Production of Diploid Gynogenetic Grass Carp and Triploid Hybrids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Israeli Journal of Aquaculture – Bamidgeh Xx(X), 20Xx, X-Xx
The Open Access Israeli Journal of Aquaculture – Bamidgeh As from January 2010 The Israeli Journal of Aquaculture - Bamidgeh (IJA) will be published exclusively as an on-line Open Access (OA) quarterly accessible by all AquacultureHub (http://www.aquaculturehub.org) members and registered individuals and institutions. Please visit our website (http://siamb.org.il) for free registration form, further information and instructions. This transformation from a subscription printed version to an on-line OA journal, aims at supporting the concept that scientific peer-reviewed publications should be made available to all, including those with limited resources. The OA IJA does not enforce author or subscription fees and will endeavor to obtain alternative sources of income to support this policy for as long as possible. Editor-in-Chief Published under auspices of Dan Mires The Society of Israeli Aquaculture and Marine Biotechnology (SIAMB), Editorial Board University of HawaiɄɄɄi at Mānoa Library & Rina Chakrabarti Aqua Research Lab, Dept. of Zoology, University of HawaiɄɄɄi at Mānoa University of Delhi, India Aquaculture Program Angelo Colorni National Center for Mariculture, IOLR in association with Eilat, Israel AquacultureHub http://www.aquaculturehub.org Daniel Golani The Hebrew University of Jerusalem Jerusalem, Israel Hillel Gordin Kibbutz Yotveta, Arava, Israel Sheenan Harpaz Agricultural Research Organization Beit Dagan, Gideon Hulata Agricultural Research Organization Beit Dagan, George Wm. Kissil National Center for Mariculture, IOLR, Eilat, Israel Ingrid Lupatsch Swansea University, Singleton Park, Swansea, UK Spencer Malecha Dept. of Human Nutrition, Food & Animal Sciences, CTAHR, University of Hawaii Constantinos Hellenic Center for Marine Research, ISSN 0792 - 156X Mylonas Crete, Greece Amos Tandler National Center for Mariculture, IOLR Israeli Journal of Aquaculture - BAMIGDEH. -
Chanodichthys Recurviceps (A Fish, No Common Name) Ecological Risk Screening Summary
Chanodichthys recurviceps (a fish, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, June 2012 Revised, November 2016 Web Version, 6/18/2018 Photo: H. T. Cheng. Licensed under CC BY-NC. Available: http://naturewatch.org.nz/taxa/187285-Culter-recurviceps. (November 2016). 1 Native Range and Status in the United States Native Range From Zhao and Cui (2011): “Known from Zhu Jiang River (Pearl River) in Guangdong and Guanxi Provinces, and Hainan Province in China.” Status in the United States This species has not been reported in the United States. 1 Means of Introductions in the United States This species has not been reported in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2016): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii Subclass Neopterygii Infraclass Teleostei Superorder Ostariophysi Order Cypriniformes Superfamily Cyprinoidea Family Cyprinidae Genus Culter Basilewsky, 1855 Species Culter recurviceps (Richardson, 1846)” From Eschmeyer et al. (2016): “recurviceps, Leuciscus Richardson [J.] 1846:295 [Report of the British Association for the Advancement of Science 15th meeting [1845] […]] Canton, China. No types known. Based solely on an illustration by Reeves (see Whitehead 1970:210, Pl. 17a […]). •Valid as Erythroculter recurviceps (Richardson 1846) -- (Lu in Pan et al. 1991:93 […]). •Questionably the same as Culter alburnus Basilewsky 1855 -- (Bogutskaya & Naseka 1996:24 […], Naseka 1998:75 […]). •Valid as Culter recurviceps (Richardson 1846) -- (Luo & Chen in Chen et al. 1998:188 […], Zhang et al. 2016:59 […]). •Valid as Chanodichthys recurviceps (Richardson 1846) -- (Kottelat 2013:87 […]). -
Occasional Papers of the Museum of Zoology University of Michigan Ann Arbor.Michigan
OCCASIONAL PAPERS OF THE MUSEUM OF ZOOLOGY UNIVERSITY OF MICHIGAN ANN ARBOR.MICHIGAN THE CYPRINID DERMOSPHENOTIC AND THE SUBFAMILY RASBORINAE The Cyprinidac, the largest family of fishes, do not lend themselves readily to subfamily classification (Sagemehl, 1891; Regan, 1911 ; Ramaswami, 195513). Nevertheless, it is desirable to divide the family in some way, if only to facilitate investiga- tion. Since Gunther's (1868) basic review of the cyprinids the emphasis in classification has shifted from divisions that are rcadily differentiable to groupings intended to be more nearly phylogenetic. In the course of this change a subfamily classifica- tion has gradually been evolved. Among the most notable contributions to the development of present subfamily concepts are those of Berg (1912), Nikolsky (1954), and Banarescu (e-g. 1968a). The present paper is an attempt to clarify the nature and relationships of one cyprinid subfamily-the Rasborinae. (The group was termed Danioinae by Banarescu, 1968a. Nomen- claturally, Rasborina and Danionina were first used as "family group" names by Giinther; to my knowledge the first authors to include both Rasbora and Danio in a single subfamily with a name bascd on one of these genera were Weber and de Beaufort, 1916, who used Rasborinae.) In many cyprinids, as in most characins, the infraorbital bones form an interconnected series of laminar plates around the lower border of the eye, from the lacrimal in front to the dermo- sphenotic postcrodorsally. This series bears the infraorbital sensory canal, which is usually continued into the cranium above the dcrmosphenotic. The infraorbital chain of laminar plates is generally anchored in position relative to the skull anteriorly and 2 Gosline OCC. -
Phylogenetic Relationships of Eurasian and American Cyprinids Using Cytochrome B Sequences
Journal of Fish Biology (2002) 61, 929–944 doi:10.1006/jfbi.2002.2105, available online at http://www.idealibrary.com on Phylogenetic relationships of Eurasian and American cyprinids using cytochrome b sequences C. C*, N. M*, T. E. D†, A. G‡ M. M. C*§ *Centro de Biologia Ambiental, Departamento de Zoologia e Antropologia, Faculdade de Cieˆncia de Lisboa, Campo Grande, Bloco C2, 3 Piso. 1749-016 Lisboa, Portugal, †Department of Biology, Arizona State University, Tempe, Arizona 85287-1501, U.S.A. and ‡Laboratoire d’Hydrobiology, Universite´ de Provence, 1 Place Victor Hugo, 1331 Marseille, France (Received 30 January 2002, Accepted 6 August 2002) Neighbour-joining and parsimony analyses identified five lineages of cyprinids: (1) European leuciscins (including Notemigonus)+North American phoxinins (including Phoxinus phoxinus); (2) European gobionins+Pseudorasbora; (3) primarily Asian groups [cultrins+acheilognathins+ gobionins (excluding Abbotina)+xenocyprinins]; (4) Abbottina+Sinocyclocheilus+Acrossocheilus; (5) cyprinins [excluding Sinocyclocheilus and Acrossocheilus]+barbins+labeonins. Relationships among these lineages and the enigmatic taxa Rhodeus were not well-resolved. Tests of mono- phyly of subfamilies and previously proposed relationships were examined by constraining cytochrome b sequences data to fit previous hypotheses. The analysis of constrained trees indicated that sequence data were not consistent with most previously proposed relationships. Inconsistency was largely attributable to Asian taxa, such as Xenocypris and Xenocyprioides. Improved understanding of historical and taxonomic relationships in Cyprinidae will require further morphological and molecular studies on Asian cyprinids and taxa representative of the diversity found in Africa. 2002 The Fisheries Society of the British Isles. Published by Elsevier Science Ltd. All rights reserved. Key words: Cyprinidae; molecular phylogeny; cytochrome b; monophyly of subfamilies. -
Relationships Between Spatial Distribution of Two Dominant Small-Sized Fishes and Submerged Macrophyte Cover in Niu
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/234048940 Relationships between spatial distribution of two dominant small-sized fishes and submerged macrophyte cover in Niu.... Article in Ying yong sheng tai xue bao = The journal of applied ecology / Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban · September 2012 Source: PubMed CITATIONS READS 2 27 4 authors, including: Shaowen Ye Jie Zhong Institute of Hydrobiology - Chinese … University of Texas MD Anderson Ca… 56 PUBLICATIONS 220 CITATIONS 94 PUBLICATIONS 1,219 CITATIONS SEE PROFILE SEE PROFILE All content following this page was uploaded by Shaowen Ye on 15 May 2015. The user has requested enhancement of the downloaded file. 应 用 生 态 学 报 年 月 第 卷 第 期 摇 2012 9 摇 23 摇 9 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 23 Chinese Journal of Applied Ecology, Sep. 2012, (9): 2566-2572 牛山湖两种优势小型鱼类空间分布 与沉水植被的关系 * 叶少文** 张堂林 李钟杰 刘家寿 中国科学院水摇 生生物研究所摇淡水生态与生摇物技术国家重点实验室 武汉 ( , 430072) 摘 要 运用 种网目规格的成套浮性刺网作为鱼类采样工具,于 年夏季在长江中游 摇 摇 8 2005 浅水草型湖泊牛山湖进行鱼类定量采样,通过比较不同茂密程度黄丝草生境中的小型鱼类组 成、数量和大小结构,探讨此类湖泊小型鱼类的空间分布特征及其与沉水植被的关系 采样期 . 间共捕获 种 尾鱼,依据其等级丰度和出现频次, 和红鳍原鲌为该湖优势上层小型 13 1124 鱼类 在调查的沉水植物生物量范围内,鱼类物种丰富度和 多样性指数与沉水植物 . Shannon 生物量之间呈现倒抛物线关系;两种优势小型鱼类的种群丰度均与沉水植物生物量有着显著 的线性正相关关系,且其平均个体大小在裸地生境较高、沉水植被茂密区较低,幼鱼更倾向群 聚于厚密的黄丝草生境中;其他生境因子(水深和离岸距离)对 和红鳍原鲌空间分布的影响 不显著 黄丝草植被生境是牛山湖两种优势小型鱼类的重要保护生境,应加强对黄丝草等沉 . 水植被的保护及恢复 . 关键词 鱼 草关系 小型鱼类 种群结构 相对丰度 长江流域浅水湖泊 牛山湖 摇 鄄 摇 摇 摇 摇 摇 文章编号 中图分类号 文献标识码 摇 1001-9332(2012)09-2566-07摇 摇 Q959. -
Mass Death of Predatory Carp, Chanodichthys Erythropterus, Induced by Plerocercoid Larvae of Ligula Intestinalis (Cestoda: Diphyllobothriidae)
ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 54, No. 3: 363-368, June 2016 ▣ BRIEF COMMUNICATION http://dx.doi.org/10.3347/kjp.2016.54.3.363 Mass Death of Predatory Carp, Chanodichthys erythropterus, Induced by Plerocercoid Larvae of Ligula intestinalis (Cestoda: Diphyllobothriidae) 1, 1 2 3 Woon-Mok Sohn *, Byoung-Kuk Na , Soo Gun Jung , Koo Hwan Kim 1Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea; 2Korea Federation for Environmental Movements in Daegu, Daegu 41259, Korea, 3Nakdong River Integrated Operations Center, Korea Water Resources Corporation, Busan 49300, Korea Abstract: We describe here the mass death of predatory carp, Chanodichthys erythropterus, in Korea induced by plero- cercoid larvae of Ligula intestinalis as a result of host manipulation. The carcasses of fish with ligulid larvae were first found in the river-edge areas of Chilgok-bo in Nakdong-gang (River), Korea at early February 2016. This ecological phe- nomena also occurred in the adjacent areas of 3 dams of Nakdong-gang, i.e., Gangjeong-bo, Dalseong-bo, and Hap- cheon-Changnyeong-bo. Total 1,173 fish carcasses were collected from the 4 regions. To examine the cause of death, we captured 10 wondering carp in the river-edge areas of Hapcheon-Changnyeong-bo with a landing net. They were 24.0-28.5 cm in length and 147-257 g in weight, and had 2-11 plerocercoid larvae in the abdominal cavity. Their digestive organs were slender and empty, and reproductive organs were not observed at all. -
Guide to Monogenoidea of Freshwater Fish of Palaeartic and Amur Regions
GUIDE TO MONOGENOIDEA OF FRESHWATER FISH OF PALAEARTIC AND AMUR REGIONS O.N. PUGACHEV, P.I. GERASEV, A.V. GUSSEV, R. ERGENS, I. KHOTENOWSKY Scientific Editors P. GALLI O.N. PUGACHEV D. C. KRITSKY LEDIZIONI-LEDIPUBLISHING © Copyright 2009 Edizioni Ledizioni LediPublishing Via Alamanni 11 Milano http://www.ledipublishing.com e-mail: [email protected] First printed: January 2010 Cover by Ledizioni-Ledipublishing ISBN 978-88-95994-06-2 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted or utilized in any form or by any means, electonical, mechanical, photocopying or oth- erwise, without permission in writing from the publisher. Front cover: /Dactylogyrus extensus,/ three dimensional image by G. Strona and P. Galli. 3 Introduction; 6 Class Monogenoidea A.V. Gussev; 8 Subclass Polyonchoinea; 15 Order Dactylogyridea A.V. Gussev, P.I. Gerasev, O.N. Pugachev; 15 Suborder Dactylogyrinea: 13 Family Dactylogyridae; 17 Subfamily Dactylogyrinae; 13 Genus Dactylogyrus; 20 Genus Pellucidhaptor; 265 Genus Dogielius; 269 Genus Bivaginogyrus; 274 Genus Markewitschiana; 275 Genus Acolpenteron; 277 Genus Pseudacolpenteron; 280 Family Ancyrocephalidae; 280 Subfamily Ancyrocephalinae; 282 Genus Ancyrocephalus; 282 Subfamily Ancylodiscoidinae; 306 Genus Ancylodiscoides; 307 Genus Thaparocleidus; 308 Genus Pseudancylodiscoides; 331 Genus Bychowskyella; 332 Order Capsalidea A.V. Gussev; 338 Family Capsalidae; 338 Genus Nitzschia; 338 Order Tetraonchidea O.N. Pugachev; 340 Family Tetraonchidae; 341 Genus Tetraonchus; 341 Genus Salmonchus; 345 Family Bothitrematidae; 359 Genus Bothitrema; 359 Order Gyrodactylidea R. Ergens, O.N. Pugachev, P.I. Gerasev; 359 Family Gyrodactylidae; 361 Subfamily Gyrodactylinae; 361 Genus Gyrodactylus; 362 Genus Paragyrodactylus; 456 Genus Gyrodactyloides; 456 Genus Laminiscus; 457 Subclass Oligonchoinea A.V. -
Amur Fish: Wealth and Crisis
Amur Fish: Wealth and Crisis ББК 28.693.32 Н 74 Amur Fish: Wealth and Crisis ISBN 5-98137-006-8 Authors: German Novomodny, Petr Sharov, Sergei Zolotukhin Translators: Sibyl Diver, Petr Sharov Editors: Xanthippe Augerot, Dave Martin, Petr Sharov Maps: Petr Sharov Photographs: German Novomodny, Sergei Zolotukhin Cover photographs: Petr Sharov, Igor Uchuev Design: Aleksey Ognev, Vladislav Sereda Reviewed by: Nikolai Romanov, Anatoly Semenchenko Published in 2004 by WWF RFE, Vladivostok, Russia Printed by: Publishing house Apelsin Co. Ltd. Any full or partial reproduction of this publication must include the title and give credit to the above-mentioned publisher as the copyright holder. No photographs from this publication may be reproduced without prior authorization from WWF Russia or authors of the photographs. © WWF, 2004 All rights reserved Distributed for free, no selling allowed Contents Introduction....................................................................................................................................... 5 Amur Fish Diversity and Research History ............................................................................. 6 Species Listed In Red Data Book of Russia ......................................................................... 13 Yellowcheek ................................................................................................................................... 13 Black Carp (Amur) ...................................................................................................................... -
A Cyprinid Fish
DFO - Library / MPO - Bibliotheque 01005886 c.i FISHERIES RESEARCH BOARD OF CANADA Biological Station, Nanaimo, B.C. Circular No. 65 RUSSIAN-ENGLISH GLOSSARY OF NAMES OF AQUATIC ORGANISMS AND OTHER BIOLOGICAL AND RELATED TERMS Compiled by W. E. Ricker Fisheries Research Board of Canada Nanaimo, B.C. August, 1962 FISHERIES RESEARCH BOARD OF CANADA Biological Station, Nanaimo, B0C. Circular No. 65 9^ RUSSIAN-ENGLISH GLOSSARY OF NAMES OF AQUATIC ORGANISMS AND OTHER BIOLOGICAL AND RELATED TERMS ^5, Compiled by W. E. Ricker Fisheries Research Board of Canada Nanaimo, B.C. August, 1962 FOREWORD This short Russian-English glossary is meant to be of assistance in translating scientific articles in the fields of aquatic biology and the study of fishes and fisheries. j^ Definitions have been obtained from a variety of sources. For the names of fishes, the text volume of "Commercial Fishes of the USSR" provided English equivalents of many Russian names. Others were found in Berg's "Freshwater Fishes", and in works by Nikolsky (1954), Galkin (1958), Borisov and Ovsiannikov (1958), Martinsen (1959), and others. The kinds of fishes most emphasized are the larger species, especially those which are of importance as food fishes in the USSR, hence likely to be encountered in routine translating. However, names of a number of important commercial species in other parts of the world have been taken from Martinsen's list. For species for which no recognized English name was discovered, I have usually given either a transliteration or a translation of the Russian name; these are put in quotation marks to distinguish them from recognized English names. -
Embryonic and Larval Development of the Topmouth Gudgeon
ZOOLOGIA 35: e22162 ISSN 1984-4689 (online) zoologia.pensoft.net RESEARCH ARTICLE Embryonic and larval development of the topmouth gudgeon, Pseudorasbora parva (Teleostei: Cyprinidae) Dongmei Zhu 1, Kun Yang 1 , Ning Sun 1, Weimin Wang 1, Xiaoyun Zhou 1 1College of Fishery, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University. Wuhan, Hubei 430070, China. Corresponding author: Xiaoyun Zhou ([email protected]) http://zoobank.org/165E0AE9-7EA0-4043-80C7-479895A9735C ABSTRACT. The topmouth gudgeon, Pseudorasbora parva (Temminck & Schlegel, 1842), is a small cyprinid fish that inhabits the littoral zones of freshwater habitats throughout Asia and Europe. It is regarded as an invasive species in Europe, but in its native range, in China, as food and as an environmental bio-indicator. In this study, the embryonic and larval development of P. parva was investigated for the first time. The eggs of P. parva are transparent, adhesive and elliptical. The mean size of fertilized eggs was (1.63×1.31) ± 0.04 mm. From fertilization to hatching, embryonic development could be divided into eight stages and 34 phases, and the incubation period lasted for 109.25 hours at 24 ± 1 °C. Newly hatched larvae were 4.1 ± 3 mm in length, and the yolk absorption was completed within six days after hatching. The first and second swim bladders formed at the third and ninth day, respectively. The pectoral fin formed before the hatching stage, followed by the caudal, dorsal, anal and ventral fin formation after hatching. About 20 days after hatching, the morphology of the fry was similar to the adult fish. -
Carp Dominate Fish Communities Managing the Impacts of Carp Throughout Many Waterways in South- Eastern Australia
Managing the Impacts of Introduced carp dominate fish communities the Impacts of Carp Managing throughout many waterways in south- eastern Australia. They also occur in Carp Western Australia and Tasmania and have the potential to spread through many more of Australia’s water systems. Carp could eventually become widespread throughout the country. Carp are known to damage aquatic plants and increase water turbidity but their impacts on native fish species are not yet clear. Carp are also a commercial and recreational fishing resource. Managing the Impacts of Carp provides a comprehensive review of the history of carp in Australia, their biology, the damage they cause and community attitudes to these problems and their solutions. Key strategies for successful carp manage- ment are recommended by the authors who are scientific experts in carp manage- ment. These strategies are illustrated by case studies. Managing the Impacts of Carp is an essential guide for policy makers, land and water managers, carp fishers and all others interested in carp management. AGRICULTURE, FISHERIES AND FORESTRY - AUSTRALIA Managing the Impacts of Carp John Koehn, Andr ea Brumley and Peter Gehrke Scientific editing by Mary Bomfor d Published by Bureau of Rural Sciences, Canberra © Commonwealth of Australia 2000 ISBN 0 644 29240 7 (set) ISBN 0 642 73201 9 (this publication) This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Bureau of Rural Sciences. Requests and inquiries concerning reproduction and rights should be addressed to the Executive Director, Bureau of Rural Sciences, PO Box E11, Kingston ACT 2604. -
Cypriniformes: Cyprinidae) from Northern Laos
Zootaxa 3586: 264–271 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:1A7BCEC8-39FA-43E4-9303-08FFA241270E A new species of Metzia (Cypriniformes: Cyprinidae) from Northern Laos KOICHI SHIBUKAWA1, PHOUVIN PHOUSAVANH2,3, KONEUMA PHONGSA4 & AKIHISA IWATA3 1Nagao Natural Environment Foundation, 3-10-10 Shitaya, Taito-ku, Tokyo 110-0004, Japan. E-mail: [email protected] 2Faculty of Agriculture, National University of Laos, P.O. Box 7322, Nabong, Vientiane, Lao PDR. 3Laboratory of Ecology and Environment, Division of Southeast Asian Area Studies, Graduate School of Asian and African Area Stud- ies, Kyoto University Yoshida, Shimoadachi-cho 46, Sakyo-ku, Kyoto 606-8501, Japan. E-mail: [email protected] 4Department of Biology, Faculty of Science, National University of Laos, P.O. Box 7322, Dongdok, Vientiane, Lao PDR. E-mail: [email protected] Abstract A new cyprinid fish, Metzia bounthobi, is described on the basis of 18 specimens (including 10 specimens in type series) from the Mekong River basin in Phongsaly and Luang Prabang Provinces, northern Laos. The species is distinguished from congeners by having the following diagnostic traits: 18–20 branched anal-fin rays (vs. 10–18 in the others); 49–55 lateral-line scale rows (vs. 35–48); 33–36 predorsal scale rows (vs. 15–20); 20–22 circumpeduncular scale rows (vs. 14–18); 8–10 gill rakers on outer surface of first gill arch (vs. 12–18). The new species also resembles species of Hemic- ulterella, Ischikauia and at least some species of Anabarilius, in sharing a sharp keel developed only between the base of the pelvic fin and anus, soft last unbranched dorsal-fin ray, and air bladder composed of two chambers; however, M.