GLONASS Spacecraft
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GLONASS System As a Tool for Space Weather Monitoring
GLONASS System as a tool for space weather monitoring V.V. Alpatov, S.N. Karutin, А.Yu. Repin Institute of Applied Geophysics, Roshydromet TSNIIMASH, Roscosmos BAKU-2018 PLAN OF PRESENTATION General information about GLONASS Goals Organization and Management Technical information about GLONASS Space Weather Effects On Space Systems On Ground based Systems Possible Opportunities of GLONASS for Monitoring Space Weather Effects Russian Monitoring System for Monitoring Space Weather Effects with Use Opportunities of GLONASS 2 GENERAL INFORMATION ABOUT GLONASS NATIONAL SATELLITE NAVIGATION POLICY AND ORGANIZATION Presidential Decree of May 17, 2007 No. 638 On Use of GLONASS (Global Navigation Satellite System) for the Benefit of Social and Economic Development of the Russian Federation Federal Program on GLONASS Sustainment, Development and Use for 2012-2020 – planning and budgeting instrument for GLONASS development and use Budget planning for the forthcoming decade – up to 2030 GLONASS Program governance: Roscosmos State Space Corporation Government Contracting Authority – Program Coordinator Government Contracting Authorities Program Scientific and Coordination Board GLONASS Program Goals: Improving GLONASS performance – its accuracy and integrity Ensuring positioning, navigation and timing solutions in restricted visibility of satellites, interference and jamming conditions Enhancing current application efficiency and broadening application domains 3 CHARACTERISTICS IMPROVEMENT PLAN Accuracy Improvement by means of: . Ground Segment -
GLONASS Interface Control Document Specifies Parameters of Interface Between GLONASS Space Segment and User Equipment
GLOBALNAVIGATION SATELLITE SYSTEM GLONASS TION CENTER INTERFACE CONTROL DOCUMENT COORDINATION SCIENTIFIC INFORMA MOSCOW 1998ã. Version 4.0 1998 GLONASS ICD COORDINATION SCIENTIFIC INFORMATION CENTER TABLE OF CONTENTS FIGURES................................................................................................................................................................... 2 TABLES .................................................................................................................................................................... 3 ABBREVIATIONS.................................................................................................................................................... 4 1. INTRODUCTION ................................................................................................................................................. 5 1.1 GLONASS PURPOSE.......................................................................................................................................... 5 1.2 GLONASS COMPONENTS .................................................................................................................................. 5 1.3 NAVIGATION DETERMINATION CONCEPT ............................................................................................................. 5 2. GENERAL............................................................................................................................................................. 6 2.1 ICD DEFINITION ............................................................................................................................................... -
Russia's Posture in Space
Russia’s Posture in Space: Prospects for Europe Executive Summary Prepared by the European Space Policy Institute Marco ALIBERTI Ksenia LISITSYNA May 2018 Table of Contents Background and Research Objectives ........................................................................................ 1 Domestic Developments in Russia’s Space Programme ............................................................ 2 Russia’s International Space Posture ......................................................................................... 4 Prospects for Europe .................................................................................................................. 5 Background and Research Objectives For the 50th anniversary of the launch of Sputnik-1, in 2007, the rebirth of Russian space activities appeared well on its way. After the decade-long crisis of the 1990s, the country’s political leadership guided by President Putin gave new impetus to the development of national space activities and put the sector back among the top priorities of Moscow’s domestic and foreign policy agenda. Supported by the progressive recovery of Russia’s economy, renewed political stability, and an improving external environment, Russia re-asserted strong ambitions and the resolve to regain its original position on the international scene. Towards this, several major space programmes were adopted, including the Federal Space Programme 2006-2015, the Federal Target Programme on the development of Russian cosmodromes, and the Federal Target Programme on the redeployment of GLONASS. This renewed commitment to the development of space activities was duly reflected in a sharp increase in the country’s launch rate and space budget throughout the decade. Thanks to the funds made available by flourishing energy exports, Russia’s space expenditure continued to grow even in the midst of the global financial crisis. Besides new programmes and increased funding, the spectrum of activities was also widened to encompass a new focus on space applications and commercial products. -
2012 BMW Cospas-Sarat Updates Secretariat
2012 Beacon Manufacturers’ Workshop Orlando, Florida 28 September 2012 Cospas-Sarsat Updates Dany St-Pierre Cospas-SSSarsat Secretar iat 0 Source: CNES – D. Ducros Cospas-Sarsat Updates • Intern ati on al Cospas-Sarsat Pr ogr amm e • Space Segment and LUTs status • Saves and Events • MEOSAR System and status • IBRD and Website Updates • Upcoming Events and Activities Cospas-Sarsat Mission and Objective Mission: To provide accurate, timely and reliable distress alert and location data to help SAR authorities assist persons in distress. Objective: To reduce, as far as possible, delays in the provision of distress alerts to SAR and the time to locate a distress and provide assistance. Strategy: To implement, maintain, co-ordinate and operate a satellite system capable of detecting tiitransmissions from radio-beacons tha t complywith C/S specifications. Cospas-Sarsat Participants Netherlands New Algeria Zealand Argentina Nigeria Australia Norway Brazil Pakistan Canada Peru Chile Poland China (P.R.) Russia Cyprus Saudi Denmark Arabia Finland Serbia France Singapore Germany South Africa Greece Spain Hong Kong Sweden India Switzerland Indonesia Thailand Italy Tunisia ITDC Turkey Japan UAE Korea (R. of) UK 4 Founders: Canada, France, Russia and the USA Madagascar USA • 60 % of world land area Vietnam 26 GdStPidGround Segment Providers • 72 % of world population 11 User States 2 Organisations • 84 % of estimated world wealth Cospas-Sarsat System Combined LEO / GEO Operations • LEOSAR: Sarsat (NOAA, MetOp) and Cospas • GEOSAR: GOES (USA), INSAT -
The Annual Compendium of Commercial Space Transportation: 2012
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly. -
GNSS Performance Monitoring
GNSS PERFORMANCE Monitoring SiS AVAILABILITY PARAMETER DEfiNITION AND EVALUATION M. DE Groot Master THESIS Geoscience & Remote Sensing GNSS Performance Monitoring SiS availability parameter definition and evaluation by M. de Groot to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Wednesday September 27, 2017 Student number: 4089456 Project duration: May 1, 2016 – July 1, 2017 Thesis committee: Prof. dr. ir. R. F.Hanssen, TU Delft Graduation supervisor Dr. ir. H. van der Marel, TU Delft Daily supervisor Ir. A. van den Berg, CGI Daily supervisor Ir. W. J. F. Simons, TU Delft Co-reader An electronic version of this thesis is available at http://repository.tudelft.nl/. Preface This thesis forms the end of my period at the TU Delft. I enjoyed studying the bachelor of civil engineering and the master track of geoscience & remote sensing. The track contained several interesting topics in which GNSS had my attention from the start. Many people make use of GNSS on a daily basis without actually knowing how it works. Position, velocity and timing results are obtained using satellites at 20000 kilometres above the Earth. Good performance is usually taken for granted, but performance monitoring is essential for any system. Using a monitoring tool with substantiated parameters can give the system more trust and can lead to new insights. I would like to thank my daily supervisors, Axel van den Berg and Hans van der Marel, for introducing me to this topic. Both were really helpful with all their knowledge, experience and feedback. I would also like to thank the people of the space department of CGI the Netherlands with their input and for giving me a place to work on the project. -
Orbital Debris: a Chronology
NASA/TP-1999-208856 January 1999 Orbital Debris: A Chronology David S. F. Portree Houston, Texas Joseph P. Loftus, Jr Lwldon B. Johnson Space Center Houston, Texas David S. F. Portree is a freelance writer working in Houston_ Texas Contents List of Figures ................................................................................................................ iv Preface ........................................................................................................................... v Acknowledgments ......................................................................................................... vii Acronyms and Abbreviations ........................................................................................ ix The Chronology ............................................................................................................. 1 1961 ......................................................................................................................... 4 1962 ......................................................................................................................... 5 963 ......................................................................................................................... 5 964 ......................................................................................................................... 6 965 ......................................................................................................................... 6 966 ........................................................................................................................ -
Space Industry
Spring 2013 Industry Study Final Report Space Industry Dwight D. Eisenhower School for National Security and Resource Strategy National Defense University Fort McNair, Washington, D.C. 20319-5062 ii i 1 SPACE 2013 ABSTRACT: Today’s U.S. national security space systems enable vital functions such as strategic warning, global command and control, intelligence, and communications while also touching nearly every aspect of modern life - from personal navigation systems to receiving near real-time information from across the globe. However, American space power is not guaranteed – particularly as the nation enters an era of fiscal austerity and conflicting budget priorities. Significant challenges that must be addressed include limited federal funds, rising costs, and a fragile supply chain. Additionally, as the U.S. rebalances strategic focus to the Asia-Pacific, limited regional satellite communication capacity and potential vulnerabilities to U.S. space systems also pose a threat. To mitigate these challenges, this study recommends the U.S. Department of Defense implement a policy of selective disaggregation to improve space system resiliency and maintain a steady funding profile for national security satellites. However, such a strategy is not without costs: hoped for increases in national security space program affordability will likely not materialize over the long-term as savings realized in satellite manufacturing will simply shift cost and complexity to the ground equipment and launch segments. CDR Vince Baker, U.S. Navy Mr. Stephen Burke, Department of the Air Force Mr. Patrick Dunn, Department of State COL John Eggert, U.S. Army Dr. Ivy Estabrooke, Department of the Navy COL Gregory Graves, U.S. -
ABAS), Satellite-Based Augmentation System (SBAS), Or Ground-Based Augmentation System (GBAS
Current Status and Future Navigation Requirements for Mexico City New Airport New Mexico City Airport in figures: • 120 million passengers per year; • 1.2 million tons of shipping cargo per year; • 4,430 Ha. (6 times bigger tan the current airport); • 6 runways operating simultaneously; • 1st airport outside Europe with a neutral carbon footprint; • Largest airport in Latin America; • 11.3 billion USD investment (aprox.); • Operational in 2020 (expected). “State-of-the-art navigation systems are as important –or more- than having world class civil engineering and a stunning arquitecture” Air Navigation Systems: A. In-land deployed systems - Are the most common, based on ground stations emitting radiofrequency signals received by on-board equipments to calculate flight position. B. Satellite navigation systems – First stablished by U.S. in 1959 called TRANSIT (by the time Russia developed TSIKADA); in 1967 was open to civil navigation; 1973 GPS was developed by U.S., then GLONASS, then GALILEO. C. Inertial navigation systems – Autonomous navigation systems based on inertial forces, providing constant information on the position of the flight and parameters of speed and direction (e.g. when flying above the ocean and there are no ground segments to provide support). Requirements for performance of Navigation Systems: According to the International Civil Aviation Organization (ICAO) there are four main requirements: • The accuracy means the level of concordance between the estimated position of an aircraft and its real position. • The availability is the portion of time during which the system complies with the performance requirements under certain conditions. • The integrity is the function of a system that warns the users in an opportune way when the system should not be used. -
Redalyc.Status and Trends of Smallsats and Their Launch Vehicles
Journal of Aerospace Technology and Management ISSN: 1984-9648 [email protected] Instituto de Aeronáutica e Espaço Brasil Wekerle, Timo; Bezerra Pessoa Filho, José; Vergueiro Loures da Costa, Luís Eduardo; Gonzaga Trabasso, Luís Status and Trends of Smallsats and Their Launch Vehicles — An Up-to-date Review Journal of Aerospace Technology and Management, vol. 9, núm. 3, julio-septiembre, 2017, pp. 269-286 Instituto de Aeronáutica e Espaço São Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=309452133001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative doi: 10.5028/jatm.v9i3.853 Status and Trends of Smallsats and Their Launch Vehicles — An Up-to-date Review Timo Wekerle1, José Bezerra Pessoa Filho2, Luís Eduardo Vergueiro Loures da Costa1, Luís Gonzaga Trabasso1 ABSTRACT: This paper presents an analysis of the scenario of small satellites and its correspondent launch vehicles. The INTRODUCTION miniaturization of electronics, together with reliability and performance increase as well as reduction of cost, have During the past 30 years, electronic devices have experienced allowed the use of commercials-off-the-shelf in the space industry, fostering the Smallsat use. An analysis of the enormous advancements in terms of performance, reliability and launched Smallsats during the last 20 years is accomplished lower prices. In the mid-80s, a USD 36 million supercomputer and the main factors for the Smallsat (r)evolution, outlined. -
Russian and Chinese Responses to U.S. Military Plans in Space
Russian and Chinese Responses to U.S. Military Plans in Space Pavel Podvig and Hui Zhang © 2008 by the American Academy of Arts and Sciences All rights reserved. ISBN: 0-87724-068-X The views expressed in this volume are those held by each contributor and are not necessarily those of the Officers and Fellows of the American Academy of Arts and Sciences. Please direct inquiries to: American Academy of Arts and Sciences 136 Irving Street Cambridge, MA 02138-1996 Telephone: (617) 576-5000 Fax: (617) 576-5050 Email: [email protected] Visit our website at www.amacad.org Contents v PREFACE vii ACRONYMS 1 CHAPTER 1 Russia and Military Uses of Space Pavel Podvig 31 CHAPTER 2 Chinese Perspectives on Space Weapons Hui Zhang 79 CONTRIBUTORS Preface In recent years, Russia and China have urged the negotiation of an interna - tional treaty to prevent an arms race in outer space. The United States has responded by insisting that existing treaties and rules governing the use of space are sufficient. The standoff has produced a six-year deadlock in Geneva at the United Nations Conference on Disarmament, but the parties have not been inactive. Russia and China have much to lose if the United States were to pursue the programs laid out in its planning documents. This makes prob - able the eventual formulation of responses that are adverse to a broad range of U.S. interests in space. The Chinese anti-satellite test in January 2007 was prelude to an unfolding drama in which the main act is still subject to revi - sion. -
Russia Missile Chronology
Russia Missile Chronology 2007-2000 NPO MASHINOSTROYENIYA | KBM | MAKEYEV DESIGN BUREAU | MITT | ZLATOUST MACHINE-BUILDING PLANT KHRUNICHEV | STRELA PRODUCTION ASSOCIATION | AAK PROGRESS | DMZ | NOVATOR | TsSKB-PROGRESS MKB RADUGA | ENERGOMASH | ISAYEV KB KHIMMASH | PLESETSK TEST SITE | SVOBODNYY COSMODROME 1999-1996 KRASNOYARSK MACHINE-BUILDING PLANT | MAKEYEV DESIGN BUREAU | MITT | AAK PROGRESS NOVATOR | SVOBODNYY COSMODROME Last update: March 2009 This annotated chronology is based on the data sources that follow each entry. Public sources often provide conflicting information on classified military programs. In some cases we are unable to resolve these discrepancies, in others we have deliberately refrained from doing so to highlight the potential influence of false or misleading information as it appeared over time. In many cases, we are unable to independently verify claims. Hence in reviewing this chronology, readers should take into account the credibility of the sources employed here. Inclusion in this chronology does not necessarily indicate that a particular development is of direct or indirect proliferation significance. Some entries provide international or domestic context for technological development and national policymaking. Moreover, some entries may refer to developments with positive consequences for nonproliferation 2007-2000: NPO MASHINOSTROYENIYA 28 August 2007 NPO MASHINOSTROYENIYA TO FORM CORPORATION NPO Mashinostroyeniya is set to form a vertically-integrated corporation, combining producers and designers of various supply and support elements. The new holding will absorb OAO Strela Production Association (PO Strela), OAO Permsky Zavod Mashinostroitel, OAO NPO Elektromekhaniki, OAO NII Elektromekhaniki, OAO Avangard, OAO Uralskiy NII Kompositsionnykh Materialov, and OAO Kontsern Granit-Elektron. While these entities have acted in coordination for some time, formation of the new corporation has yet to be finalized.