Work Journal 2019

Total Page:16

File Type:pdf, Size:1020Kb

Work Journal 2019 January Monday, January 1 I rose early this morning and worked on cleaning up my late 2018 work journal, working for an hour on this. Wednesday, January 3 We stopped by work this afternoon so that I could pick up my most recent SF50 and other documentation requisite for my unemployment application. I had received a box containing 199 Archaeognatha specimens in 88 vials. Monday, January 28 To do: Time sheet AKES meeting arrangements. Associate travel card with Concur account. Refuge Notebook catch-up Biology News entries, new literature to add to Bio publications bibliography page. Biota of Canada post to akentsoc.org Finish late 2018 work journal. Look over bristletails received. I worked on adding images and scripts to my 2018 work journal, trying to finalize it. John asked me to post the recent Refuge Notebook articles from December, so I formatted and posted these. I also made posts to Biology News. Tuesday, January 29 To do: AKES meeting arrangements. STDP Final Report to Liz Figure out AKES meeting topic and get going on presentation. Restart AWCC slurm job that was canceled on 26.Dec.2018. Take care of vehicle. New literature to add to Bio publications bibliography page and to our literature database. Biota of Canada post to akentsoc.org Finish late 2018 work journal. Arrange for return shipping of Betula specimens. Look over bristletails received. Debbie helped me make travel arrangements for Fairbanks, so this is a go. Now I need to figure out my talk since I was not able to work on the alpine defoliation project in January as I had intended. Liz Graham wrote, asking that I fill in the STDP report review. I started looking through that dataset for notable records. Pissodes fiskei is not in our Alaska checklist. I checked that sequence again. It is closest to a sequence of Pissodes costatus, which we have in Alaska. There were no other new records. I need to get this into a publication of some sort. I also need to start an Alaska library on github. I worked on re-submitting AWCC/Caribou Hills data for the ITSx step (see script). Examining specimen with barcode label UAM100185885 (KNWR:Ento:11301), from Bay View Cemetery. This is female Petrobiinae, with sole shaped lateral ocelli. There appear to be 2+2 eversible vesicles on segment VI, but it is a little hard to tell because only the outer pair are ever eversed. This looks like Pedetontus s. str. KNWR:Ento:11301, label. KNWR:Ento:11301, face. Wednesday, January 30 To do: Figure out AKES meeting topic and get going on presentation. New literature to add to Bio publications bibliography page and to our literature database. Biota of Canada post to akentsoc.org Finish late 2018 work journal. Arrange for return shipping of Betula specimens. Look over bristletails received. I sorted the remaining 67 or so vials of bristletail specimens given to me by Rod Crawford, not opening the vials, but just roughly sorting them based on what they appeared to be. There appear to be less than 88 vials listed on the loan, but this is ok. I was hoping to see some Petridiobius specimens, but there were none. There was more Pedetontus s. str. than anything, followed by Pedetontus cf. submutans and Machilinus. Most of these specimens had been sifted from moss or litter. Sorted vials of bristletails from Rod Crawford. I finished adding material to my late 2018 work journal including scans, references, etc. Needing to figure out what to present on next week at the AKES meeting, I resumed the AKES Newsletter article on soil fungi affected by earthworms at Stormy Lake with the intention of adding affects to soil fungi to the earthworm presentation I gave in the fall. See the R script. Biplot of a PCA of Stormy Lake soil fungi occurrence data. Note that all nightcrawler- infested sites (1-3) are to the left of the nightcrawler-free sites (4-6). Frequencies of occurrence of soil fungal OTUs. Thursday, January 31 To do: Pay Arctos invoices. Work up Stormy Lake soil fungi data for AKES Newsletter and presentation. New literature to add to Bio publications bibliography page and to our literature database. Biota of Canada post to akentsoc.org Arrange for return shipping of Betula specimens. I paid the Arctos invoices. I helped Todd with tagging eight sea otters pelts. Before the winter is over I want to ski down to the trail intersection near Slikok Lake where I collected specimen MOBIL6660-18 last year. This was a Diptera larva collected from a spring in winter. There is no close match for the COI sequence obtained from this specimen on BOLD; the closest match is 89.92% similarity and is identified as Diptera. Other matches over 89% are Chironomidae. I would like to collect more specimens to try to put a genus name on these using morphology. Chironomid larva specimen MOBIL6660-18. I requested that records from dataset DS-BOWSER be included the next time that the BOLD BIN algorithm (Ratnasingham et al., 2013) is run. This has not been done for some time. For example, the chironomid specimen referred to above collected in March 2018 has not yet been assigned to a BIN despite having a clean, full-length sequence. I did look at results of the PIPITS analysis of 2017 Stormy Lake fungal data (see script). I also skied down the spring where I had collected that mystery chironomid before and collected more sediment, both from the spring and from the stream where it crosses the snowmachine trail. Sediment sample taken from spring. Sediment sample taken from stream below spring where it crosses the trail. February Friday, February 1 To do: Post this week's Refuge Notebook article. Look at samples collected yesterday. Work up Stormy Lake soil fungi data for AKES Newsletter and presentation. New literature to add to Bio publications bibliography page and to our literature database. Biota of Canada post to akentsoc.org Arrange for return shipping of Betula specimens. I looked through the sediment sample from the stream collected yesterday. There were many ostracods, a few tiny worms, two caddisfly larvae, and three Diptera larvae, each different from the other. I posted this week's Refuge Notebook article, starting a new volume for the year. I updated the KNWR Biology's publications bibliography and posted new literature announcements to http://www.akentsoc.org/. I resumed work on the Stormy Lake fungal data (see script). I am excited to have just learned about FUNGuild (Nguyen et al., 2016). After some formatting fixes (removing spaces, etc.) I was able to submit my OTU table to FUNGuild at http://www.stbates.org/guilds/app.php. Guilds v1.0 Beta report: - 386 assignments were made on OTUs within the input file! - Total calculating time = 8.8 seconds! I looked through these results in R (see script). Relative abundances of guilds of fungi. Sites 1-3 were in the Lumbricus infestation; sites 4-6 were outside in otherwise similar woods. Comparison of relative abundances of guilds of fungi based on reads summed over infested and not infested sites. There were clearly proportionately more mycorrhizal fungi in Lumbricus-free plots than plots in the infestation. Monday, February 4 To do: Get going on AKES presentation. Arrange for return shipping of Betula specimens. I started work on revising my worm presentation. I am trying to determine which Eisenia species are present. Specimen/lot UAM:Ento:378050 is now identified as "Eisenia andrei and Amynthas," identified by Adrian Wackett by morphology. The specimen I collected from my compost pile recently (MOBIL8994-18, now also KNWR:Inv:35) was identified inconclusively as just Eisenia by BOLD's ID Engine. I read in Römbke et al. (2016) that these two species are separable DNA barcodes. I submitted the sequence from this specimen to NCBI BLAST and looked at only results that were in the Appendix of Römbke et al. (2016). This placed my specimen in the Eisenia andrei clade. Eisenia andrei specimen KNWR:Inv:35, live, 25.Nov.2018. I also updated the identification of specimen KNWR:Ento:6756 to E. andrei because the worms in my compost pile had come from the population at my parents' house. I later made this new identification unaccepted because vermicomposting cultures may contain both species (Domínguez, 2018). I need to look for E. fetida in these populations. I worked on revising my worm presentation on worms I gave in November, updating it with new information and modifying for the upcoming AKES meeting. I skied east across Headquarters Lake, the small lake to the east, and onto the PSDRA trail system. These trails had not been groomed. Upon a little searching on the internet, it looks like this organization is no longer active. Its website is gone and I saw no activities cited past 2014. Wednesday, February 6 To do: Finish AKES presentation. Finish travel-related arrangements. Get specimens together to take to Fairbanks. Fix akentsoc.org links and post meeting agenda. Arrange for return shipping of Betula specimens. My SLURM job on Yeti was canceled, again after six days. I do not know why. I will have to look into this later. I need to get my presentation done today. In looking through literature for my talk, I learned that there is another invasive species very similar to Lumbricus terrestris that I need to watch out for, Lumbricus friendi (see Csuzdi and Szlávecz, 2003). I attended the all employee meeting with the regional director and deputy directory in the middle of the day. I worked on my AKES presentation on worms.
Recommended publications
  • Resolving the Mortierellaceae Phylogeny Through Synthesis of Multi-Gene Phylogenetics and Phylogenomics
    Lawrence Berkeley National Laboratory Recent Work Title Resolving the Mortierellaceae phylogeny through synthesis of multi-gene phylogenetics and phylogenomics. Permalink https://escholarship.org/uc/item/25k8j699 Journal Fungal diversity, 104(1) ISSN 1560-2745 Authors Vandepol, Natalie Liber, Julian Desirò, Alessandro et al. Publication Date 2020-09-16 DOI 10.1007/s13225-020-00455-5 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Fungal Diversity https://doi.org/10.1007/s13225-020-00455-5 Resolving the Mortierellaceae phylogeny through synthesis of multi‑gene phylogenetics and phylogenomics Natalie Vandepol1 · Julian Liber2 · Alessandro Desirò3 · Hyunsoo Na4 · Megan Kennedy4 · Kerrie Barry4 · Igor V. Grigoriev4 · Andrew N. Miller5 · Kerry O’Donnell6 · Jason E. Stajich7 · Gregory Bonito1,3 Received: 17 February 2020 / Accepted: 25 July 2020 © MUSHROOM RESEARCH FOUNDATION 2020 Abstract Early eforts to classify Mortierellaceae were based on macro- and micromorphology, but sequencing and phylogenetic studies with ribosomal DNA (rDNA) markers have demonstrated conficting taxonomic groupings and polyphyletic genera. Although some taxonomic confusion in the family has been clarifed, rDNA data alone is unable to resolve higher level phylogenetic relationships within Mortierellaceae. In this study, we applied two parallel approaches to resolve the Mortierel- laceae phylogeny: low coverage genome (LCG) sequencing and high-throughput, multiplexed targeted amplicon sequenc- ing to generate sequence data for multi-gene phylogenetics. We then combined our datasets to provide a well-supported genome-based phylogeny having broad sampling depth from the amplicon dataset. Resolving the Mortierellaceae phylogeny into monophyletic genera resulted in 13 genera, 7 of which are newly proposed. Low-coverage genome sequencing proved to be a relatively cost-efective means of generating a high-confdence phylogeny.
    [Show full text]
  • Bodenmikrobiologie (Version: 07/2019)
    Langzeitmonitoring von Ökosystemprozessen - Methoden-Handbuch Modul 04: Bodenmikrobiologie (Version: 07/2019) www.hohetauern.at Impressum Impressum Für den Inhalt verantwortlich: Dr. Fernando Fernández Mendoza & Prof. Mag Dr. Martin Grube Institut für Biologie, Bereich Pflanzenwissenschaften, Universität Graz, Holteigasse 6, 8010 Graz Nationalparkrat Hohe Tauern, Kirchplatz 2, 9971 Matrei i.O. Titelbild: Ein Transekt im Untersuchungsgebiet Innergschlöss (2350 m üNN) wird im Jahr 2017 beprobt. © Newesely Zitiervorschlag: Fernández Mendoza F, Grube M (2019) Langzeitmonitoring von Ökosystemprozessen im Nationalpark Hohe Tauern. Modul 04: Mikrobiologie. Methoden-Handbuch. Verlag der Österreichischen Akademie der Wissenschaften, Wien. ISBN-Online: 978-3-7001-8752-3, doi: 10.1553/GCP_LZM_NPHT_Modul04 Weblink: https://verlag.oeaw.ac.at und http://www.parcs.at/npht/mmd_fullentry.php?docu_id=38612 Inhaltsverzeichnis Zielsetzung ...................................................................................................................................................... 1 Inhalt Vorbereitungsarbeit und benötigtes Material ................................................................................................... 2 a. Materialien für die Probenahme und Probenaufbewahrung ................................................................ 2 b. Materialien und Geräte für die Laboranalyse ...................................................................................... 2 Arbeitsablauf ...................................................................................................................................................
    [Show full text]
  • Fungal Community Structural and Functional Responses to Disturbances in a North Temperate Forest
    Fungal Community Structural and Functional Responses to Disturbances in a North Temperate Forest By Buck Tanner Castillo A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2020 Doctoral Committee: Professor Timothy Y. James, Co-Chair Professor Knute J. Nadelhoffer, Co-Chair Associate Professor Vincent Denef Professor Donald R. Zak Buck T. Castillo [email protected] ORCID ID: 0000-0002-5426-3821 ©Buck T. Castillo 2020 Dedication To my mother: Melinda Kathryn Fry For always instilling in me a sense of wonder and curiosity. For all the adventures down dirt roads and imaginations of centuries past. For all your love, Thank you. ii Acknowledgements Many people have guided, encouraged and inspired me throughout this process. I am eternally grateful for this network of support. First, I must thank my advisors, Knute and Tim for all of the excellent advice, unfaltering confidence, and high expectations they continually provided and set for me. My committee members, Don Zak and Vincent Denef, have been fantastic sources of insight, inspiration, and encouragement. Thank you all so much for your time, knowledge, and most of all for always making me believe in myself. A special thanks to two incredible researchers that were always great mentors who became even better friends: Luke Nave and Jim Le Moine. Jim Le Moine has taught me so much about being a critical thinker and was always more than generous with his time, insight, and advice. Thank you, Jim, for midnight walks through bugcamp and full bowls of delicious popping corn.
    [Show full text]
  • Molecular Phylogenetic and Scanning Electron Microscopical Analyses
    Acta Biologica Hungarica 59 (3), pp. 365–383 (2008) DOI: 10.1556/ABiol.59.2008.3.10 MOLECULAR PHYLOGENETIC AND SCANNING ELECTRON MICROSCOPICAL ANALYSES PLACES THE CHOANEPHORACEAE AND THE GILBERTELLACEAE IN A MONOPHYLETIC GROUP WITHIN THE MUCORALES (ZYGOMYCETES, FUNGI) KERSTIN VOIGT1* and L. OLSSON2 1 Institut für Mikrobiologie, Pilz-Referenz-Zentrum, Friedrich-Schiller-Universität Jena, Neugasse 24, D-07743 Jena, Germany 2 Institut für Spezielle Zoologie und Evolutionsbiologie, Friedrich-Schiller-Universität Jena, Erbertstr. 1, D-07743 Jena, Germany (Received: May 4, 2007; accepted: June 11, 2007) A multi-gene genealogy based on maximum parsimony and distance analyses of the exonic genes for actin (act) and translation elongation factor 1 alpha (tef ), the nuclear genes for the small (18S) and large (28S) subunit ribosomal RNA (comprising 807, 1092, 1863, 389 characters, respectively) of all 50 gen- era of the Mucorales (Zygomycetes) suggests that the Choanephoraceae is a monophyletic group. The monotypic Gilbertellaceae appears in close phylogenetic relatedness to the Choanephoraceae. The mono- phyly of the Choanephoraceae has moderate to strong support (bootstrap proportions 67% and 96% in distance and maximum parsimony analyses, respectively), whereas the monophyly of the Choanephoraceae-Gilbertellaceae clade is supported by high bootstrap values (100% and 98%). This suggests that the two families can be joined into one family, which leads to the elimination of the Gilbertellaceae as a separate family. In order to test this hypothesis single-locus neighbor-joining analy- ses were performed on nuclear genes of the 18S, 5.8S, 28S and internal transcribed spacer (ITS) 1 ribo- somal RNA and the translation elongation factor 1 alpha (tef ) and beta tubulin (βtub) nucleotide sequences.
    [Show full text]
  • Four New Species Records of Umbelopsis (Mucoromycotina) from China
    Hindawi Publishing Corporation Journal of Mycology Volume 2013, Article ID 970216, 6 pages http://dx.doi.org/10.1155/2013/970216 Research Article Four New Species Records of Umbelopsis (Mucoromycotina) from China Ya-ning Wang,1,2 Xiao-yong Liu,1 and Ru-yong Zheng1 1 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China 2 University of Chinese Academy of Sciences, Beijing 100049, China Correspondence should be addressed to Xiao-yong Liu; [email protected] Received 18 January 2013; Accepted 15 April 2013 Academic Editor: Marco Thines Copyright © 2013 Ya-ning Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Four species of Umbelopsis newly found in China, that is, U. angularis, U. dimorpha, U. nana,andU. versiformis, are reported in this paper. Descriptions and illustrations are provided for each of them. 1. Introduction 2. Materials and Methods The genus Umbelopsis Amos and H. L. Barnett, typified Details of materials studied are presented under the descrip- by U. versiformis AmosandH.L.Barnett,wasplacedin tion of each taxon. Strains found in China were isolated using the method of Zheng et al. [10]. For morphological Deuteromycetes by Amos and Barnett in 1966 [1]. Von ∘ ∘ Arx [2] proposed that this genus should be classified in observations, fungi grew at 20 Cor25C for 6–10 days under natural light on malt extract agar ((MEA) 2% malt extract, 2% Zygomycetes in 1982. Meyer and Gams [3]erectedthefamily glucose, 0.1% peptone, and 2% agar), cornmeal agar ((CMA) Umbelopsidaceae of Mucorales to accommodate it in 2003.
    [Show full text]
  • Fungal Diversity Driven by Bark Features Affects Phorophyte
    www.nature.com/scientificreports OPEN Fungal diversity driven by bark features afects phorophyte preference in epiphytic orchids from southern China Lorenzo Pecoraro1*, Hanne N. Rasmussen2, Sofa I. F. Gomes3, Xiao Wang1, Vincent S. F. T. Merckx3, Lei Cai4 & Finn N. Rasmussen5 Epiphytic orchids exhibit varying degrees of phorophyte tree specifcity. We performed a pilot study to investigate why epiphytic orchids prefer or avoid certain trees. We selected two orchid species, Panisea unifora and Bulbophyllum odoratissimum co-occurring in a forest habitat in southern China, where they showed a specifc association with Quercus yiwuensis and Pistacia weinmannifolia trees, respectively. We analysed a number of environmental factors potentially infuencing the relationship between orchids and trees. Diference in bark features, such as water holding capacity and pH were recorded between Q. yiwuensis and P. weinmannifolia, which could infuence both orchid seed germination and fungal diversity on the two phorophytes. Morphological and molecular culture-based methods, combined with metabarcoding analyses, were used to assess fungal communities associated with studied orchids and trees. A total of 162 fungal species in 74 genera were isolated from bark samples. Only two genera, Acremonium and Verticillium, were shared by the two phorophyte species. Metabarcoding analysis confrmed the presence of signifcantly diferent fungal communities on the investigated tree and orchid species, with considerable similarity between each orchid species and its host tree, suggesting that the orchid-host tree association is infuenced by the fungal communities of the host tree bark. Epiphytism is one of the most common examples of commensalism occurring in terrestrial environments, which provides advantages, such as less competition and increased access to light, protection from terrestrial herbivores, and better fower exposure to pollinators and seed dispersal 1,2.
    [Show full text]
  • <I>Mucorales</I>
    Persoonia 30, 2013: 57–76 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158513X666259 The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies K. Hoffmann1,2, J. Pawłowska3, G. Walther1,2,4, M. Wrzosek3, G.S. de Hoog4, G.L. Benny5*, P.M. Kirk6*, K. Voigt1,2* Key words Abstract The Mucorales (Mucoromycotina) are one of the most ancient groups of fungi comprising ubiquitous, mostly saprotrophic organisms. The first comprehensive molecular studies 11 yr ago revealed the traditional Mucorales classification scheme, mainly based on morphology, as highly artificial. Since then only single clades have been families investigated in detail but a robust classification of the higher levels based on DNA data has not been published phylogeny yet. Therefore we provide a classification based on a phylogenetic analysis of four molecular markers including the large and the small subunit of the ribosomal DNA, the partial actin gene and the partial gene for the translation elongation factor 1-alpha. The dataset comprises 201 isolates in 103 species and represents about one half of the currently accepted species in this order. Previous family concepts are reviewed and the family structure inferred from the multilocus phylogeny is introduced and discussed. Main differences between the current classification and preceding concepts affects the existing families Lichtheimiaceae and Cunninghamellaceae, as well as the genera Backusella and Lentamyces which recently obtained the status of families along with the Rhizopodaceae comprising Rhizopus, Sporodiniella and Syzygites. Compensatory base change analyses in the Lichtheimiaceae confirmed the lower level classification of Lichtheimia and Rhizomucor while genera such as Circinella or Syncephalastrum completely lacked compensatory base changes.
    [Show full text]
  • Umbelopsis Longicollis Comb. Nov. Ined. and Synonymization of U
    Umbelopsis longicollis comb. nov. ined. and synonymization of U. versiformis, the type species of Umbelopsis (Mucorales) Ya-ning Wang, Xiao-yong Liu* Ru-yong Zheng* (State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101) Abstract: Speices of the genus Umbelopsis (Umbelopsidaceae) are saprobes, many of which are important oleaginous fungi. Typical characters of Umbelopsis are: 1) velvety and often colored colonies, 2) a low and dense layer of aerial hyphae; 3) sporangiophores which are often arising erectly from the vesicles; and 4) small columellae or not forming at all. In this study, based on morphological characters, maximum growth tempearature and molecular phylogentic analysis (SSU, ITS, LSU rDNA and actin genes), the relationship of allied species U. dimorpha, U. nana and U. versiformis are clarified. U. dimorpha is considered as a separate species because of unique morphology, though it is phylogenetically closely related to the other two. U. nana and U. versiformis are conspecific and U. nana has priority over the synonymous U. versiformis. A related species, Mortierella longicollis should be the new combination, U. longicollis ined. Lectotypes and epitypes for U. longicollis ined. and U. nana are also designated. Key word: Mucoromycotina, Taxonomy, Phylogenetics, synonym, typification Funds: this study is supported by the National Natural Science Foundation of China (No. 31370068) References: Meyer W, Gams W (2003) Delimitation of Umbelopsis (Mucorales, Umbelopsidaceae fam. nov.) based on ITS sequence and RFLP data.Mycol Res 107:339–350. Sugiyama M, Tokumasu S, Gams W (2003) Umbelopsis gibberispora sp. nov. from Japanese leaf litter and a clarification of Micromucor ramannianus var.
    [Show full text]
  • Carbon Assimilation Profiles of Mucoralean Fungi Show
    www.nature.com/scientificreports OPEN Carbon assimilation profles of mucoralean fungi show their metabolic versatility Received: 10 October 2018 Julia Pawłowska1, Alicja Okrasińska 1, Kamil Kisło1, Tamara Aleksandrzak-Piekarczyk 2, Accepted: 25 July 2019 Katarzyna Szatraj2, Somayeh Dolatabadi 3 & Anna Muszewska 2 Published: xx xx xxxx Most mucoralean fungi are common soil saprotrophs and were probably among the frst land colonisers. Although Mucoromycotina representatives grow well on simple sugar media and are thought to be unable to assimilate more complex organic compounds, they are often isolated from plant substrates. The main goal of the study was to explore the efects of isolation origin and phylogenetic placement on the carbon assimilation capacities of a large group of saprotrophic Mucoromycotina representatives (i.e. Umbelopsidales and Mucorales). Fifty two strains representing diferent Mucoromycotina families and isolated from diferent substrates were tested for their capacity to grow on 99 diferent carbon sources using the Biolog phenotypic microarray system and agar plates containing selected biopolymers (i.e. cellulose, xylan, pectin, and starch) as a sole carbon source. Although our results did not reveal a correlation between phylogenetic distance and carbon assimilation capacities, we observed 20 signifcant diferences in growth capacity on specifc carbon sources between representatives of diferent families. Our results also suggest that isolation origin cannot be considered as a main predictor of the carbon assimilation capacities of a particular strain. We conclude that saprotrophic Mucoromycotina representatives are, contrary to common belief, metabolically versatile and able to use a wide variety of carbon sources. Although plant tissues are the most common carbon source on the earth’s surface, their carbon is hardly acces- sible for heterotrophic organisms because it is mainly present in the form of complex polymers.
    [Show full text]
  • An Overview of Systematics Studies Concerning the Insect Fauna of British Columbia
    J ENTOMOL. Soc. B RIT. COLU MBIA 9 8. DECDmER 200 1 33 An overview of systematics studies concerning the insect fauna of British Columbia ROBERT A. CANNINGS ROYAL BRITISI-I COLUMBIA MUSEUM, 675 BELLEVILLE STREET, VICTORIA, BC, CANADA V8W 9W2 GEOFFREY G.E. SCUDDER DEPARTMENT OF ZOOLOGY, UNIVERSITY OF BRITISI-I COLUMBIA, VANCOUVER, BC, CANADA V6T IZ4 INTRODUCTION This summary of insect systematics pertaining to British Co lumbia is not intended as an hi storical account of entomologists and their work, but rath er is an overview of th e more important studies and publications dealing with the taxonomy, identifi cati on, distribution and faunistics of BC species. Some statistics on th e known size of various taxa are also give n. Many of the systematic references to th e province's insects ca nnot be presented in such a short summary as thi s and , as a res ult, the treatment is hi ghl y se lec tive. It deals large ly with publications appearing after 1950. We examine mainly terrestrial groups. Alth ough Geoff Scudder, Professor of Zoo logy at the University of Briti sh Co lumbi a, at Westwick Lake in the Cariboo, May 1970. Sc udder is a driving force in man y facets of in sect systemat ics in Briti sh Co lum bia and Canada. He is a world authority on th e Hemiptera. Photo: Rob Ca nnin gs. 34 J ENTOMOL. Soc BR IT. COLUMBIA 98, DECEMBER200 1 we mention the aquatic orders (those in which the larv ae live in water but the adults are aerial), they are more fully treated in the companion paper on aquatic in sects in thi s issue (Needham et al.) as are the major aquatic families of otherwise terrestrial orders (e.g.
    [Show full text]
  • Phylogeny of the Zygomycetous Family Mortierellaceae Inferred From
    Data Partitions, Bayesian Analysis and Phylogeny of the Zygomycetous Fungal Family Mortierellaceae, Inferred from Nuclear Ribosomal DNA Sequences Tama´s Petkovits1,La´szlo´ G. Nagy1, Kerstin Hoffmann2,3, Lysett Wagner2,3, Ildiko´ Nyilasi1, Thasso Griebel4, Domenica Schnabelrauch5, Heiko Vogel5, Kerstin Voigt2,3, Csaba Va´gvo¨ lgyi1, Tama´s Papp1* 1 Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary, 2 Jena Microbial Resource Collection, Department of Microbiology and Molecular Biology, School of Biology and Pharmacy, Institute of Microbiology, University of Jena, Jena, Germany, 3 Department of Molecular and Applied Microbiology, Leibniz–Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany, 4 Department of Bioinformatics, School of Mathematics and Informatics, Institute of Informatics, University of Jena, Jena, Germany, 5 Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany Abstract Although the fungal order Mortierellales constitutes one of the largest classical groups of Zygomycota, its phylogeny is poorly understood and no modern taxonomic revision is currently available. In the present study, 90 type and reference strains were used to infer a comprehensive phylogeny of Mortierellales from the sequence data of the complete ITS region and the LSU and SSU genes with a special attention to the monophyly of the genus Mortierella. Out of 15 alternative partitioning strategies compared on the basis of Bayes factors, the one with the highest number of partitions was found optimal (with mixture models yielding the best likelihood and tree length values), implying a higher complexity of evolutionary patterns in the ribosomal genes than generally recognized. Modeling the ITS1, 5.8S, and ITS2, loci separately improved model fit significantly as compared to treating all as one and the same partition.
    [Show full text]
  • Arkansas Endemic Biota: an Update with Additions and Deletions H
    Journal of the Arkansas Academy of Science Volume 62 Article 14 2008 Arkansas Endemic Biota: An Update with Additions and Deletions H. Robison Southern Arkansas University, [email protected] C. McAllister C. Carlton Louisiana State University G. Tucker FTN Associates, Ltd. Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Botany Commons Recommended Citation Robison, H.; McAllister, C.; Carlton, C.; and Tucker, G. (2008) "Arkansas Endemic Biota: An Update with Additions and Deletions," Journal of the Arkansas Academy of Science: Vol. 62 , Article 14. Available at: http://scholarworks.uark.edu/jaas/vol62/iss1/14 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 62 [2008], Art. 14 The Arkansas Endemic Biota: An Update with Additions and Deletions H. Robison1, C. McAllister2, C. Carlton3, and G. Tucker4 1Department of Biological Sciences, Southern Arkansas University, Magnolia, AR 71754-9354 2RapidWrite, 102 Brown Street, Hot Springs National Park, AR 71913 3Department of Entomology, Louisiana State University, Baton Rouge, LA 70803-1710 4FTN Associates, Ltd., 3 Innwood Circle, Suite 220, Little Rock, AR 72211 1Correspondence: [email protected] Abstract Pringle and Witsell (2005) described this new species of rose-gentian from Saline County glades.
    [Show full text]