Fungal Community Structural and Functional Responses to Disturbances in a North Temperate Forest

Total Page:16

File Type:pdf, Size:1020Kb

Fungal Community Structural and Functional Responses to Disturbances in a North Temperate Forest Fungal Community Structural and Functional Responses to Disturbances in a North Temperate Forest By Buck Tanner Castillo A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2020 Doctoral Committee: Professor Timothy Y. James, Co-Chair Professor Knute J. Nadelhoffer, Co-Chair Associate Professor Vincent Denef Professor Donald R. Zak Buck T. Castillo [email protected] ORCID ID: 0000-0002-5426-3821 ©Buck T. Castillo 2020 Dedication To my mother: Melinda Kathryn Fry For always instilling in me a sense of wonder and curiosity. For all the adventures down dirt roads and imaginations of centuries past. For all your love, Thank you. ii Acknowledgements Many people have guided, encouraged and inspired me throughout this process. I am eternally grateful for this network of support. First, I must thank my advisors, Knute and Tim for all of the excellent advice, unfaltering confidence, and high expectations they continually provided and set for me. My committee members, Don Zak and Vincent Denef, have been fantastic sources of insight, inspiration, and encouragement. Thank you all so much for your time, knowledge, and most of all for always making me believe in myself. A special thanks to two incredible researchers that were always great mentors who became even better friends: Luke Nave and Jim Le Moine. Jim Le Moine has taught me so much about being a critical thinker and was always more than generous with his time, insight, and advice. Thank you, Jim, for midnight walks through bugcamp and full bowls of delicious popping corn. Luke Nave is one of the most brilliant ecologists I know and guided me through my maturation as a scientist since I was an undergraduate. I want to acknowledge and thank Kevin Amses for being the best friend a guy could ask for during the doctoral journey. He undoubtedly put up with me at the most stressful of times and was always there to listen to me vent. I will always be indebted for the countless hours of support spent helping me with programing and my endless questions about syntax. Every graduate student deserves to have as good a friend, lab mate, and collaborator as Kevin has been to me over the past 5 years. I’m extremely grateful for the hard work and long hours of work from a number of amazing field and lab technicians. A special thanks to Shane Gallagher who worked an entire fall field season with no pay, never once complained, and always kept a sense of humor. Shane Gallagher and Jacob Grochowski spent long days and countless hours in the field and lab harvesting soils, picking roots, extracting enzymes, and pulverizing soils. John Den Uyl for all the help extracting iii DNA/RNA, taking photographs in the field, and transporting of materials from Ann Arbor to the Biostation. I’d like to thank both the James and Nadelhoffer labs for all the lab feedback, constructive comments, forays, lab retreats and general companionship. Specifically, I’d like to thank Kevin Amses, Thomas Jenkinson, Jacqueline Popma, Rob Powers, Jillian Myers, Susan Cheng, Jasmine Crumsey, Rabern Simmons, Alisha Quandt, Lucas Michelotti, and William Davis. The UMBS community, my northern family, has given me unwavering support, love, and blissful memories. Thank you for all the floatillas, square dances, grapevine walks, whitefish Wednesdays, shabbats with warm challah, and northern light nights. A special thanks to the UMBS administration and staff for facilitating my research and always finding me a cabin. Thank you Karie Slavik, Tim Viverica, Jason Tallant, Sherry Webster, Adam Shubel, Tony Sutterly, Richard Spray, Chis Vogel, Lisa Readmond, and Bob Vande Kopple. I’d also like to thank Steve Bertman for your friendship and guidance. The great members of the EEB staff who helped facilitate my graduate studies. An extra thanks to Cindy Carl for always making me feel as if the department was invested in me. Jane Sullian, Carol Solomon, Gail Kuhnlein, Jackie Glebe and Michael Ehnis for your help in more ways than I can mention. I am thankful for the comradery and support of the 2014 cohort and my other friends in the department that I shared my graduate journey with. Special thanks to Thomas Jenkinson, Christian Cely Ortiz, Joe Walker, Jacqueline Popma, Leslie Decker, Raleigh Ricart, Dave Edwards, Alex Fotis, Alex Taylor, and Drew Monks. I have to again thank Luke Nave and Shane Gallagher, as well as my sister, Marriah Castillo, and Ben Connor Barrie for keeping me sane with hours spent in the woods being the best hunting and fishing partners anyone could ask for. For the turkey hunts on the homestead, evenings bow hunting, early mornings on Burt Lake and trips to North Dakota I’ll always be grateful. iv Finally, I am thankful to all of my funding sources that have allowed me to pursue my interests. The University of Michigan Rackham Graduate School, The Rackham Merit Fellow Program, Weymeyer Endowment in Fungal Taxonomy, and The University of Michigan Biological Station Gates Graduate Student Fund. v Table of Contents Dedication ...................................................................................................................................... ii Acknowledgements ...................................................................................................................... iii List of Tables .............................................................................................................................. viii List of Figures ............................................................................................................................... ix List Appendices .......................................................................................................................... xiii Abstract ....................................................................................................................................... xiv Chapter 1 : Introduction .............................................................................................................. 1 1.1 Ecological Implications of Forest Disturbances in a Changing Global Environment ........................ 1 1.2 Effects of Clear-cutting and Burning Disturbances on Biotics and Abiotic Factors of Soil ............... 2 1.3 Successional Trends Post Disturbance ................................................................................................ 4 1.4 Summary of Dissertation Chapters...................................................................................................... 5 1.5 References ........................................................................................................................................... 9 Chapter 2 : Short-term Effects of Clear-Cutting and Burning on Fungal Community Composition and Function in Mineral Soils ............................................................................. 17 2.1 Abstract ............................................................................................................................................. 17 2.2 Introduction ....................................................................................................................................... 18 2.3 Materials and Methods ...................................................................................................................... 21 2.4 Results ............................................................................................................................................... 27 2.5 Discussion ......................................................................................................................................... 32 2.6 References ......................................................................................................................................... 44 2.7 Tables & Figures ............................................................................................................................... 52 Chapter 3 : Decadal Trends of Fungal Succession in Mineral Soils Following Clear-Cutting and Burning of a Mixed Hardwood Forest............................................................................... 61 3.1 Abstract ............................................................................................................................................. 61 3.2 Introduction ....................................................................................................................................... 61 3.3 Materials and Methods ...................................................................................................................... 65 3.4 Results ............................................................................................................................................... 70 3.5 Discussion ......................................................................................................................................... 74 3.6 References ......................................................................................................................................... 80 3.7 Tables & Figures ............................................................................................................................... 86 Chapter 4 : Fungal Succession of Populus grandidentata (Bigtooth Aspen) During Wood Decomposition ............................................................................................................................
Recommended publications
  • Porpomyces Submucidus (Hydnodontaceae, Basidiomycota), a New Species from Tropical China Based on Morphological and Molecular Evidence
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283034971 Porpomyces submucidus (Hydnodontaceae, Basidiomycota), a new species from tropical China based on morphological and molecular evidence Article in Phytotaxa · October 2015 DOI: 10.11646/phytotaxa.230.1.5 CITATIONS READS 2 186 2 authors, including: Fang Wu Beijing Forestry University 73 PUBLICATIONS 838 CITATIONS SEE PROFILE All content following this page was uploaded by Fang Wu on 30 May 2018. The user has requested enhancement of the downloaded file. Phytotaxa 230 (1): 061–068 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.230.1.5 Porpomyces submucidus (Hydnodontaceae, Basidiomycota), a new species from tropical China based on morphological and molecular evidence FANG WU*, YUAN YUAN & CHANG-LIN ZHAO 1Institute of Microbiology, PO Box 61, Beijing Forestry University, Beijing 100083, China * Corresponding authors’ e-mails: [email protected] (FW) Abstract A new species is described from tropical China as Porpomyces submucidus on the basis of both morphological characters and molecular evidence. Phylogenetic analyse based on the ITS sequence, LSU sequence and the ITS+LSU sequence show that the new species belongs to Porpomyces and forms a distict clade as a sister group of Porpomyces mucidus. The fungus is characterized by thin, white to cream, resupinate basidiome with cottony to rhizomorphic margin, small pores (7–9 per mm), a monomitic hyphal structure with clamped generative hyphae, usually ampullated at most septa, and small, hyaline, thin-walled, ellipsoid basidiospores measuring 2.2–2.8 × 1.2–1.8 μm.
    [Show full text]
  • Resolving the Mortierellaceae Phylogeny Through Synthesis of Multi-Gene Phylogenetics and Phylogenomics
    Lawrence Berkeley National Laboratory Recent Work Title Resolving the Mortierellaceae phylogeny through synthesis of multi-gene phylogenetics and phylogenomics. Permalink https://escholarship.org/uc/item/25k8j699 Journal Fungal diversity, 104(1) ISSN 1560-2745 Authors Vandepol, Natalie Liber, Julian Desirò, Alessandro et al. Publication Date 2020-09-16 DOI 10.1007/s13225-020-00455-5 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Fungal Diversity https://doi.org/10.1007/s13225-020-00455-5 Resolving the Mortierellaceae phylogeny through synthesis of multi‑gene phylogenetics and phylogenomics Natalie Vandepol1 · Julian Liber2 · Alessandro Desirò3 · Hyunsoo Na4 · Megan Kennedy4 · Kerrie Barry4 · Igor V. Grigoriev4 · Andrew N. Miller5 · Kerry O’Donnell6 · Jason E. Stajich7 · Gregory Bonito1,3 Received: 17 February 2020 / Accepted: 25 July 2020 © MUSHROOM RESEARCH FOUNDATION 2020 Abstract Early eforts to classify Mortierellaceae were based on macro- and micromorphology, but sequencing and phylogenetic studies with ribosomal DNA (rDNA) markers have demonstrated conficting taxonomic groupings and polyphyletic genera. Although some taxonomic confusion in the family has been clarifed, rDNA data alone is unable to resolve higher level phylogenetic relationships within Mortierellaceae. In this study, we applied two parallel approaches to resolve the Mortierel- laceae phylogeny: low coverage genome (LCG) sequencing and high-throughput, multiplexed targeted amplicon sequenc- ing to generate sequence data for multi-gene phylogenetics. We then combined our datasets to provide a well-supported genome-based phylogeny having broad sampling depth from the amplicon dataset. Resolving the Mortierellaceae phylogeny into monophyletic genera resulted in 13 genera, 7 of which are newly proposed. Low-coverage genome sequencing proved to be a relatively cost-efective means of generating a high-confdence phylogeny.
    [Show full text]
  • Isolation, Propagation and Rapid Molecular Detection
    University of Alberta Enhanced Revegetation and Reclamation of Oil Sand Disturbed Land Using Mycorrhizae. By Nnenna Esther Onwuchekwa A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Master of Science In Land Reclamation and Remediation Department of Renewable Resources © Nnenna Esther Onwuchekwa Spring 2012 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-90260-8 Our file Notre référence ISBN: 978-0-494-90260-8 NOTICE: AVIS: The author has granted a non- L'auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque
    [Show full text]
  • Bodenmikrobiologie (Version: 07/2019)
    Langzeitmonitoring von Ökosystemprozessen - Methoden-Handbuch Modul 04: Bodenmikrobiologie (Version: 07/2019) www.hohetauern.at Impressum Impressum Für den Inhalt verantwortlich: Dr. Fernando Fernández Mendoza & Prof. Mag Dr. Martin Grube Institut für Biologie, Bereich Pflanzenwissenschaften, Universität Graz, Holteigasse 6, 8010 Graz Nationalparkrat Hohe Tauern, Kirchplatz 2, 9971 Matrei i.O. Titelbild: Ein Transekt im Untersuchungsgebiet Innergschlöss (2350 m üNN) wird im Jahr 2017 beprobt. © Newesely Zitiervorschlag: Fernández Mendoza F, Grube M (2019) Langzeitmonitoring von Ökosystemprozessen im Nationalpark Hohe Tauern. Modul 04: Mikrobiologie. Methoden-Handbuch. Verlag der Österreichischen Akademie der Wissenschaften, Wien. ISBN-Online: 978-3-7001-8752-3, doi: 10.1553/GCP_LZM_NPHT_Modul04 Weblink: https://verlag.oeaw.ac.at und http://www.parcs.at/npht/mmd_fullentry.php?docu_id=38612 Inhaltsverzeichnis Zielsetzung ...................................................................................................................................................... 1 Inhalt Vorbereitungsarbeit und benötigtes Material ................................................................................................... 2 a. Materialien für die Probenahme und Probenaufbewahrung ................................................................ 2 b. Materialien und Geräte für die Laboranalyse ...................................................................................... 2 Arbeitsablauf ...................................................................................................................................................
    [Show full text]
  • Molecular Phylogenetic and Scanning Electron Microscopical Analyses
    Acta Biologica Hungarica 59 (3), pp. 365–383 (2008) DOI: 10.1556/ABiol.59.2008.3.10 MOLECULAR PHYLOGENETIC AND SCANNING ELECTRON MICROSCOPICAL ANALYSES PLACES THE CHOANEPHORACEAE AND THE GILBERTELLACEAE IN A MONOPHYLETIC GROUP WITHIN THE MUCORALES (ZYGOMYCETES, FUNGI) KERSTIN VOIGT1* and L. OLSSON2 1 Institut für Mikrobiologie, Pilz-Referenz-Zentrum, Friedrich-Schiller-Universität Jena, Neugasse 24, D-07743 Jena, Germany 2 Institut für Spezielle Zoologie und Evolutionsbiologie, Friedrich-Schiller-Universität Jena, Erbertstr. 1, D-07743 Jena, Germany (Received: May 4, 2007; accepted: June 11, 2007) A multi-gene genealogy based on maximum parsimony and distance analyses of the exonic genes for actin (act) and translation elongation factor 1 alpha (tef ), the nuclear genes for the small (18S) and large (28S) subunit ribosomal RNA (comprising 807, 1092, 1863, 389 characters, respectively) of all 50 gen- era of the Mucorales (Zygomycetes) suggests that the Choanephoraceae is a monophyletic group. The monotypic Gilbertellaceae appears in close phylogenetic relatedness to the Choanephoraceae. The mono- phyly of the Choanephoraceae has moderate to strong support (bootstrap proportions 67% and 96% in distance and maximum parsimony analyses, respectively), whereas the monophyly of the Choanephoraceae-Gilbertellaceae clade is supported by high bootstrap values (100% and 98%). This suggests that the two families can be joined into one family, which leads to the elimination of the Gilbertellaceae as a separate family. In order to test this hypothesis single-locus neighbor-joining analy- ses were performed on nuclear genes of the 18S, 5.8S, 28S and internal transcribed spacer (ITS) 1 ribo- somal RNA and the translation elongation factor 1 alpha (tef ) and beta tubulin (βtub) nucleotide sequences.
    [Show full text]
  • Four New Species Records of Umbelopsis (Mucoromycotina) from China
    Hindawi Publishing Corporation Journal of Mycology Volume 2013, Article ID 970216, 6 pages http://dx.doi.org/10.1155/2013/970216 Research Article Four New Species Records of Umbelopsis (Mucoromycotina) from China Ya-ning Wang,1,2 Xiao-yong Liu,1 and Ru-yong Zheng1 1 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China 2 University of Chinese Academy of Sciences, Beijing 100049, China Correspondence should be addressed to Xiao-yong Liu; [email protected] Received 18 January 2013; Accepted 15 April 2013 Academic Editor: Marco Thines Copyright © 2013 Ya-ning Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Four species of Umbelopsis newly found in China, that is, U. angularis, U. dimorpha, U. nana,andU. versiformis, are reported in this paper. Descriptions and illustrations are provided for each of them. 1. Introduction 2. Materials and Methods The genus Umbelopsis Amos and H. L. Barnett, typified Details of materials studied are presented under the descrip- by U. versiformis AmosandH.L.Barnett,wasplacedin tion of each taxon. Strains found in China were isolated using the method of Zheng et al. [10]. For morphological Deuteromycetes by Amos and Barnett in 1966 [1]. Von ∘ ∘ Arx [2] proposed that this genus should be classified in observations, fungi grew at 20 Cor25C for 6–10 days under natural light on malt extract agar ((MEA) 2% malt extract, 2% Zygomycetes in 1982. Meyer and Gams [3]erectedthefamily glucose, 0.1% peptone, and 2% agar), cornmeal agar ((CMA) Umbelopsidaceae of Mucorales to accommodate it in 2003.
    [Show full text]
  • Volatile Composition of Clitocybe Amoenolens , Tricholoma Caligatum
    Cryptogamie,Mycologie, 2006, 27 (1): 45-55 © 2006 Adac. Tous droits réservés Volatile composition of Clitocybe amoenolens, Tricholoma caligatum and Hebeloma radicosum Françoise FONSa,Sylvie RAPIORb*,Alain FRUCHIERc, Philippe SAVIUCd &Jean-Marie BESSIÈREe aLaboratoire de Botanique et Mycologie, Faculté de Pharmacie de Nancy / UMR - CNRS 7137 LIMOS, Université Nancy 1, Faculté des Sciences et Techniques, BP 239, 54506 Vandœuvre-lès-Nancy,France [email protected] bLaboratoire de Botanique,Phytochimie et Mycologie / UMR - CNRS 5175 CEFE, Faculté de Pharmacie, 15 avenue Charles-Flahault, Université Montpellier I, BP 14491, 34093 Montpellier Cedex 5,France [email protected] cLaboratoire de Chimie Organique, UMR 5076, Ecole Nationale Supérieure de Chimie, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex 5,France [email protected] dUnité de Toxicologie Clinique et Toxicovigilance, Centre Hospitalier Universitaire de Grenoble, BP 217, 38043 Grenoble Cedex 9,France [email protected] eEcole Nationale Supérieure de Chimie, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex 5,France [email protected] Abstract – The volatile extracts composition of fresh Clitocybe amoenolens, Tricholoma caligatum and Hebeloma radicosum were analysed by Gas Chromatography-Mass Spectrometry. Twenty-one, sixteen and twenty-three components were identified, respectively. Methyl-(E)-cinnamate was found in the three analysed mushrooms at various amounts. Methyl-(E)-cinnamate and methyl-benzoate as well as (E)-nerolidol and methyl- anthranilate were the key odorants of C. amoenolens floral odor. Combined methyl-(E)- cinnamate and indole derivatives should largely contribute to the complex floral odor of T. caligatum with a nauseous note when aged; the latter volatiles could be of chemotaxonomic interest for the genus Tricholoma.
    [Show full text]
  • Fungal Diversity Driven by Bark Features Affects Phorophyte
    www.nature.com/scientificreports OPEN Fungal diversity driven by bark features afects phorophyte preference in epiphytic orchids from southern China Lorenzo Pecoraro1*, Hanne N. Rasmussen2, Sofa I. F. Gomes3, Xiao Wang1, Vincent S. F. T. Merckx3, Lei Cai4 & Finn N. Rasmussen5 Epiphytic orchids exhibit varying degrees of phorophyte tree specifcity. We performed a pilot study to investigate why epiphytic orchids prefer or avoid certain trees. We selected two orchid species, Panisea unifora and Bulbophyllum odoratissimum co-occurring in a forest habitat in southern China, where they showed a specifc association with Quercus yiwuensis and Pistacia weinmannifolia trees, respectively. We analysed a number of environmental factors potentially infuencing the relationship between orchids and trees. Diference in bark features, such as water holding capacity and pH were recorded between Q. yiwuensis and P. weinmannifolia, which could infuence both orchid seed germination and fungal diversity on the two phorophytes. Morphological and molecular culture-based methods, combined with metabarcoding analyses, were used to assess fungal communities associated with studied orchids and trees. A total of 162 fungal species in 74 genera were isolated from bark samples. Only two genera, Acremonium and Verticillium, were shared by the two phorophyte species. Metabarcoding analysis confrmed the presence of signifcantly diferent fungal communities on the investigated tree and orchid species, with considerable similarity between each orchid species and its host tree, suggesting that the orchid-host tree association is infuenced by the fungal communities of the host tree bark. Epiphytism is one of the most common examples of commensalism occurring in terrestrial environments, which provides advantages, such as less competition and increased access to light, protection from terrestrial herbivores, and better fower exposure to pollinators and seed dispersal 1,2.
    [Show full text]
  • <I>Mucorales</I>
    Persoonia 30, 2013: 57–76 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158513X666259 The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies K. Hoffmann1,2, J. Pawłowska3, G. Walther1,2,4, M. Wrzosek3, G.S. de Hoog4, G.L. Benny5*, P.M. Kirk6*, K. Voigt1,2* Key words Abstract The Mucorales (Mucoromycotina) are one of the most ancient groups of fungi comprising ubiquitous, mostly saprotrophic organisms. The first comprehensive molecular studies 11 yr ago revealed the traditional Mucorales classification scheme, mainly based on morphology, as highly artificial. Since then only single clades have been families investigated in detail but a robust classification of the higher levels based on DNA data has not been published phylogeny yet. Therefore we provide a classification based on a phylogenetic analysis of four molecular markers including the large and the small subunit of the ribosomal DNA, the partial actin gene and the partial gene for the translation elongation factor 1-alpha. The dataset comprises 201 isolates in 103 species and represents about one half of the currently accepted species in this order. Previous family concepts are reviewed and the family structure inferred from the multilocus phylogeny is introduced and discussed. Main differences between the current classification and preceding concepts affects the existing families Lichtheimiaceae and Cunninghamellaceae, as well as the genera Backusella and Lentamyces which recently obtained the status of families along with the Rhizopodaceae comprising Rhizopus, Sporodiniella and Syzygites. Compensatory base change analyses in the Lichtheimiaceae confirmed the lower level classification of Lichtheimia and Rhizomucor while genera such as Circinella or Syncephalastrum completely lacked compensatory base changes.
    [Show full text]
  • Re-Thinking the Classification of Corticioid Fungi
    mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma.
    [Show full text]
  • Long-Term Preservation of Arbuscular Mycorrhizal Fungi
    Université catholique de Louvain Faculté d’ingénierie biologique, agronomique et environnementale Earth and Life Institute Pole of Applied Microbiology (ELIM) Laboratory of Mycology Long-term preservation of Arbuscular mycorrhizal fungi Thèse de doctorat présentée en vue de l’obtention du grade de Docteur en Sciences agronomiques et ingénierie biologique Ismahen Lalaymia Promoteurs: Prof. Stéphane Declerck (UCL, Belgique) Dr. Sylvie Cranenbrouck (UCL, Belgique) 2013 Université catholique de Louvain Faculté d’ingénierie biologique, agronomique et environnementale Earth and Life Institute Pole of Applied Microbiology (ELIM) Laboratory of Mycology Long-term preservation of Arbuscular mycorrhizal fungi Thèse de doctorat présentée en vue de l’obtention du grade de Docteur en Sciences agronomiques et ingénierie biologique Ismahen Lalaymia Promoteurs : Prof. S. Declerck (UCL, Belgique) Dr. S. Cranenbrouck (UCL, Belgique) Membres du Jury : Prof. Y. Larondelle (UCL, Belgique), Président Prof. A. Legreve (UCL, Belgique) Prof. P. de Vos (UGent, Belgique) Dr. B. Panis (KUL, Belgique) Louvain-La-Neuve, 2013 Acknowledgements First and foremost, I would like to express my deep gratitude to my promoter, Professor Stéphane Declerck, for the opportunity he gave me to accomplish this PhD. Thank you for guidance, enthusiastic supervision, your confidence in me and the useful critiques of this research work. I am grateful to Dr. Sylvie Cranenbrouck. Thank you Sylvie for your continuous encouragements and for the numerous stimulating discussions. Without your knowledge and help this study would not have been successful. I am thankful to the European Community for financing of the VALORAM project and for providing the financial means and laboratory facilities to complete this project. Thanks are also addressed to the people involved in the VALORAM project.
    [Show full text]
  • Trechispora Yunnanensis Sp. Nov. (Hydnodontaceae, Basidiomycota) from China
    Phytotaxa 424 (4): 253–261 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.424.4.5 Trechispora yunnanensis sp. nov. (Hydnodontaceae, Basidiomycota) from China TAI-MIN XU2, YU-HUI CHEN2 & CHANG-LIN ZHAO1,3* 1Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, P.R. China 2College of Life Sciences, Southwest Forestry University, Kunming 650224, P.R. China 3College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China *Corresponding author’s e-mail: [email protected] Abstract A new wood-inhabiting fungal species, Trechispora yunnanensis sp. nov., is proposed based on morphological characteristics and molecular phylogenetic analyses. The species is characterized by resupinate basidiomata, rigid and fragile up on drying, cream to pale greyish hymenial surface; a monomitic hyphal system with generative hyphae bearing clamp connections, IKI- , CB-; ellipsoid, hyaline, thick-walled, ornamented, IKI-, CB- basidiospores measuring as 7–8.5 × 5–5.5 μm. The internal transcribed spacer (ITS) and the large subunit (LSU) regions of nuclear ribosomal RNA gene sequences of the studied samples were generated, and phylogenetic analyses were performed with maximum likelihood (ML), maximum parsimony (MP) and bayesian inference methods (BPP). The phylogenetic analyses based on molecular data of ITS+nLSU sequences showed that T. yunnanensis formed a monophyletic lineage with a strong support (100% ML, 100% MP, 1.00 BPP) and was closely related to T. byssinella and T. laevis.
    [Show full text]