................... 45 2.4.4 Ultra-low Frequency Raman Spectroscopy with Volume Bragg Gratings as Optical Filter ................................................................................................ 47 References ........................................................................................................................ 52 Chapter 3 Mechanochemical Synthesis of Carbon Nanothread Single Crystals ..................... 55 3.1 Introduction ................................................................................................................ 55 3.2 Materials and Methods ............................................................................................... 58 3.3 Results and Discussion ............................................................................................... 60 3.4 Conclusions ................................................................................................................ 70 3.5 Insights and Future Consideration ............................................................................. 71 3.5.1 Sign of Reaction .............................................................................................. 71 vi 3.5.2 Polarized Raman Spectroscopy of Carbon Nanothread .................................. 73 3.5.3 Preliminary Ultra-Low Frequency Raman Study ............................................ 75 References ........................................................................................................................ 77 Chapter 4 Carbon Nitride Nanothread Crystals Derived from Pyridine .................................. 79 4.1 Introduction ................................................................................................................ 79 4.2 Materials and Methods ............................................................................................... 83 4.2.1 Synthesis ......................................................................................................... 83 4.2.2 X-ray Diffraction ............................................................................................. 84 4.2.3 Infrared Spectroscopy (IR) .............................................................................. 84 4.2.4 X-ray Photoelectron Spectroscopy (XPS) ....................................................... 85 4.2.5 Nuclear Magnetic Resonance (NMR) Spectroscopy ....................................... 85 4.2.6 Fluorescence Microscopy ................................................................................ 85 4.2.7 Photoluminescence Spectroscopy ................................................................... 86 4.2.8 Combustion Elemental Analysis ..................................................................... 86 4.3 Results and
Recommended publications
  • Application with the Even-Odd Rule and a Specific Periodic Table for Organic and Inorganic Atoms
    Open Journal of Physical Chemistry, 2021, 11, 54-63 https://www.scirp.org/journal/ojpc ISSN Online: 2162-1977 ISSN Print: 2162-1969 First Step in Dissociation Process in the Gas Phase for Small Molecules with Neutral Atoms: Application with the Even-Odd Rule and a Specific Periodic Table for Organic and Inorganic Atoms Geoffroy Auvert Grenoble Alpes University, Grenoble, France How to cite this paper: Auvert, G. (2021) Abstract First Step in Dissociation Process in the Gas Phase for Small Molecules with Neutral Dissociations in the gas phase of small molecules have been intensively stu- Atoms: Application with the Even-Odd died and dissociation energies of various gases are available in reference Rule and a Specific Periodic Table for Or- works. Configurations of compounds before and after the dissociation are ganic and Inorganic Atoms. Open Journal of Physical Chemistry, 11, 54-63. usually known, but local charges are not defined. Building on the even-odd https://doi.org/10.4236/ojpc.2021.112003 rule, the topic of a series of previous articles by the same author, the objective of this paper is to show how it can be used to give electronic rules for dissoci- Received: March 17, 2021 Accepted: May 17, 2021 ations in gases. To this end, a specific periodic table is created and used. The Published: May 20, 2021 rules are applied to a selection of more than 30 common molecules, showing that the even-odd rule and its consequences are useful in explaining the phe- Copyright © 2021 by author(s) and nomenon of dissociation in gases.
    [Show full text]
  • Vibration Control of Diamond Nanothreads by Lattice Defect Introduction for Application in Nanomechanical Sensors
    nanomaterials Article Vibration Control of Diamond Nanothreads by Lattice Defect Introduction for Application in Nanomechanical Sensors Xiao-Wen Lei 1,* , Kazuki Bando 1 and Jin-Xing Shi 2 1 Department of Mechanical Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; [email protected] 2 Department of Production Systems Engineering and Sciences, Komatsu University, Nu 1-3 Shicyomachi, Komatsu 923-8511, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-776-27-8544 Abstract: Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene sheets (GSs), have been adopted as resonators in vibration-based nanomechanical sensors because of their extremely high stiffness and small size. Diamond nanothreads (DNTs) are a new class of one-dimensional carbon nanomaterials with extraordinary physical and chemical properties. Their structures are similar to that of diamond in that they possess sp3-bonds formed by a covalent interaction between multiple benzene molecules. In this study, we focus on investigating the mechanical properties and vibration behaviors of DNTs with and without lattice defects and examine the influence of density and configuration of lattice defects on the two them in detail, using the molecular dynamics method and a continuum mechanics approach. We find that Young’s modulus and the natural frequency can be controlled by alternating the density of the lattice defects. Furthermore, we investigate and explore the use of DNTs as resonators in nanosensors. It is shown that applying an additional extremely small Citation: Lei, X.-W.; Bando, K.; mass or strain to all types of DNTs significantly changes their resonance frequencies.
    [Show full text]
  • Inorganic Chemistry for Dummies® Published by John Wiley & Sons, Inc
    Inorganic Chemistry Inorganic Chemistry by Michael L. Matson and Alvin W. Orbaek Inorganic Chemistry For Dummies® Published by John Wiley & Sons, Inc. 111 River St. Hoboken, NJ 07030-5774 www.wiley.com Copyright © 2013 by John Wiley & Sons, Inc., Hoboken, New Jersey Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis- sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley. com/go/permissions. Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. All other trade- marks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.
    [Show full text]
  • The Pennsylvania State University the Eberly College of Science
    The Pennsylvania State University The Eberly College of Science Department of Chemistry SYNTHESIS OF CARBON MATERIALS VIA THE COLD COMPRESSION OF AROMATIC MOLECULES AND CARBON NANOSTRUCTURES A Dissertation in Chemistry by Thomas C. Fitzgibbons 2014 Thomas C. Fitzgibbons Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Thomas C. Fitzgibbons was reviewed and approved* by the following: John V. Badding Professor of Chemistry Dissertation Advisor Chair of Committee Ayusman Sen Distinguished Professor of Chemistry A. Welford Castleman, Jr Evan Pugh Professor of Chemistry and Physics William B. White Professor Emeritus of Geosciences Barbara J. Garrison Shapiro Professor of Chemistry Head of the Department of Chemistry *Signatures are on file in the Graduate School iii ABSTRACT Carbon’s ability for catenation makes it a remarkable element and allows for many interesting and surprising properties and structures. Carbon can exist in one of its two thermodynamically stable bulk crystals, graphite or diamond, one of its several nanostructures: fullerene, nanotube, or graphene, or as an amorphous material with a mixed bonding pattern. Carbon also has an ability to bond heteroatoms such as hydrogen which can increase its properties and structures even further. Pressure has been shown to be able to drastically change the bonding in and structure of carbon based materials. In this dissertation I will present how pressure can be used to synthesize new amorphous hydrogenated carbons and how a battery of analytical techniques can be used to elicit the microstructure of the carbon networks. This microstructure can then be related back to the reaction conditions and more importantly the starting small molecule.
    [Show full text]
  • ICCM 2019 Conference Handbooksingapore
    4168 ICCM 2019 ICCM2019 Singapore Conference Handbook CONFERENCE HANDBOOK 10th International Conference on Computational Methods DR. FANGSEN CUI CONFERENCE CHAIRMAN Institute of High Performance Computing, A*STAR Singapore Association for Computational Mechanics, Singapore PROFESSOR GUI-RONG LIU HONORARY CONFERENCE CHAIRMAN University of Cincinnati, USA July 9-13 2019 Marina Bay Sands Expo & Convention Centre, Singapore ICCM 2019 CONFERENCE SITE Floor Plan of Level 4 Designation of Rooms Allocated for ICCM 2019 Event. Room A Room B Room C Room D Room E Room F Room G Rooms 4612, 4613, 4712 Room Room Room Room Room Rooms 4211, 4212, and 4713 4411 4412 4511 4512 4611 4311, 4312 2 1. WELCOME MESSAGE Dear Colleagues and Friends On behalf of the organising committees, we are delighted to welcome you to the 10th Conference on Computational Methods (ICCM2019) at Singapore. The ICCM conference series is an international conference that provides an international forum for exchange of ideas on recent advances in areas related to computational methods, including computational mechanics, numerical modelling & simulation of manmade or natural systems, as well as their applications in engineering and sciences. It will accommodate presentations on a wide range of topics to facilitate inter- disciplinary exchange of ideas in science, engineering and related disciplines, and foster various types of academic collaborations in the internationally. All papers accepted for publication in the proceedings have been peer reviewed. Papers may also be selected and invited to be developed into a full journal paper for publication in special issues of some peer-reviewed journals. The ICCM (International Conference on Computational Methods) conference series were originated in Singapore in 2004 by Professor GR Liu, followed by ICCM2007 at Hiroshima, Japan, ICCM2010 at Zhangjiajie, China, ICCM2012 at Gold Coast, Australia, ICCM2014 at Cambridge, England, ICCM2015 at Auckland, New Zealand, ICCM2016 at Berkeley, CA, USA, ICCM2017 at Guilin, Guangxi, China.
    [Show full text]
  • Low Interfacial Thermal Resistance Between Crossed Ultra-Thin Carbon Nanothreads
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Zhan, Haifei, Zhang, Gang, Zhuang, Xiaoying, Timon, Rabczuk, & Gu, Yuantong (2020) Low interfacial thermal resistance between crossed ultra-thin carbon nan- othreads. Carbon, 165, pp. 216-224. This file was downloaded from: https://eprints.qut.edu.au/201860/ c 2020 Elsevier Ltd This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] License: Creative Commons: Attribution-Noncommercial-No Derivative Works 2.5 Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.carbon.2020.04.065 Low Interfacial Thermal Resistance Between Crossed Ultra-thin
    [Show full text]
  • Hybrid Structures and Strain-Tunable Electronic Properties of Carbon Nanothreads
    Hybrid Structures and Strain-Tunable Electronic Properties of Carbon Nanothreads Weikang Wu,y Bo Tai,y Shan Guan,∗,z,y Shengyuan A. Yang,∗,y and Gang Zhang∗,{ yResearch Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore zBeijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China. {Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore 138632, Singapore. E-mail: [email protected]; [email protected]; [email protected] arXiv:1803.04694v1 [cond-mat.mtrl-sci] 13 Mar 2018 1 Abstract The newly synthesized ultrathin carbon nanothreads have drawn great attention from the carbon community. Here, based on first-principles calculations, we investigate the electronic properties of carbon nanothreads under the influence of two important factors: the Stone-Wales (SW) type defect and the lattice strain. The SW defect is intrinsic to the polymer-I structure of the nanothreads and is a building block for the general hybrid structures. We find that the bandgap of the nanothreads can be tuned by the concentration of SW defects in a wide range of 3:92 ∼ 4:82 eV, interpolating between the bandgaps of sp3-(3,0) structure and the polymer-I structure. Under strain, the bandgaps of all the structures, including the hybrid ones, show a nonmonotonic variation: the bandgap first increases with strain, then drops at large strain above 10%. The gap size can be effectively tuned by strain in a wide range (> 0:5 eV). Interestingly, for sp3-(3,0) structure, a switch of band ordering occurs under strain at the valence band maximum, and for the polymer-I structure, an indirect-to-direct-bandgap transition occurs at about 8% strain.
    [Show full text]
  • High Density Mechanical Energy Storage with Carbon Nanothread Bundle ✉ ✉ Haifei Zhan 1,2, Gang Zhang3 , John M
    ARTICLE https://doi.org/10.1038/s41467-020-15807-7 OPEN High density mechanical energy storage with carbon nanothread bundle ✉ ✉ Haifei Zhan 1,2, Gang Zhang3 , John M. Bell4, Vincent B. C. Tan5 & Yuantong Gu 1,2 The excellent mechanical properties of carbon nanofibers bring promise for energy-related applications. Through in silico studies and continuum elasticity theory, here we show that the ultra-thin carbon nanothreads-based bundles exhibit a high mechanical energy storage fi 1234567890():,; density. Speci cally, the gravimetric energy density is found to decrease with the number of filaments, with torsion and tension as the two dominant contributors. Due to the coupled stresses, the nanothread bundle experiences fracture before reaching the elastic limit of any individual deformation mode. Our results show that nanothread bundles have similar mechanical energy storage capacity compared to (10,10) carbon nanotube bundles, but possess their own advantages. For instance, the structure of the nanothread allows us to realize the full mechanical energy storage potential of its bundle structure through pure tension, with a gravimetric energy density of up to 1.76 MJ kg−1, which makes them appealing alternative building blocks for energy storage devices. 1 School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia. 2 Center for Materials Science, Queensland University of Technology (QLD), Brisbane, QLD 4001, Australia. 3 Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore 138632, Singapore. 4 University of Southern Queensland, Springfield Central, QLD 4300, Australia. 5 Deparment of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 11576, Singapore.
    [Show full text]
  • Carbon Nitride Nanothread Crystals Derived from Pyridine † ‡ ‡ § ∥ ⊥ ‡ # ¶ † ‡ Xiang Li, , Tao Wang, , Pu Duan, Maria Baldini, Haw-Tyng Huang, , Bo Chen, Stephen J
    Communication Cite This: J. Am. Chem. Soc. 2018, 140, 4969−4972 pubs.acs.org/JACS Carbon Nitride Nanothread Crystals Derived from Pyridine † ‡ ‡ § ∥ ⊥ ‡ # ¶ † ‡ Xiang Li, , Tao Wang, , Pu Duan, Maria Baldini, Haw-Tyng Huang, , Bo Chen, Stephen J. Juhl, , † ‡ † ‡ § # ∥ ¶ ‡ # Daniel Koeplinger, , Vincent H. Crespi, , , , Klaus Schmidt-Rohr, Roald Hoffmann, Nasim Alem, , ⊗ † † ‡ § # Malcolm Guthrie, Xin Zhang, and John V. Badding*, , , , † Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States ‡ Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States § Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, United States ∥ Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States ⊥ Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015, United States # Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States ¶ Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States ⊗ European Spallation Source, ESS ERIC, SE-22100 Lund, Sweden *S Supporting Information and product structures for topochemical reactions11 severely ABSTRACT: Carbon nanothreads are a new one-dimen- constrains the number of suitable monomers; freedom from 3 sional sp carbon nanomaterial. They assemble into this requirement could allow for chemical design through solid- hexagonal crystals in a room temperature, nontopochem- state organic synthesis of crystalline extended networks from ical solid-state reaction induced by slow compression of new types of monomers. benzene to 23 GPa. Here we show that pyridine also reacts Here we show that slow compression and decompression of 3 under compression to form a well-ordered sp product: polycrystalline pyridine allows for the formation of single- C5NH5 carbon nitride nanothreads.
    [Show full text]
  • Experimental and Theoretical Study of the Polynuclear Bismuth Compounds – Dimers, Clusters, Molecular Self-Assemblies and Polyhedral Cage Molecules
    INAUGURAL – DISSERTATION zur Erlangung der Doktorwürde der Naturwissenschaftlich-Mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg vorgelegt von Kirill Yu. Monakhov (M.Sc.) aus Moskau, Russland Tag der mündlichen Prüfung: 2. Juli 2010 Experimental and Theoretical Study of the Polynuclear Bismuth Compounds – Dimers, Clusters, Molecular Self-Assemblies and Polyhedral Cage Molecules Gutachter: Prof. Dr. Gerald Linti Prof. Dr. Hans-Jörg Himmel Die vorliegende Arbeit wurde in der Zeit von November 2007 bis Mai 2010 am Institut für Anorganische Chemie der Ruprecht-Karls-Universität Heidelberg unter Anleitung von Herrn Prof. Dr. Gerald Linti durchgeführt. Meinen Eltern und Großeltern, meinem Bruder, Mariam und ihrer Mutter Irène gewidmet «Die wahre Wissenschaft und das wahre Studium des Menschen ist der Mensch» Pierre Charron, »Le traité de la sagesse« List of Publications Following topics of this thesis are prepared to be published: 11. Aromaticity of indium and bismuth cluster compounds. G. Linti, K. Yu. Monakhov, M. Bühler, T. Zessin, Graduate College 850 Book 2010, manuscript in preparation. 10. Molecular self-assemblies based on (C5Me5)BiX2 units (X = halogen): synthesis, X-ray crystal structures and quantum chemical study. K. Yu. Monakhov, T. Zessin, G. Linti, manuscript in preparation. 9. Seven-vertex cage cluster Bi4[μ3-Fe(CO)3]3 with π-coordinated aromatic ligands and inverted sandwich behavior in the crystal. K. Yu. Monakhov, T. Zessin, G. Linti, manuscript in preparation. Following topics of this thesis have been published during the doctorate period: 8. Cubane-like bismuth-iron cluster: synthesis, X-ray crystal structure and theoretical 4– characterization of [Bi4Fe8(CO)28] anion. K. Yu. Monakhov, T.
    [Show full text]
  • Local Structure and Bonding of Carbon Nanothreads Probed by High-Resolution Transmission Electron Microscopy Stephen J
    Subscriber access provided by Caltech Library Article Local Structure and Bonding of Carbon Nanothreads Probed by High-Resolution Transmission Electron Microscopy Stephen J. Juhl, Tao Wang, Brian Vermilyea, Xiang Li, Vincent H. Crespi, John V. Badding, and Nasim Alem J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.8b13405 • Publication Date (Web): 05 Apr 2019 Downloaded from http://pubs.acs.org on April 8, 2019 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
    [Show full text]
  • APS SCIENCE 2017 August 2018 2018 August APS SCIENCE 2017
    APS SCIENCE 2017 August 2018 Advanced Photon Source Argonne National Laboratory 9700 S. Cass Ave. Argonne, IL 60439 USA www.anl.gov • www.aps.anl.gov APS RESEARCHSCIENCE AND ENGINEERING HIGHLIGHTS FROM2017 THE ADVANCED PHOTON SOURCE AT ARGONNE NATIONAL LABORATORY ANL-18/14 ISSN 1931-5007 August 2018 ANL-18/14 Argonne National Laboratory ANL-18/14 • SSN 1931-5007 • August 2018 The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. DOCUMENT AVAILABILITY Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via DOE's SciTech Connect (http://www.osti.gov/scitech/) Reports not in digital format may be purchased by the public from the National Technical Information Service (NTIS): U.S. Department of Commerce National Technical Information Service 5301 Shawnee Rd Alexandra, VA 22312 www.ntis.gov Phone: (800) 553-NTIS (6847) or (703) 605-6000 Fax: (703) 605-6900 Email: [email protected] Reports not in digital format are available to DOE and DOE contractors from the Office of Scientific and Technical Information (OSTI): U.S.
    [Show full text]