bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114991; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Opsin gene expression in larval and adult deep-sea fishes supports a conserved cone-to-rod pathway in teleost visual development Nik Lupše1*, Fabio Cortesi2, Marko Freese3, Lasse Marohn3, Jan-Dag Pohlman3, Klaus Wysujack3, Reinhold Hanel3, Zuzana Musilova1* 1) Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic 2) Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia 3) Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany * corresponding authors;
[email protected],
[email protected] Keywords: rhodopsin, evolution, deep-sea fishes, vision, mesopelagic, adaptation, convergence Abstract Deep-sea fishes show extraordinary visual adaptations to an environment where every photon of light that is captured might make the difference between life and death. While considerable effort has been made in understanding how adult deep-sea fishes see their world, relatively little is known about vision in earlier life stages. Similar to most marine species, larval deep- sea fishes start their life in the well-lit epipelagic zone, where food is abundant and predation relatively low. In this study, we show major changes in visual gene expression between larval and adult deep-sea fishes from eight different orders (Argentiniformes, Aulopiformes, Beryciformes, Myctophiformes, Pempheriformes, Scombriformes, Stomiiformes and Trachichthyiformes).