Cells, Tissues and Organs of the Immune System

Total Page:16

File Type:pdf, Size:1020Kb

Cells, Tissues and Organs of the Immune System Functional Anatomy of the Lymph Node and other Secondary Lymphoid Organs Jan 27, 2015 Elizabeth Repasky, Ph.D. Dept of Immunology- 5-321 CGP The Immune System scattered organs cells that “wander” Innate Immunity • Cells constantly patrol body • Only a few types of cells – Macrophages, DCs, NK cells, neutrophils – Recognize pathogens by the pattern of their microbial surface components rather than by a specific antigenic sequence • Copy number is high • Guaranteed supply • Rapidly recruited to site of infection • Immediate response Adaptive Immunity • Number of specialized cells (different specificities) ranges in the millions • Copy numbers for each are very low= just a few hundred • Relevant clones must be activated and numbers greatly expanded • Encounters with DC presenting cognate Ag is required and occurs by chance Challenges to the Immune System • High diversity of B/T–cell repertoire • 20-2,000 cells for each specificity, therefore rather rare • Encounters between APCs and T-cells are “stochastic” • Need to facilitate the encounters with pathogens/ antigen presenting cells • How to solve the “needle in a haystack”?? Adaptive Immunity Depends on Secondary Lymphoid Tissue (SLO) • Secondary (peripheral) lymphoid tissue is specialized to: – Trap antigen/ capture pathogens – Facilitate interactions between cells to initiate an immune response – Provide factors to support survival and differentiation of lymphocytes • Particular organs developed for high throughput: – Lymph node …… filters lymph – Spleen………….. filters blood – Peyer’s patches/tonsils… digestive tract “Lymph nodes are compact immunological projections of the patch of peripheral tissue that they drain.” -Lammerham and Sixt Immuno Rev 2008 • DCs collect information/ antigens in the periphery • migrate by afferent lymphatics to draining LN • “The big advantage of this system is that instead of scanning the whole periphery, naïve T cells just visit lymph nodes…” Lymph node is the best understood SLO Questions?? 1. How do “the players” enter the lymph node? • Pathogens/ Antigens • APCs (DCs) • Lymphocytes 2. Where do they meet 3. How does the structure facilitate productive interactions 4. How do cells leave Understanding the functional anatomy of the lymph node… “The anatomy of the LNs is complex, extremely dynamic and until 2001, it was largely ignored by immunologists.” -Lammerham and Sixt Immuno Rev 2008 - changed by development of intravital microscopy - 2 photon confocal microscopy allows visualization of living cells in tissues to a depth of several hundred microns Lymphatics begin in the periphery System draws pathogens into lymph to filter and engender an immune response; prevents them from entering blood and becoming systemic infection http://www.lymphnotes.com/article.php/id/151/ Lymphatic vessels begin as blind ends in the periphery Randolph et al, Nat Rev Immunol, April 2005 Lymphatic vessels begin as blind ends in the periphery polygonal plexus beneath the epidermis Randolph et al, Nat Rev Immunol, April 2005 Lymphatic Drainage in Skin Mouse tail Randolph et al, Nat Rev Immunol, April 2005 Langerhans cells in the skin bacteria Alitalo et al, Nature 438, 2005 Lymph nodes filter lymph Lymphatic vessels Lymph node Lymph node histology Stroma (fixed cells)- the internal framework and supporting tissue of an organ capsule and trabeculae Parenchyma (migrating cells- the essential, functional cells unique to that organ Cell types in Lymph Node • Langerhan cell- epidermis • Dermal DC • Fibroblastic reticular cell- stromal cell • Follicular dendritic cell (non- hematopoetic) • Macrophage • T cells • B cells • Plasma cells Lymph node “skeleton” • Stroma (reticular tissue) is a form of fibrous connective tissue consisting of a 3-d meshwork of reticular cells and reticular fibers. – Fibroblastic reticular cells: star-shaped cells with a central nucleus and many long thin cytoplasmic processes by which the individual cells connect. – Reticular fibers run along the processes and in the space between the cells- are wrapped up by the cells that make them. Parenchyma: predominantly lymphocytes and some macrophages and dendritic cells. Compartments • Cortex – Follicles – B-cells • Paracortex – T-cells, DCs – HEVs • Medulla – Plasma cells – medullary cords & sinuses Crivatello Trends in Immunology April 2004 Cell Trafficking into and out of lymph nodes: Lymphocytes and dendritic cells enter lymph nodes by different routes. Blood Lymph FRC= fibroblastic reticular cells form channels to T-cell zone- guide DC’s to vicinity of HEVs Miyasaka and Tanaka, 2004 Nat Rev Immunol Conduits connect subcapsular sinus and perivenular channel surrounding HEVs Von Andrian Nat Rev Immunol Nov 2003 “Remote control of monocyte (lymphocyte) recruitment” Von Andrian Nat Rev Immunol Nov 2003 The conduit system: FIBERS= FRC- fibroblastic reticular cells + enclosed reticular fibers = reticulum Lymphocytes & myeloid cells are in spaces Roozendaal et al. Int Immunol 20:1483-1487 (2008) Fibroblastic reticular cells produce fibers and surround them forming conduits Bajenoff et al, Immunity 25:889 (2006) SEM picture of lymphocytes associated with FRC fibers in the T cell zone. The arrowheads indicate lymphocyte microvilli extending from the T cell to the FRC fibers. Bajenoff et al, Immunity 25:889 (2006) DCs sample fluid in conduits Batista & Harwood. Nature Rev Immunol Jan 2009: 15 Sixt et al Immunity 22: 19 (2005) The Fibroblastic Reticular Cell Conduit Anderson, AO, and ND Anderson. 1975. Studies on the structure and permeability of the microvasculature in normal rat lymph nodes. Amer J Path 80: 387 (first evidence that FRC Conduit conducted 40KDa Horse Radish Peroxidase tracer from LN Subcapsular Sinus to HEV wall and lumen within a minute after intralymphatic inoculation) Function of conduit system: lymph • Connects subcapsular sinus to outside of HEVs • Transports small molecules (<70kDa) rapidly to HEVs • Could include chemokines from sites of inflammation= “remote control system” • Larger particulates= Pathogens (bacteria and viruses) rapidly caught by macrophages in subcapsular and medullary sinuses Functions of conduit system: Ag • Resident DCs interspersed with FRCs sample the fluid inside conduits • Explore lumen of conduits by cellular projections • Pick up antigens and show them to T-cells that pass by to initiate response • Maintenance depends on DCs entering from the site of antigen (emigrated= second wave of antigen presentation) FRCs secrete protein recognized by mAB ERTR-7 • used to identify and visualize FRCs by intravital 2-photon microscopy An ERTR-7-stained thick section (30 μm) presented in 3D, showing a fibrous and complex network of interconnected strands of FRCs. Bajenoff et al, Immunity 25:889 (2006) uropod A T cell (blue) is shown along with the associated FRC fibers stained with ERTR-7 (green) and desmin (red) mAb ER TR7 reacts with intracellular component of fibroblasts Bajenoff et al, Immunity 25:889 (2006) desmin- intermediate filament found in muscle cells T-cell moving through lymph node stroma Movie S5. T Cells Migrate along the FRC Network (AVI 18793 kb) Dynamic image of T cell (red) migration along the FRC network (green). The trails of three of the T cells are highlighted in the second part of the movie with colored dots to help visualize the path taken along the fibers by a given T cell (z stack = 12 μM). The playback speed is 300× in the first part of the movie and 150× in the second part when the tracks are highlighted. Bajenoff et al, Immunity 25:889 (2006) How do T-cells leave the parenchyma and get back into the lymph and get out of the lymph node? Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells Grigorova, Schwab, Phan1, Pham, Okada & Cyster Nature Immunol Jan 2009 Cortical sinus LN Wheater’s Histology http://www.nature.com/ni/journal/v10/n1/suppinfo/ni.1682_S1.html T-cell egress to cortical sinuses (Grigorova et al Nature Immun Jan 2009) Supplemental info & links to movies See movie #2 Cortical sinus entry of T cells is dependent on S1P1 (30 minutes) http://www.nature.com/ni/journal/v10/n1/extref/ni.1682-S3.mov See movie #3 LYVE-1+ cortical sinus probing by Edg1+/+ and Edg1-/- T cells during entry decision-making (30 minutes) See movie #9- Flow of cells beneath the capsule at the medullary side (20 minutes) Proposed Model: 1) cortical sinus probing 2) S1P1 mediated entry 3) capture in area of flow 4) passage to medullary sinuses 5) flushing into efferent lymph What about B cells? Where does Ag recognition occur: B cells recognize whole, unprocessed antigen 1. SCS mΦ 2. Paracortical DC’s 1 2 Batista & Harwood. Nature Rev Immunol Jan 2009: 15 Immune Complexes • Opsinized antigens= antigens with antibodies bound to them= antigen/antibody complexes • Can “fix” complement- 1. Subcapsular sinus mΦ bind Immune Complexes Complement receptors recognizes C3 fragments of complement FCγRIIB recognizes Ab FC region 1 Batista & Harwood. Nature Rev Immunol Jan 2009: 15 2. B cells enter follicle via HEV and encounter DCs in paracortex 2 Batista & Harwood. Nature Rev Immunol Jan 2009: 15 Activated B cells move to follicles and form germinal centers Two types of lymphoid follicle Mantle Zone (cap) of resting B cells Germinal Center Light zone: more mature, smaller centrocytes contact follicular dendritic cells Dark zone: closely packed, Primary Secondary rapidly dividing centroblasts Germinal Centers •Are formed when activated B cells enter lymphoid follicles and proliferate •Somatic hypermutation •Affinity maturation •Isotype
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Reactive Stroma in Human Prostate Cancer: Induction of Myofibroblast Phenotype and Extracellular Matrix Remodeling1
    2912 Vol. 8, 2912–2923, September 2002 Clinical Cancer Research Reactive Stroma in Human Prostate Cancer: Induction of Myofibroblast Phenotype and Extracellular Matrix Remodeling1 Jennifer A. Tuxhorn, Gustavo E. Ayala, Conclusions: The stromal microenvironment in human Megan J. Smith, Vincent C. Smith, prostate cancer is altered compared with normal stroma and Truong D. Dang, and David R. Rowley2 exhibits features of a wound repair stroma. Reactive stroma is composed of myofibroblasts and fibroblasts stimulated to Departments of Molecular and Cellular Biology [J. A. T., T. D. D., express extracellular matrix components. Reactive stroma D. R. R.] and Pathology [G. E. A., M. J. S., V. C. S.] Baylor College of Medicine, Houston, Texas 77030 appears to be initiated during PIN and evolve with cancer progression to effectively displace the normal fibromuscular stroma. These studies and others suggest that TGF-␤1isa ABSTRACT candidate regulator of reactive stroma during prostate can- Purpose: Generation of a reactive stroma environment cer progression. occurs in many human cancers and is likely to promote tumorigenesis. However, reactive stroma in human prostate INTRODUCTION cancer has not been defined. We examined stromal cell Activation of the host stromal microenvironment is pre- phenotype and expression of extracellular matrix compo- dicted to be a critical step in adenocarcinoma growth and nents in an effort to define the reactive stroma environ- progression (1–5). Several human cancers have been shown to ment and to determine its ontogeny during prostate cancer induce a stromal reaction or desmoplasia as a component of progression. carcinoma progression. However, the specific mechanisms of Experimental Design: Normal prostate, prostatic intra- stromal cell activation are not known, and the extent to which epithelial neoplasia (PIN), and prostate cancer were exam- stroma regulates the biology of tumorigenesis is not fully un- ined by immunohistochemistry.
    [Show full text]
  • Basic Histology (23 Questions): Oral Histology (16 Questions
    Board Question Breakdown (Anatomic Sciences section) The Anatomic Sciences portion of part I of the Dental Board exams consists of 100 test items. They are broken up into the following distribution: Gross Anatomy (50 questions): Head - 28 questions broken down in this fashion: - Oral cavity - 6 questions - Extraoral structures - 12 questions - Osteology - 6 questions - TMJ and muscles of mastication - 4 questions Neck - 5 questions Upper Limb - 3 questions Thoracic cavity - 5 questions Abdominopelvic cavity - 2 questions Neuroanatomy (CNS, ANS +) - 7 questions Basic Histology (23 questions): Ultrastructure (cell organelles) - 4 questions Basic tissues - 4 questions Bone, cartilage & joints - 3 questions Lymphatic & circulatory systems - 3 questions Endocrine system - 2 questions Respiratory system - 1 question Gastrointestinal system - 3 questions Genitouirinary systems - (reproductive & urinary) 2 questions Integument - 1 question Oral Histology (16 questions): Tooth & supporting structures - 9 questions Soft oral tissues (including dentin) - 5 questions Temporomandibular joint - 2 questions Developmental Biology (11 questions): Osteogenesis (bone formation) - 2 questions Tooth development, eruption & movement - 4 questions General embryology - 2 questions 2 National Board Part 1: Review questions for histology/oral histology (Answers follow at the end) 1. Normally most of the circulating white blood cells are a. basophilic leukocytes b. monocytes c. lymphocytes d. eosinophilic leukocytes e. neutrophilic leukocytes 2. Blood platelets are products of a. osteoclasts b. basophils c. red blood cells d. plasma cells e. megakaryocytes 3. Bacteria are frequently ingested by a. neutrophilic leukocytes b. basophilic leukocytes c. mast cells d. small lymphocytes e. fibrocytes 4. It is believed that worn out red cells are normally destroyed in the spleen by a. neutrophils b.
    [Show full text]
  • Profiling Microdissected Epithelium and Stroma to Model Genomic Signatures for Cervical Carcinogenesis Accommodating for Covariates
    Research Article Profiling Microdissected Epithelium and Stroma to Model Genomic Signatures for Cervical Carcinogenesis Accommodating for Covariates David Gius,1 Margo C. Funk,2 Eric Y. Chuang,1 Sheng Feng,3 Phyllis C. Huettner,4 Loan Nguyen,2 C. Matthew Bradbury,1 Mark Mishra,1 Shuping Gao,1 Barbara M. Buttin,2 David E. Cohn,2 Matthew A. Powell,2 Neil S. Horowitz,2 Bradford P. Whitcomb,2 and JanetS. Rader 2 1Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland and 2Division of Gynecologic Oncology, Department of Obstetrics and Gynecology; 3Division of Biostatistics; and 4Lauren V. Ackerman Laboratory of Surgical Pathology, Washington University School of Medicine, St. Louis, Missouri Abstract (CIN 1–3) and finally to squamous cell carcinoma antigen (SCCA) This study is the first comprehensive, integrated approach to have been well characterized. Histologically, CIN 1 consists of examine grade-specific changes in gene expression along the immature basal-type cells involving the lower third of the entire neoplastic spectrum of cervical intraepithelial neoplasia epithelium. In CIN 2, these immature basal-type cells involve more (CIN) in the process of cervical carcinogenesis. This was than the lower third, whereas CIN 3 involves the full thickness of the accomplished by identifying gene expression signatures of epithelium. In addition, higher CIN grades exhibit nuclear crowding, disease progression using cDNA microarrays to analyze RNA pleomorphism, loss of cell polarity, and increased mitotic activity from laser-captured microdissected epithelium and underlying (1). These transitions seemto be well conserved and, as such, stroma from normal cervix, graded CINs, cancer, and patient- provide an intriguing systemto use genomicsto identify the early matched normal cervical tissues.
    [Show full text]
  • Colposcopy of the Uterine Cervix
    THE CERVIX: Colposcopy of the Uterine Cervix • I. Introduction • V. Invasive Cancer of the Cervix • II. Anatomy of the Uterine Cervix • VI. Colposcopy • III. Histology of the Normal Cervix • VII: Cervical Cancer Screening and Colposcopy During Pregnancy • IV. Premalignant Lesions of the Cervix The material that follows was developed by the 2002-04 ASCCP Section on the Cervix for use by physicians and healthcare providers. Special thanks to Section members: Edward J. Mayeaux, Jr, MD, Co-Chair Claudia Werner, MD, Co-Chair Raheela Ashfaq, MD Deborah Bartholomew, MD Lisa Flowers, MD Francisco Garcia, MD, MPH Luis Padilla, MD Diane Solomon, MD Dennis O'Connor, MD Please use this material freely. This material is an educational resource and as such does not define a standard of care, nor is intended to dictate an exclusive course of treatment or procedure to be followed. It presents methods and techniques of clinical practice that are acceptable and used by recognized authorities, for consideration by licensed physicians and healthcare providers to incorporate into their practice. Variations of practice, taking into account the needs of the individual patient, resources, and limitation unique to the institution or type of practice, may be appropriate. I. AN INTRODUCTION TO THE NORMAL CERVIX, NEOPLASIA, AND COLPOSCOPY The uterine cervix presents a unique opportunity to clinicians in that it is physically and visually accessible for evaluation. It demonstrates a well-described spectrum of histological and colposcopic findings from health to premalignancy to invasive cancer. Since nearly all cervical neoplasia occurs in the presence of human papillomavirus infection, the cervix provides the best-defined model of virus-mediated carcinogenesis in humans to date.
    [Show full text]
  • Histology Histology
    HISTOLOGY HISTOLOGY ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ THE ODESSA NATIONAL MEDICAL UNIVERSITY Áiáëiîòåêà ñòóäåíòà-ìåäèêà Medical Student’s Library Серія заснована в 1999 р. на честь 100-річчя Одеського державного медичного університету (1900–2000 рр.) The series is initiated in 1999 to mark the Centenary of the Odessa State Medical University (1900–2000) 1 L. V. Arnautova O. A. Ulyantseva HISTÎLÎGY A course of lectures A manual Odessa The Odessa National Medical University 2011 UDC 616-018: 378.16 BBC 28.8я73 Series “Medical Student’s Library” Initiated in 1999 Authors: L. V. Arnautova, O. A. Ulyantseva Reviewers: Professor V. I. Shepitko, MD, the head of the Department of Histology, Cytology and Embryology of the Ukrainian Medical Stomatologic Academy Professor O. Yu. Shapovalova, MD, the head of the Department of Histology, Cytology and Embryology of the Crimean State Medical University named after S. I. Georgiyevsky It is published according to the decision of the Central Coordinational Methodical Committee of the Odessa National Medical University Proceedings N1 from 22.09.2010 Навчальний посібник містить лекції з гістології, цитології та ембріології у відповідності до програми. Викладено матеріали теоретичного курсу по всіх темах загальної та спеціальної гістології та ембріології. Посібник призначений для підготовки студентів до практичних занять та ліцензійного екзамену “Крок-1”. Arnautova L. V. Histology. A course of lectures : a manual / L. V. Arnautova, O. A. Ulyantseva. — Оdessa : The Оdessa National Medical University, 2010. — 336 p. — (Series “Medical Student’s Library”). ISBN 978-966-443-034-7 The manual contains the lecture course on histology, cytology and embryol- ogy in correspondence with the program.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Tumor-Associated Stromal Cells As Key Contributors to the Tumor Microenvironment Karen M
    Bussard et al. Breast Cancer Research (2016) 18:84 DOI 10.1186/s13058-016-0740-2 REVIEW Open Access Tumor-associated stromal cells as key contributors to the tumor microenvironment Karen M. Bussard1,2, Lysette Mutkus3, Kristina Stumpf3, Candelaria Gomez-Manzano4 and Frank C. Marini1,3* Abstract The tumor microenvironment is a heterogeneous population of cells consisting of the tumor bulk plus supporting cells. It is becoming increasingly evident that these supporting cells are recruited by cancer cells from nearby endogenous host stroma and promote events such as tumor angiogenesis, proliferation, invasion, and metastasis, as well as mediate mechanisms of therapeutic resistance. In addition, recruited stromal cells range in type and include vascular endothelial cells, pericytes, adipocytes, fibroblasts, and bone-marrow mesenchymal stromal cells. During normal wound healing and inflammatory processes, local stromal cells change their phenotype to become that of reactive stroma. Under certain conditions, however, tumor cells can co-opt these reactive stromal cells and further transition them into tumor-associated stromal cells (TASCs). These TASCs express higher levels of proteins, including alpha-smooth muscle actin, fibroblast activating protein, and matrix metalloproteinases, compared with their normal, non-reactive counterparts. TASCs are also known to secrete many pro-tumorigenic factors, including IL-6, IL-8, stromal-derived factor-1 alpha, vascular endothelial growth factor, tenascin-C, and matrix metalloproteinases, among others, which recruit additional tumor and pro-tumorigenic cells to the developing microenvironment. Here, we review the current literature pertaining to the origins of recruited host stroma, contributions toward tumor progression, tumor-associated stromal cells, and mechanisms of crosstalk between endogenous host stroma and tumor cells.
    [Show full text]
  • The 4 Types of Tissues: Connective
    The 4 Types of Tissues: connective Connective Tissue General structure of CT cells are dispersed in a matrix matrix = a large amount of extracellular material produced by the CT cells and plays a major role in the functioning matrix component = ground substance often crisscrossed by protein fibers ground substance usually fluid, but it can also be mineralized and solid (bones) CTs = vast variety of forms, but typically 3 characteristic components: cells, large amounts of amorphous ground substance, and protein fibers. Connective Tissue GROUND SUBSTANCE In connective tissue, the ground substance is an amorphous gel-like substance surrounding the cells. In a tissue, cells are surrounded and supported by an extracellular matrix. Ground substance traditionally does not include fibers (collagen and elastic fibers), but does include all the other components of the extracellular matrix . The components of the ground substance vary depending on the tissue. Ground substance is primarily composed of water, glycosaminoglycans (most notably hyaluronan ), proteoglycans, and glycoproteins. Usually it is not visible on slides, because it is lost during the preparation process. Connective Tissue Functions of Connective Tissues Support and connect other tissues Protection (fibrous capsules and bones that protect delicate organs and, of course, the skeletal system). Transport of fluid, nutrients, waste, and chemical messengers is ensured by specialized fluid connective tissues, such as blood and lymph. Adipose cells store surplus energy in the form of fat and contribute to the thermal insulation of the body. Embryonic Connective Tissue All connective tissues derive from the mesodermal layer of the embryo . The first connective tissue to develop in the embryo is mesenchyme , the stem cell line from which all connective tissues are later derived.
    [Show full text]
  • Índice De Denominacións Españolas
    VOCABULARIO Índice de denominacións españolas 255 VOCABULARIO 256 VOCABULARIO agente tensioactivo pulmonar, 2441 A agranulocito, 32 abaxial, 3 agujero aórtico, 1317 abertura pupilar, 6 agujero de la vena cava, 1178 abierto de atrás, 4 agujero dental inferior, 1179 abierto de delante, 5 agujero magno, 1182 ablación, 1717 agujero mandibular, 1179 abomaso, 7 agujero mentoniano, 1180 acetábulo, 10 agujero obturado, 1181 ácido biliar, 11 agujero occipital, 1182 ácido desoxirribonucleico, 12 agujero oval, 1183 ácido desoxirribonucleico agujero sacro, 1184 nucleosómico, 28 agujero vertebral, 1185 ácido nucleico, 13 aire, 1560 ácido ribonucleico, 14 ala, 1 ácido ribonucleico mensajero, 167 ala de la nariz, 2 ácido ribonucleico ribosómico, 168 alantoamnios, 33 acino hepático, 15 alantoides, 34 acorne, 16 albardado, 35 acostarse, 850 albugínea, 2574 acromático, 17 aldosterona, 36 acromatina, 18 almohadilla, 38 acromion, 19 almohadilla carpiana, 39 acrosoma, 20 almohadilla córnea, 40 ACTH, 1335 almohadilla dental, 41 actina, 21 almohadilla dentaria, 41 actina F, 22 almohadilla digital, 42 actina G, 23 almohadilla metacarpiana, 43 actitud, 24 almohadilla metatarsiana, 44 acueducto cerebral, 25 almohadilla tarsiana, 45 acueducto de Silvio, 25 alocórtex, 46 acueducto mesencefálico, 25 alto de cola, 2260 adamantoblasto, 59 altura a la punta de la espalda, 56 adenohipófisis, 26 altura anterior de la espalda, 56 ADH, 1336 altura del esternón, 47 adipocito, 27 altura del pecho, 48 ADN, 12 altura del tórax, 48 ADN nucleosómico, 28 alunarado, 49 ADNn, 28
    [Show full text]
  • Reticulum Cell Sarcoma of Lymph Node with Mixed Dendritic and Fibroblastic Features Dan Jones, M.D., Ph.D., Mitual Amin, M.D., Nelson G
    Reticulum Cell Sarcoma of Lymph Node with Mixed Dendritic and Fibroblastic Features Dan Jones, M.D., Ph.D., Mitual Amin, M.D., Nelson G. Ordonez, M.D., Armand B. Glassman, M.D., Kimberly J. Hayes, B.S., L. Jeffrey Medeiros, M.D. Division of Pathology and Laboratory Medicine, University of Texas-M.D. Anderson Cancer Center, Houston, Texas Lymph nodes contain a heterogeneous population We report a case of clinically aggressive reticulum of stromal cells with reticular morphology. These cell sarcoma with mixed follicular dendritic cell include antigen-presenting follicular dendritic cells (FDC) and fibroblastic reticular cell (FRC) features. (FDC) within the lymphoid follicle; interdigitating Histologically, the tumor was confined to lymph reticular cells (IDCs) related to the myeloid/mono- nodes occurring as a multifocal epithelioid and cytic lineage, and interfollicular fibroblastic reticu- spindle cell proliferation with appreciable mitotic lar cells (FRCs) of mesenchymal origin (1–4). The rate and numerous admixed non-neoplastic B-cells. FDC population includes multiple immunopheno- Ultrastructural examination revealed elongated typically distinct subsets of stromal cells within the cells with prominent nucleoli, interdigitating cell lymphoid follicle and mantle zone that regulate processes and frequent desmosomes. These fea- distinct stages of B cell differentiation (5, 6). IDCs tures are typical of FDC sarcoma. However, immu- have a primary function in antigen presentation in nohistochemical stains showed no expression of an- the interfollicular zones of the node and differenti- tigens characteristic of FDCs, including CD21, CD23 ate from Langerhans cells migrating from skin or and CD35. Cytogenetic characterization of this tu- from bone marrow-derived precursors (2).
    [Show full text]