Activity of the Russian Federation on Space Debris Problems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ISS Presentation by Sergey Seyvald
JSC ISS Corporate Presentation 27.04.2010 0 27.04.2010 All rights reserved - Ó JSC ISS - All rights reserved 1 ISS LOCATION ISS 27.04.2010 All rights reserved - Ó JSC ISS - All rights reserved 2 MORE THAN 50 YEARS EXPERIENCE IN SPACE • June 04, 1959 the affiliate of OKB-1 is established in Krasnoyarsk-26 • August 18, 1964 the first launch of in-house developed and manufactured Launcher 11K65 (COSMOS) A.G.Kozlov N.A.Testoyedov and three small-size satellites of COSMOS General General family (38, 39 and 40) Designer Designer and and General General Director Director • August 01, 1977 (1996-2006) (present time) establishment of NPO PM • 1997 NPO PM is renamed to academician M. F. M.F.Reshetnev Reshetnev’s NPO PM General Designer and General Director (1959- • March 03, 2008 1996) establishment of ISS-RESHETNEV COMPANY 27.04.2010 All rights reserved - Ó JSC ISS - All rights reserved 3 COMPANY STRUCTURE INTEGRATED STRUCTURE Joint - Stock Company «Academician M.F. Reshetnev» Information Satellite Systems» General Designer and General Director of JSC «ISS» Shareholders NPP «Geophizika-Cosmos», SIC «Polyus», Tomsk «GONETS», Moscow Moscow Reaction wheels, Battery electronic, Data relay service provider ADCS sensors Power Processing Unit based on LEO system Gonets. NPP «Kvant» ,Moscow «TTS – NPO PM», Zheleznogorsk NPP KP «Kvant», Rostov-na-Donu Solar arrays and batteries. EEE-parts screening and tests ADCS optical sensors «NPO PM – MKB», Zheleznogorsk SPS, Omsk «Sibpromproekt», Zheleznogorsk R&D in space and SADA, ADPM, control units Design and construction industrial facilities. space application on the ground «NPO PM – Razvitie», Zheleznogorsk Ground antenna systems 27.04.2010 4 COMPANY ORGANISATION General Designer & General Director N. -
Detecting, Tracking and Imaging Space Debris
r bulletin 109 — february 2002 Detecting, Tracking and Imaging Space Debris D. Mehrholz, L. Leushacke FGAN Research Institute for High-Frequency Physics and Radar Techniques, Wachtberg, Germany W. Flury, R. Jehn, H. Klinkrad, M. Landgraf European Space Operations Centre (ESOC), Darmstadt, Germany Earth’s space-debris environment tracked, with estimates for the number of Today’s man-made space-debris environment objects larger than 1 cm ranging from 100 000 has been created by the space activities to 200 000. that have taken place since Sputnik’s launch in 1957. There have been more than 4000 The sources of this debris are normal launch rocket launches since then, as well as many operations (Fig. 2), certain operations in space, other related debris-generating occurrences fragmentations as a result of explosions and such as more than 150 in-orbit fragmentation collisions in space, firings of satellite solid- events. rocket motors, material ageing effects, and leaking thermal-control systems. Solid-rocket Among the more than 8700 objects larger than 10 cm in Earth orbits, motors use aluminium as a catalyst (about 15% only about 6% are operational satellites and the remainder is space by mass) and when burning they emit debris. Europe currently has no operational space surveillance aluminium-oxide particles typically 1 to 10 system, but a powerful radar facility for the detection and tracking of microns in size. In addition, centimetre-sized space debris and the imaging of space objects is available in the form objects are formed by metallic aluminium melts, of the 34 m dish radar at the Research Establishment for Applied called ‘slag’. -
OUFTI-1 Environmental Impact Assessment
Date: 11/02/2016 Issue: 1 Rev: 1 Page: 1 of 11 OUFTI-1 Environmental Impact Assessment Reference 3_OUF_ENV_IMPACT_1.0 Issue/Rev Issue 1 Rev 0 Date 11/02/2016 Distribution OUFTI-1 team OUFTI-1 Environmental Impact Assessment Date: 11/02/2016 Issue: 1 Rev: 1 Page: 2 of 11 AUTHORS Name Email Telephone X. Werner [email protected] +32 4 366 37 38 S. De Dijcker [email protected] +32 4 366 37 38 RECORD OF REVISIONS Iss/Rev Date Author Section/page Change description 1/0 11/02/2016 X.Werner, All Initial issue S. De Dijcker Copyright University of Liège [2016]. OUFTI-1 Environmental Impact Assessment Date: 11/02/2016 Issue: 1 Rev: 1 Page: 3 of 11 TABLE OF CONTENTS Authors ....................................................................................................................................... 2 Record of revisions ..................................................................................................................... 2 1. Activities and Objectives ................................................................................................... 4 1.1. Project description ....................................................................................................... 4 1.2. Soyuz launch vehicle ................................................................................................... 5 1.3. Arianespace ................................................................................................................. 7 1.4. Conclusion .................................................................................................................. -
Measurements of Π , K , P and ¯P Spectra in Proton-Proton
EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN) Submitted to: Eur. Phys. J. C CERN-EP-2017-066 September 28, 2017 Measurements of π±,K±, p and ¯p spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV=c with the NA61/SHINE spectrometer at the CERN SPS The NA61/SHINE Collaboration Measurements of inclusive spectra and mean multiplicities of π±,K±, p and p¯ produced in =c inelasticp p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV ( s = 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer. Spectra are presented as function of rapidity and transverse momentum and are compared to predictions of current models. The measurements serve as the baseline in the NA61/SHINE study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. arXiv:1705.02467v2 [nucl-ex] 27 Sep 2017 © 2017 CERN for the benefit of the NA61/SHINE Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license. 1. Introduction This paper presents experimental results on inclusive spectra and mean multiplicities of π±,K±, p and p¯ produced in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV=c. The measurements were performed by the multi-purpose NA61/SHINE experiment [1, 2] at the CERN Super Proton Synchrotron (SPS). The new measurements complement previously published results from the same datasets on π− production [3] obtained without particle identification as well as on fluctuations of charged particles [4]. -
To Secure Long-Term Spaceflight Safety and Orbital Sustainability for the Benefit of Future Generations the Impact of Space Debris
To secure long-term spaceflight safety and orbital sustainability for the benefit of future generations The impact of space debris Our growing reliance on satellite services 1 active satellite 1957 1,950 active satellites 2019 20,000+ active satellites by 2030 67,000 collision alerts per year very day billions of people around the world rely One of the key ways to reduce the risk of collision in on data from satellites to go about their lives. We orbit is to remove potential threats. Designing and Eexchange messages, talk to family and friends, building a satellite to identify, track, rendezvous, dock check the weather, manage finances, and undertake and de-orbit a piece of debris is an extraordinarily numerous other tasks. In addition, satellites are used difficult technical task on its own. However, developing to manage and mitigate natural disasters, monitor the an orbital debris removal business involves more than Earth’s climate and well-being and provide information just creating the technical solution. We now need a for national security. In short, without satellite data, the consistent global effort to shape regulations and a lives of people around the world would be dramatically vibrant ecosystem that assures a business case. At different. And now the source of this data is at growing Astroscale we are working these important tasks risk of being destroyed by space debris. – developing the technologies, working with the policymakers and closing the business case – that will We don’t see these satellites and the millions of pieces allow for a long-term orbital debris solution. -
Design for Demise Analysis for Launch Vehicles
A first design for demise analysis for launch vehicles Henrik Simon, Stijn Lemmens Space debris: Inactive, manmade objects in space Source: ESA Overview Introduction Fundamentals Modelling approach Results and discussion Summary and outlook What is the motivation and task? INTRODUCTION Motivation . Mitigation: Prevention of creation and limitation of long-term presence . Guidelines: LEO removal within 25 years . LEO removal within 25 years after mission end . Casualty risk limit for re-entry: 1 in 10,000 Rising altitude Decay & re-entry above 2000 km Source: NASA Source: NASA Solution: Design for demise Source: ESA Scope of the thesis . Typical design of upper stages . General Risk assessment . Design for demise solutions to reduce the risk ? ? ? Risk A Risk B Risk C Source: CNES How do we assess the risk and simulate the re-entry? FUNDAMENTALS Fundamentals: Ground risk assessment Ah = + 2 Ai � ℎ = =1 � Source: NASA Source: NASA 3.5 m 5.0 m 2 2 ≈ ≈ Fundamentals: Re-entry simulation tools SCARAB: Spacecraft-oriented approach . CAD-like modelling . 6 DoF flight dynamics . Break-up / fragmentation computed How does a rocket upper stage look like? MODELLING Modelling approach . Research on typical design: . Elongated . Platform . Solid Rocket Motor . Lack of information: . Create common intersection . Deliberately stay top-level and only compare effects Modelling approach Modelling approach 12 Length [m] 9 7 5 3 2 150 300 500 700 800 1500 2200 Mass [kg] How much is the risk and how can we reduce it? SIMULATIONS Example of SCARAB re-entry simulation 6x Casualty risk of all reference cases Typical survivors Smaller Smaller fragments fragments Pressure tanks Pressure tanks Main tank Engine Main structure + tanks Design for Demise . -
GLONASS Spacecraft
INNO V AT IO N The task of designing and developing the GLONASS GLONASS spacecraft fell to the Scientific Production Association of Applied Mechan ics (Nauchno Proizvodstvennoe Ob"edinenie Spacecraft Prikladnoi Mekaniki or NPO PM) , located near Krasnoyarsk in Siberia. This major aero Nicholas L. Johnson space industrial complex was established in 1959 as a division of Sergei Korolev 's Kaman Sciences Corporation Expe1imental Design Bureau (Opytno Kon struktorskoe Byuro or OKB). (Korolev , among other notable achievements , led the Fourteen years after the launch of the effort to develop the Soviet Union's first first test spacecraft, the Russian Global Nav launch vehicle - the A launcher - which igation Satellite System (Global 'naya Navi placed Sputnik 1 into orbit.) The founding gatsionnaya Sputnikovaya Sistema or and current general director and chief GLONASS) program remains viable and designer is Mikhail Fyodorovich Reshetnev, essentially on schedule despite the economic one of only two still-active chief designers and political turmoil surrounding the final from Russia's fledgling 1950s-era space years of the Soviet Union and the emergence program. of the Commonwealth of Independent States A closed facility until the early 1990s, (CIS). By the summer of 1994, a total of 53 NPO PM has been responsible for all major GLONASS spacecraft had been successfully Russian operational communications, navi Despite the significant economic hardships deployed in nearly semisynchronous orbits; gation, and geodetic satellite systems to associated with the breakup of the Soviet Union of the 53 , nearly 12 had been normally oper date. Serial (or assembly-line) production of and the transition to a modern market economy, ational since the establishment of the Phase I some spacecraft, including Tsikada and Russia continues to develop its space programs, constellation in 1990. -
Enabling Interstellar Probe
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Acta Astronautica 68 (2011) 790–801 Contents lists available at ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro Enabling interstellar probe Ralph L. McNutt Jr.a,n, Robert F. Wimmer-Schweingruber b,1, the International Interstellar Probe Team a The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, M/S MP3-E128, Laurel, MD 20723, USA b Institut fuer Experimentelle und Angewandte Physik, University of Kiel, Leibnizstrasse 11, D-24118 Kiel, Germany article info abstract Article history: The scientific community has advocated a scientific probe to the interstellar medium for Received 15 February 2010 over 30 years. While the Voyager spacecraft have passed through the termination shock Received in revised form of the solar wind, they have limited lifetimes as their radioisotope power supplies 16 June 2010 decay. It remains unclear whether they can reach the heliopause, the boundary between Accepted 2 July 2010 shocked solar wind and interstellar plasmas, and, in any case, they will not reach the Available online 17 August 2010 undisturbed interstellar medium. -
The Annual Compendium of Commercial Space Transportation: 2012
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly. -
Proton Accident with GLONASS Satellites
3/29/2018 Proton accident with GLONASS satellites Previous Proton mission: SES6 PICTURE GALLERY A Proton rocket with the Block D 11S861 stage and 813GLN34 payload firing shortly before liftoff on July 2, 2013. Upcoming book on space exploration Read more and watch videos in: Site map Site update log About this site About the author The illfated Proton rocket lifts off on July 2, 2013, at 06:38:21.585 Moscow Time (July 1, 10:38 p.m. EDT). The rocket crashed approximately 32.682 seconds later, Roskosmos said on July 18, 2013. Mailbox Russia's Proton crashes with a trio of navigation satellites SUPPORT THIS SITE! Published: July 1; updated: July 2, 3, 4, 5, 9, 11, 15, 18, 19; 23; Aug. 11 Related pages: Russia's Proton rocket crashed less than a minute after its liftoff from Baikonur, Kazakhstan. A ProtonM vehicle No. 53543 with a Block DM03 (11S86103) upper stage lifted off as scheduled from Pad No. 24 at Site 81 (launch complex 8P882K) in Baikonur Cosmodrome on July 2, 2013, at 06:38:21.585 Moscow Time (on July 1, 10:38 p.m. EDT). The rocket started veering off course right after leaving the pad, deviating from the vertical path in various RD253/275 engines directions and then plunged to the ground seconds later nose first. The payload section and the upper stage were sheered off the vehicle moments before it impacted the ground and exploded. The flight lasted no more than 30 seconds. Searching for details: The Russian space agency's ground processing and launch contractor, TsENKI, was broadcasting the launch live and captured the entire process of the vehicle's disintegration and its crash. -
Download Paper
GIOVE-A’S FREGAT DISPOSAL ASSESSMENT D. Navarro-Reyes(1), R. Zandbergen(2), D. Escobar(3) (1)ESA/ESTEC, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands, Email: [email protected] (2) ESA/ESOC, Robert-Bosch-Str. 5, D-64293 Darmstadt, Germany, Email: [email protected] (3)GMV at ESOC, ESA/ESOC Robert-Bosch-Str. 5, D-64293 Darmstadt, Germany, Email: [email protected] ABSTRACT dedicated stations deployed around the world. The Galileo constellation is defined as a Walker 27/3/1 and is composed of 3 equally-spaced orbital planes with a Galileo will be Europe’s own global navigation satellite nominal inclination of 56 degrees and a semi-major axis system, providing a highly accurate, guaranteed global of 29,600 km. Each plane will contain nine equally- positioning service under civilian control. Following the spaced satellites plus a spare satellite. The first launches approval of Galileo in 1999, a demonstration element are foreseen in 2010, with the full constellation was added – the Galileo System Test Bed (GSTB) with deployed by end 2013. the GIOVE-A and GIOVE-B satellites – to allow early experimentation with the navigation signals and services Following the approval of Galileo in 1999, a before committing to the final constellation design. demonstration element was added – the Galileo System Test Bed (GSTB) with the GIOVE-A and GIOVE-B GIOVE-A (launched on 28 Dec 2005) and GIOVE-B satellites, whose mission was: (launched on 26 April 2008) were injected in the Galileo operational orbit (semi-major axis 29600 km, x To secure use of the frequencies allocated by the circular orbit, inclination 56 degrees) by direct injection International Telecommunications Union (ITU) for with Soyuz/FREGAT launch vehicle. -
Building and Maintaining the International Space Station (ISS)
/ Building and maintaining the International Space Station (ISS) is a very complex task. An international fleet of space vehicles launches ISS components; rotates crews; provides logistical support; and replenishes propellant, items for science experi- ments, and other necessary supplies and equipment. The Space Shuttle must be used to deliver most ISS modules and major components. All of these important deliveries sustain a constant supply line that is crucial to the development and maintenance of the International Space Station. The fleet is also responsible for returning experiment results to Earth and for removing trash and waste from the ISS. Currently, transport vehicles are launched from two sites on transportation logistics Earth. In the future, the number of launch sites will increase to four or more. Future plans also include new commercial trans- ports that will take over the role of U.S. ISS logistical support. INTERNATIONAL SPACE STATION GUIDE TRANSPORTATION/LOGISTICS 39 LAUNCH VEHICLES Soyuz Proton H-II Ariane Shuttle Roscosmos JAXA ESA NASA Russia Japan Europe United States Russia Japan EuRopE u.s. soyuz sL-4 proton sL-12 H-ii ariane 5 space shuttle First launch 1957 1965 1996 1996 1981 1963 (Soyuz variant) Launch site(s) Baikonur Baikonur Tanegashima Guiana Kennedy Space Center Cosmodrome Cosmodrome Space Center Space Center Launch performance 7,150 kg 20,000 kg 16,500 kg 18,000 kg 18,600 kg payload capacity (15,750 lb) (44,000 lb) (36,400 lb) (39,700 lb) (41,000 lb) 105,000 kg (230,000 lb), orbiter only Return performance