The Phylogenetic Relationship Revealed Three New Wood-Inhabiting Fungal Species from Genus Trechispora

Total Page:16

File Type:pdf, Size:1020Kb

The Phylogenetic Relationship Revealed Three New Wood-Inhabiting Fungal Species from Genus Trechispora fmicb-12-650195 March 11, 2021 Time: 17:8 # 1 ORIGINAL RESEARCH published: 17 March 2021 doi: 10.3389/fmicb.2021.650195 The Phylogenetic Relationship Revealed Three New Wood-Inhabiting Fungal Species From Genus Trechispora Wei Zhao1,2 and Chang-Lin Zhao1,2* 1 Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China, 2 College of Biodiversity Conservation, Southwest Forestry University, Kunming, China Wood-inhabiting fungi play a significant role in wood degradation and the cycle of matter in the ecological system. In the present study, three new wood-inhabiting fungal species, Trechispora bambusicola, Trechispora fimbriata, and Trechispora fissurata spp. nov., are Edited by: Dhanushka Nadeeshan nested in Trechispora, which are proposed based on a combination of morphological Wanasinghe, features and molecular evidence. Sequences of internal transcribed spacer (ITS) Key Laboratory for Plant Diversity and Biogeography of East Asia, and large subunit (nLSU) regions of the studied samples were generated, and the Kunming Institute of Botany, Chinese phylogenetic analyses were performed with maximum likelihood, maximum parsimony, Academy of Sciences, China and Bayesian inference methods. The phylogenetic analyses inferred from ITS showed Reviewed by: that T. bambusicola was sister to Trechispora stevensonii, T. fimbriata grouped Baokai Cui, Beijing Forestry University, China with Trechispora nivea, and T. fissurata grouped with Trechispora echinospora. The Yu-Cheng Dai, phylogenetic tree based on ITS C nLSU sequences demonstrated that T. bambusicola Beijing Forestry University, China formed a single lineage and then grouped with Trechispora rigida and T. stevensonii. *Correspondence: Chang-Lin Zhao T. fimbriata was sister to T. nivea. T. fissurata grouped with Trechispora thelephora. [email protected] Keywords: Hydnodontaceae, phylogeny, taxonomy, wood-inhabiting fungi, Yunnan Province Specialty section: This article was submitted to Evolutionary and Genomic INTRODUCTION Microbiology, a section of the journal Trechispora P. Karst. (Hydnodontaceae, Trechisporales) was typified with Trechispora onusta Frontiers in Microbiology P. Karst. (Karsten, 1890). It is characterized by the resupinate to effused basidiomata with Received: 08 January 2021 smooth to hydnoid to poroid hymenophore, a monomitic or dimitic hyphal structure Accepted: 01 February 2021 with clamped generative hyphae having typical ampullaceous septa, and short cylindric Published: 17 March 2021 Citation: Zhao W and Zhao C-L (2021) The Abbreviations: ITS, internal transcribed spacer; nLSU, large subunit; SWFC, herbarium of Southwest Forestry University, Kunming, China; KOH, 5% potassium hydroxide; CB, Cotton Blue; CB−, acyanophilous; IKI, Melzer’s reagent; IKI−, both Phylogenetic Relationship Revealed inamyloid and indextrinoid; L, mean spore length (arithmetic average for all spores); W, mean spore width (arithmetic Three New Wood-Inhabiting Fungal average for all spores); Q, variation in the L/W ratios between The studied specimens, n (a/b), number of spores (a) measured Species From Genus Trechispora. from given number (b) of specimens, spore measurements do not include ornamentation; CTAB, cetyltrimethylammonium Front. Microbiol. 12:650195. bromide; DNA, deoxyribonucleic acid; PCR, polymerase chain reaction; MP, maximum parsimony; ML, maximum doi: 10.3389/fmicb.2021.650195 likelihood; BI, Bayesian inference; TBR, tree-bisection reconnection. Frontiers in Microbiology| www.frontiersin.org 1 March 2021| Volume 12| Article 650195 fmicb-12-650195 March 11, 2021 Time: 17:8 # 2 Zhao and Zhao Three Potential New Ectomycorrhizal Species basidia and smooth to verrucose or aculeate basidiospores based on field notes. Color terms follow Petersen(1996). (Karsten, 1890; Bernicchia and Gorjón, 2010). About 49 species Micromorphological data were obtained from the dried are currently known in Trechispora worldwide (Liberta, 1966, specimens and observed under a light microscope following 1973; Larsson, 1994, 1995, 1996; Ryvarden, 2002; Trichiès and Dai(2012). The following abbreviations were used: KOH = 5% Schultheis, 2002; Miettinen and Larsson, 2006; Ordynets et al., potassium hydroxide, CB = Cotton Blue, CB− = acyanophilous, 2015; Xu et al., 2019) and Index Fungorum1 and MycoBank2. IKI = Melzer’s reagent, IKI− = both inamyloid and indextrinoid, Larsson(2007) addressed the classification of corticioid fungi L = mean spore length (arithmetic average for all spores), and revealed that Trechispora farinacea (Pers.) Liberta grouped W = mean spore width (arithmetic average for all spores), with Trechispora hymenocystis (Berk. and Broome) K.H. Larss., Q = variation in the L/W ratios between the studied specimens, n in which both species nested within the family Hydnodontaceae (a/b) = number of spores (a) measured from given number (b) of Jülich. Based on the large subunit nuclear ribosomal RNA gene specimens, spore measurements do not include ornamentation. (nLSU) datasets, Albee-Scott and Kropp(2010) supported to transfer Hydnodon thelephorus (Lév.) Banker to Trechispora as Molecular Phylogeny Trechispora thelephora (Lév.) Ryvarden. The order Trechisporales Cetyltrimethylammonium bromide (CTAB) rapid plant genome was studied employing the internal transcribed spacer (ITS) extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd., Beijing, and nLSU regions, in which it suggested that Porpomyces China) was used to obtain genomic deoxyribonucleic acid Jülich, Sistotremastrum J. Erikss., Subulicystidium Parmasto, (DNA) from dried specimens, according to the manufacturer’s and Trechispora belonged to a highly supported clade and instructions following Zhao and Wu(2017). ITS region was Trechispora belongs to Hydnodontaceae and was closely related amplified with primer pair ITS5 and ITS4 (White et al., 1990). to Brevicellicium K.H. Larss. and Hjortstam (Telleria et al., Nuclear LSU region was amplified with primer pair LR0R and 2013). A phylogenetic study of Trechispora was addressed and LR73. The polymerase chain reaction (PCR) procedures for ITS demonstrated that Trechispora cyatheae Ordynets, Langer and and nLSU following Zhao and Wu(2017). The PCR products K.H. Larss. and Trechispora echinocristallina Ordynets, Langer were purified and directly sequenced at Kunming Tsingke and K.H. Larss. clustered into Trechispora as new members, Biological Technology Limited Company, Kunming, Yunnan inferred from the combined data of the ITS and LSU datasets Province, China. All newly generated sequences were deposited (Ordynets et al., 2015). The phylogeny of Trechisporales was at GenBank (Table 1). inferred from a combined dataset of ITS-nLSU sequences and Sequencher 4.6 (GeneCodes, Ann Arbor, United States) was showed that Porpomyces, Scytinopogon Singer, and Trechispora used to edit the DNA sequence. Sequences were aligned in grouped together and nested within family Hydnodontaceae (Liu MAFFT 74 using the “G-INS-I” strategy and manually adjusted et al., 2019). Phylogram generated from analysis of ITS sequence in BioEdit (Hall, 1999). The sequence alignment was deposited dataset of Trechispora showed that Trechispora echinospora in TreeBase (submission ID 25879). Sequences of Fibrodontia Telleria was sister to the clade formed by Trechispora araneosa alba Yurchenko and Sheng H. Wu and Fibrodontia gossypina (Hohn. and Litsch.) K.H. Larss., T. farinacea, T. hymenocystis, Parmasto retrieved from GenBank were used as an outgroup in and Trechispora mollusca (Pers.) Liberta with a low support the ITS C nLSU analyses by following Ordynets et al.(2015). (Phookamsak et al., 2019). The ITS C nLSU dataset comprised Maximum parsimony (MP) analyses were applied to the 22 species and revealed that Trechispora yunnanensis C.L. Zhao ITS C nLSU dataset sequences. Approaches to phylogenetic formed a monophyletic lineage within Trechispora and was analysis followed Zhao and Wu(2017), and the tree construction closely related to Trechispora byssinella (Bourdot) Liberta and procedure was performed in PAUP∗ version 4.0b10 (Swofford, Trechispora laevis K.H. Larss. (Xu et al., 2019). 2002). All characters were equally weighted and gaps were During the studies on wood-inhabiting fungi in southern treated as missing data. Trees were inferred using the heuristic China, three species of Trechispora could not be assigned search option with tree-bisection reconnection (TBR) branch to any described species. Obtaining sequences from the new swapping and 1000 random sequence additions. Max-trees were taxa, the authors examine taxonomy and phylogeny of three set to 5000, branches of zero length were collapsed, and all new species within the genus Trechispora, based on the ITS parsimonious trees were saved. Clade robustness was assessed and nLSU sequences. using a bootstrap (BT) analysis with 1000 replicates (Felsenstein, 1985). Descriptive tree statistics tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), MATERIALS AND METHODS and homoplasy index (HI) were calculated for each Maximum Parsimonious Tree generated. Datamatrix was also analyzed Morphology using maximum likelihood (ML) approach with RAxML-HPC2 The studied specimens are deposited at the herbarium of through the Cipres Science Gateway with GTR C I C G molecular Southwest Forestry University (SWFC), Kunming, Yunnan evolution model5 (Miller et al., 2009). Branch support (BS) for Province, China. Macromorphological descriptions
Recommended publications
  • Porpomyces Submucidus (Hydnodontaceae, Basidiomycota), a New Species from Tropical China Based on Morphological and Molecular Evidence
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283034971 Porpomyces submucidus (Hydnodontaceae, Basidiomycota), a new species from tropical China based on morphological and molecular evidence Article in Phytotaxa · October 2015 DOI: 10.11646/phytotaxa.230.1.5 CITATIONS READS 2 186 2 authors, including: Fang Wu Beijing Forestry University 73 PUBLICATIONS 838 CITATIONS SEE PROFILE All content following this page was uploaded by Fang Wu on 30 May 2018. The user has requested enhancement of the downloaded file. Phytotaxa 230 (1): 061–068 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.230.1.5 Porpomyces submucidus (Hydnodontaceae, Basidiomycota), a new species from tropical China based on morphological and molecular evidence FANG WU*, YUAN YUAN & CHANG-LIN ZHAO 1Institute of Microbiology, PO Box 61, Beijing Forestry University, Beijing 100083, China * Corresponding authors’ e-mails: [email protected] (FW) Abstract A new species is described from tropical China as Porpomyces submucidus on the basis of both morphological characters and molecular evidence. Phylogenetic analyse based on the ITS sequence, LSU sequence and the ITS+LSU sequence show that the new species belongs to Porpomyces and forms a distict clade as a sister group of Porpomyces mucidus. The fungus is characterized by thin, white to cream, resupinate basidiome with cottony to rhizomorphic margin, small pores (7–9 per mm), a monomitic hyphal structure with clamped generative hyphae, usually ampullated at most septa, and small, hyaline, thin-walled, ellipsoid basidiospores measuring 2.2–2.8 × 1.2–1.8 μm.
    [Show full text]
  • Fungal Community Structural and Functional Responses to Disturbances in a North Temperate Forest
    Fungal Community Structural and Functional Responses to Disturbances in a North Temperate Forest By Buck Tanner Castillo A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2020 Doctoral Committee: Professor Timothy Y. James, Co-Chair Professor Knute J. Nadelhoffer, Co-Chair Associate Professor Vincent Denef Professor Donald R. Zak Buck T. Castillo [email protected] ORCID ID: 0000-0002-5426-3821 ©Buck T. Castillo 2020 Dedication To my mother: Melinda Kathryn Fry For always instilling in me a sense of wonder and curiosity. For all the adventures down dirt roads and imaginations of centuries past. For all your love, Thank you. ii Acknowledgements Many people have guided, encouraged and inspired me throughout this process. I am eternally grateful for this network of support. First, I must thank my advisors, Knute and Tim for all of the excellent advice, unfaltering confidence, and high expectations they continually provided and set for me. My committee members, Don Zak and Vincent Denef, have been fantastic sources of insight, inspiration, and encouragement. Thank you all so much for your time, knowledge, and most of all for always making me believe in myself. A special thanks to two incredible researchers that were always great mentors who became even better friends: Luke Nave and Jim Le Moine. Jim Le Moine has taught me so much about being a critical thinker and was always more than generous with his time, insight, and advice. Thank you, Jim, for midnight walks through bugcamp and full bowls of delicious popping corn.
    [Show full text]
  • Bibliotheksliste-Aarau-Dezember 2016
    Bibliotheksverzeichnis VSVP + Nur im Leesesaal verfügbar, * Dissert. Signatur Autor Titel Jahrgang AKB Myc 1 Ricken Vademecum für Pilzfreunde. 2. Auflage 1920 2 Gramberg Pilze der Heimat 2 Bände 1921 3 Michael Führer für Pilzfreunde, Ausgabe B, 3 Bände 1917 3 b Michael / Schulz Führer für Pilzfreunde. 3 Bände 1927 3 Michael Führer für Pilzfreunde. 3 Bände 1918-1919 4 Dumée Nouvel atlas de poche des champignons. 2 Bände 1921 5 Maublanc Les champignons comestibles et vénéneux. 2 Bände 1926-1927 6 Negri Atlante dei principali funghi comestibili e velenosi 1908 7 Jacottet Les champignons dans la nature 1925 8 Hahn Der Pilzsammler 1903 9 Rolland Atlas des champignons de France, Suisse et Belgique 1910 10 Crawshay The spore ornamentation of the Russulas 1930 11 Cooke Handbook of British fungi. Vol. 1,2. 1871 12/ 1,1 Winter Die Pilze Deutschlands, Oesterreichs und der Schweiz.1. 1884 12/ 1,5 Fischer, E. Die Pilze Deutschlands, Oesterreichs und der Schweiz. Abt. 5 1897 13 Migula Kryptogamenflora von Deutschland, Oesterreich und der Schweiz 1913 14 Secretan Mycographie suisse. 3 vol. 1833 15 Bourdot / Galzin Hymenomycètes de France (doppelt) 1927 16 Bigeard / Guillemin Flore des champignons supérieurs de France. 2 Bände. 1913 17 Wuensche Die Pilze. Anleitung zur Kenntnis derselben 1877 18 Lenz Die nützlichen und schädlichen Schwämme 1840 19 Constantin / Dufour Nouvelle flore des champignons de France 1921 20 Ricken Die Blätterpilze Deutschlands und der angr. Länder. 2 Bände 1915 21 Constantin / Dufour Petite flore des champignons comestibles et vénéneux 1895 22 Quélet Les champignons du Jura et des Vosges. P.1-3+Suppl.
    [Show full text]
  • Re-Thinking the Classification of Corticioid Fungi
    mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma.
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • New Data on Aphyllophoroid Fungi (Basidiomycota) in Forest-Steppe Introduction Communities of the Lipetsk Region, European Russia
    Acta Mycologica DOI: 10.5586/am.1112 ORIGINAL RESEARCH PAPER Publication history Received: 2018-06-05 Accepted: 2018-09-30 New data on aphyllophoroid fungi Published: 2018-12-28 (Basidiomycota) in forest-steppe Handling editor Anna Kujawa, Institute for Agricultural and Forest communities of the Lipetsk region, Environment, Polish Academy of Sciences, Poland European Russia Authors’ contributions SV designed the research, 1 2 1 collected and identifed the Sergey Volobuev *, Alexandra Arzhenenko , Sergey Bolshakov , material; AA collected and Nataliya Shakhova3, Lyudmila Sarycheva4 identifed the material; SB 1 Laboratory of Systematics and Geography of Fungi, Komarov Botanical Institute, Russian identifed the material; NS and Academy of Sciences, Professor Popov Str. 2, St. Petersburg 197376, Russia LS collected the material; all 2 Botany Chair, Biological Department, Saint Petersburg State University, Universitetskaya authors contributed to the Embankment 7–9 Str., Petersburg 199034, Russia manuscript preparation 3 Laboratory of Biochemistry of Fungi, Komarov Botanical Institute, Russian Academy of Sciences, Professor Popov Str. 2, St. Petersburg 197376, Russia Funding 4 Laboratory of Mycology, Galichya Gora Nature Reserve, Voronezh State University, Donskoye The work was supported by the village, Zadonsky District, Lipetsk region 399240, Russia program of basic research of the Russian Academy of Sciences, * Corresponding author. Email: [email protected] project “Biological diversity and dynamics of the fora and vegetation of Russia”, using equipment of the Core Facility Abstract Center of the Komarov Botanical Te data on 150 species of aphyllophoroid fungi from the Lipetsk region, Central Institute “Cell and Molecular Russian Upland, European Russia, are presented. Te annotated species list based Technologies in Plant Science”.
    [Show full text]
  • Trechispora Yunnanensis Sp. Nov. (Hydnodontaceae, Basidiomycota) from China
    Phytotaxa 424 (4): 253–261 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.424.4.5 Trechispora yunnanensis sp. nov. (Hydnodontaceae, Basidiomycota) from China TAI-MIN XU2, YU-HUI CHEN2 & CHANG-LIN ZHAO1,3* 1Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, P.R. China 2College of Life Sciences, Southwest Forestry University, Kunming 650224, P.R. China 3College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China *Corresponding author’s e-mail: [email protected] Abstract A new wood-inhabiting fungal species, Trechispora yunnanensis sp. nov., is proposed based on morphological characteristics and molecular phylogenetic analyses. The species is characterized by resupinate basidiomata, rigid and fragile up on drying, cream to pale greyish hymenial surface; a monomitic hyphal system with generative hyphae bearing clamp connections, IKI- , CB-; ellipsoid, hyaline, thick-walled, ornamented, IKI-, CB- basidiospores measuring as 7–8.5 × 5–5.5 μm. The internal transcribed spacer (ITS) and the large subunit (LSU) regions of nuclear ribosomal RNA gene sequences of the studied samples were generated, and phylogenetic analyses were performed with maximum likelihood (ML), maximum parsimony (MP) and bayesian inference methods (BPP). The phylogenetic analyses based on molecular data of ITS+nLSU sequences showed that T. yunnanensis formed a monophyletic lineage with a strong support (100% ML, 100% MP, 1.00 BPP) and was closely related to T. byssinella and T. laevis.
    [Show full text]
  • Spore Prints
    SPORE PRINTS BULLETIN OF THE PUGET SOUND MYCOLOGICAL SOCIETY Number 470 March 2011 MEET DIRK DIGGLER: SPAWN STAR, SEX GOD, to be a major cause of a huge spike in frog extinctions in the past AND SAVIOR OF HIS SPECIES Ben Cubby two decades. The Sydney Morning Herald, Feb. 12 As for Dirk, he survived his exertions in the harem. ‘‘He’s looking a little grey around the skin, a little tired, but still going strong,’’ It was a hot summer night in 1998 when a solitary spotted tree Dr. Hunter said. frog named Dirk went out looking for love. The fertile young male climbed down to a riverbank and began chirping his seductive, distinctive mating call. ERRORS OF THE SEASON: OREGON But there was no answer. MUSHROOM POISONINGS, 2010 Jan Lindgren MushRumors, Ore. Myco. Soc., Jan./Feb. 2011 Dirk was the last of his kind in the last spotted tree frog colony in New South Wales, tucked away in a corner of Kosciuszko National A bountiful mushroom season brings with it an increase in mush- Park. All the rest had died of chytrid fungus, an introduced skin room poisoning cases. There were several serious poisoning cases disease that has ravaged frog populations across Australia. in Oregon this past year with at least two deaths. Without females to respond to his mating song, Dirk’s future was One case was written up in detail in The Oregonian about a young bleak. Fortunately other ears were listening. man who took hallucinogenic mushrooms, became combative, and ‘‘Within 10 minutes of getting to the site, we heard the call,’’ said was finally subdued by officers who used pepper spray and Tased David Hunter, the leading frog specialist in the NSW environment him seven times.
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]
  • A Checklist of the Aphyllophoroid Fungi (Basidiomycota) Recorded from the Brazilian Atlantic Forest
    Posted date: September 2009 Summary published in MYCOTAXON 109: 439–442 A checklist of the aphyllophoroid fungi (Basidiomycota) recorded from the Brazilian Atlantic Forest JULIANO MARCON BALTAZAR & TATIANA BAPTISTA GIBERTONI [email protected], [email protected] Universidade Federal de Pernambuco, Departamento de Micologia Av. Nelson Chaves s/n, CEP 50670-420, Recife, Pernambuco, Brazil Abstract — The Atlantic Forest is one of the most diverse and threatened biomes of the world. A list with 733 species of aphyllophoroid fungi reported from the Brazilian Altantic Forest is presented based on an intensive search of literature records. These species are distributed in 219 genera and 47 families. Polyporaceae is the most highly represented family with 153 species; Phellinus is the genus with the highest number of species (42). Key words — Aphyllophorales, macrofungi, neotropics Introduction The Atlantic Forest is a unique series of South American rainforest ecosystems, which also includes other distinct vegetation types, such as mangroves and ‘restinga’ (Mittermeier et al. 2005). This biome is located along the Atlantic coast of Brazil and inland into parts of Argentine and Paraguay. It once covered an area of approximately 1,300,000 km2 (Pôrto et al. 2006), and it was present in 17 of the 27 states of Brazil. This rainforest is one of the most diverse regions and one of the most threatened environments of the world, since its area is now home to 67% of the Brazilian population and it is currently reduced to 7.26% of its original size, placing it among the five most important hotspots (Mittermeier 2005, SOS Mata Atlântica/INPE 2008).
    [Show full text]
  • An Overview of Aphyllophorales (Wood Rotting Fungi) from India
    Int.J.Curr.Microbiol.App.Sci (2013) 2(12): 112-139 ISSN: 2319-7706 Volume 2 Number 12 (2013) pp. 112-139 http://www.ijcmas.com Review Article An overview of Aphyllophorales (wood rotting fungi) from India Kiran Ramchandra Ranadive* Waghire College, Saswad, Tal-Purandar, Dist. Pune, Maharashtra (India) *Corresponding author A B S T R A C T K e y w o r d s During field and literature surveys, a rich mycobiota was observed in the vegetation of India. The heavy rainfall and high humidity favours the growth of Fungi; Aphyllophoraceous fungi. The present work materially adds to our knowledge of Aphyllophorales; Poroid and Non-Poroid Aphyllophorales from all over India. A total of more than Basidiomycetes; 190 genera of 52 families and total 1175 species of from poroid and non-poroid semi-evergreen Aphyllophorales fungi were reported from Indian literature till 2012.The checklist gives the total count of aphyllophoraceous fungal diversity from India which is also forest.. a valued addition for comparing aphyllophoraceous diversity in the world. Introduction Aphyllophorales order was proposed by in culture are recognized by Stalper. Rea, after Patouillard, for Basidiomycetes (Stalper,1978). having macroscopic basidiocarps in which the hymenophore is flattened Much of the literature of the order is based (Thelephoraceae), club-like on the traditional family groupings and as (Clavariaceae), tooth-like (Hydnaceae) or under the current re-arrangements, one has the hymenium lining tubes family may exhibit several different types (Polyporaceae) or some times on lamellae, of hymenophore (e.g. Gomphaceae has the poroid or lamellate hymenophores effuse, clavarioid, hydnoid and being tough and not fleshy as in the cantharelloid hymenophores).
    [Show full text]
  • Genera of Corticioid Fungi: Keys, Nomenclature and Taxonomy Article
    Studies in Fungi 5(1): 125–309 (2020) www.studiesinfungi.org ISSN 2465-4973 Article Doi 10.5943/sif/5/1/12 Genera of corticioid fungi: keys, nomenclature and taxonomy Gorjón SP BIOCONS – Department of Botany and Plant Physiology, University of Salamanca, 37007 Salamanca, Spain Gorjón SP 2020 – Genera of corticioid fungi: keys, nomenclature, and taxonomy. Studies in Fungi 5(1), 125–309, Doi 10.5943/sif/5/1/12 Abstract A review of the worldwide corticioid homobasidiomycetes genera is presented. A total of 620 genera are considered with comments on their taxonomy and nomenclature. Of them, about 420 are accepted and keyed out, described in detail with remarks on their taxonomy and systematics. Key words – Corticiaceae – Crust fungi – Diversity – Homobasidiomycetes Introduction Corticioid fungi are a diverse and heterogeneous group of fungi mainly referred to basidiomycete fungi in which basidiomes are generally resupinate. Basidiome construction is often simple, and in most cases, only generative hyphae are found. In more structured basidiomes, those with a reflexed margin or with a pileate surface, more or less sclerified hyphae are usually found. Even the basidiome structure is apparently not very complex, hymenophore configuration should be highly variable finding smooth surfaces or different variations to increase the spore production area such as rugose, tuberculate, aculeate, merulioid, folded, or poroid hymenial surfaces. It is often thought that corticioid fungi produce unattractive and little variable forms and, in most cases, they go unnoticed by most mycologists as ungraceful forms that ‘cover sticks and look like a paint stain’. Although the macroscopic variability compared to other fungi is, but not always, usually limited, under the microscope they surprise with a great diversity of forms of basidia, cystidia, spores and other microscopic elements (Hjortstam et al.
    [Show full text]