Phylogenetic Relationships of Eurasian and American Cyprinids Using Cytochrome B Sequences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Strategies for Conservation and Restoration of Freshwater Fish Species in Korea
KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 21 Supplement, 29-37, July 2009 Received : April 22, 2009 ISSN: 1225-8598 Revised : June 6, 2009 Accepted : June 20, 2009 Strategies for Conservation and Restoration of Freshwater Fish Species in Korea By Eon-Jong Kang*, In-Chul Bang1 and Hyun Yang2 Inland Aquaculture Research Center, National Fisheries Research and Development Institute, Busan 619-902, Korea 1Department of Marine Biotechnology, Soonchunhyang University, Asan 336-745, Korea 2Institute of Biodiversity Research, Jeonju 561-211, Korea ABSTRACT The tiny fragment of freshwater body is providing home for huge biodiversity and resour- ces for the existence of human. The competing demand for freshwater have been increased rapidly and it caused the declination of biodiversity in recent decades. Unlike the natural process of extinction in gradual progress, the current species extinction is accelerated by human activity. As a result many fish species are already extinct or alive only in captivity in the world and about fifty eight animal species are in endangered in Korea including eighteen freshwater species. Conservation of biodiversity is the pro- cess by which the prevention of loss or damage is attained, and is often associated with management of the natural environment. The practical action is classified into in-situ, or ex-situ depending on the location of the conservation effort. Recovery means the process by which the status of endangerment is improved to persist in the wild by re-introduction of species from ex-situ conservation population into nature or translocation of some population. However there are a lot of restrictions to complete it and successful results are known very rare in case. -
Chanodichthys Recurviceps (A Fish, No Common Name) Ecological Risk Screening Summary
Chanodichthys recurviceps (a fish, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, June 2012 Revised, November 2016 Web Version, 6/18/2018 Photo: H. T. Cheng. Licensed under CC BY-NC. Available: http://naturewatch.org.nz/taxa/187285-Culter-recurviceps. (November 2016). 1 Native Range and Status in the United States Native Range From Zhao and Cui (2011): “Known from Zhu Jiang River (Pearl River) in Guangdong and Guanxi Provinces, and Hainan Province in China.” Status in the United States This species has not been reported in the United States. 1 Means of Introductions in the United States This species has not been reported in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2016): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii Subclass Neopterygii Infraclass Teleostei Superorder Ostariophysi Order Cypriniformes Superfamily Cyprinoidea Family Cyprinidae Genus Culter Basilewsky, 1855 Species Culter recurviceps (Richardson, 1846)” From Eschmeyer et al. (2016): “recurviceps, Leuciscus Richardson [J.] 1846:295 [Report of the British Association for the Advancement of Science 15th meeting [1845] […]] Canton, China. No types known. Based solely on an illustration by Reeves (see Whitehead 1970:210, Pl. 17a […]). •Valid as Erythroculter recurviceps (Richardson 1846) -- (Lu in Pan et al. 1991:93 […]). •Questionably the same as Culter alburnus Basilewsky 1855 -- (Bogutskaya & Naseka 1996:24 […], Naseka 1998:75 […]). •Valid as Culter recurviceps (Richardson 1846) -- (Luo & Chen in Chen et al. 1998:188 […], Zhang et al. 2016:59 […]). •Valid as Chanodichthys recurviceps (Richardson 1846) -- (Kottelat 2013:87 […]). -
Puntius Snyderi ERSS
Puntius snyderi (a fish, no common name) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2013 Revised, February 2019 Web Version, 8/8/2019 1 Native Range and Status in the United States Native Range From Chang et al. (2006): “Puntius snyderi is a freshwater cyprinid fish discovered by Oshima when he collected the freshwater fishes in Taiwan in 1915-1917. It was mainly distributed in northern and central Taiwan [Oshima 1919] […].” From Chang et al. (2009): “A similar inference was also proposed for Puntius snyderi and P. semifasciolatus in which P. snyderi is a species endemic to Taiwan and P. semifasciolatus is distributed in both China and Taiwan (Chang et al. 2006). These 2 species were proposed to have differentiated in China. After P. snyderi and P. semifasciolatus dispersed to Taiwan, P. snyderi became extinct in China (Chang et al. 2006).” 1 Chen et al. (2013) list Puntius snyderi as previously present on Kinmen Island, Taiwan but that it is currently locally extinct there. Status in the United States No records of Puntius snyderi in the wild or in trade in the United States were found. Means of Introductions in the United States No records of Puntius snyderi in the wild in the United States were found. Remarks No additional remarks. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Fricke et al. (2019), Puntius snyderi (Oshima 1919) is the current valid and original name of this species. From Bailly (2017): “Biota > Animalia (Kingdom) > Chordata (Phylum) > Vertebrata (Subphylum) > Gnathostomata (Superclass) > […] Actinopterygii (Class) > Cypriniformes (Order) > Cyprinidae (Family) > Barbinae (Subfamily) > Puntius (Genus) > Puntius snyderi (Species)” Some sources refer to this species by a synonym, Barboides snyderi (Forese and Pauly 2019). -
Genus Gobio (Pisces, Cyprinidae)
Cytologia 38: 731-736, 1973 A Comparative Study of the Karyotype in the Genus Gobio (Pisces, Cyprinidae) P. Raicu, Elena Taisescu and P. Banarescu Department of Genetics, University of Bucharest and Department of Animal Taxonomy and Evolution, Institute of Biology, Bucharest, Rumania Received July 27, 1972 The subfamily Gobioninae (Pisces, Cyprinidae) includes 84 species represented by 20 genera, a single one of which, Gobio has a Palaearctic range, occurring through the northern part of East Asia, Siberia, Europe and parts of West and Central Asia, while the remaining genera are restricted to East Asia (Banarescu and Nal bant 1972). The genus Gobio is represented in Europe, Anatolia and the Caucas by seven species, one of which, G. gobio, has a wide Palearctic distribution, a second one, G. albipinnatus, is distributed from the Danube to Volga river, while the five other species are restricted to a single or to a few drainages. Four species live in Rumania: G. gobio is rather ubiquitous, occurring in many biotopes though it is absent from the Danube R. itself; and G. uranoscopus, G. albipinnatus and G. kessleri, occur in a peculiar biotype, although they are quite frequent in some localities specially for the two last-named ones. Considering that only a few cytogenetical studies were carried on fishes, and that there are many unsolved problems in taxonomy of the family Cyprinidae and of the Gobioninae subfamily, we considered necessary to make a comparative study on the karyotype of the Gobio species occurring in Romania. This became possible by elaborating a laboratory method for demonstrating the chromosomes in fishes (Raicu and Taisescu 1972) which gave very good results. -
A Manual for Commercial Production of the Tiger Barb, ~C~T Etnlnmmi
saeAU-8-97-002 C3 A Manual for Commercial Production of the Tiger Barb, ~c~t etnlnmmI. A T p y P i d T k Sp By: Clyde S. Tamaru, Ph.D. Brian Cole, M.S. Richard Bailey, B.A. Christopher Brown, Ph.o. Center for Tropical and Subtropical Aquaculture Publication Number 129 Commercial Production of Tiger 8arbs ACKNOWLEDGEMENTS This manual is a combined effort of three institutions, United States Department of Agriculture Center for Tropical and Subtropical Aquaculture CTSA!, and University of Hawaii Sea Grant Extension Service SGES! and Aquaculture Development Program ADP!, Department of Land and Natural Resources, State of Hawaii. Financial support for this project was provided by the Center for Tropical and Subtropical Aquaculture through grants from the US Department of Agriculture USDA grant numbers 93-38500-8583 and 94-38500-0065!. Production of the manual is also funded in part by a grant from the National Oceanic and Atmospheric Administration, project kA/AS-1 which is sponsored by the University of Hawaii Sea Grant College Program, School of Ocean Earth Science and Technology SOEST!, under institutional Grant No. NA36RG0507 from NOAA Office of Sea Grant, Department of Commerce, UNIHI-SEAGRANT-TR-96-01. Support for the production of the manual was also provided by the Aquaculture Development Program, Department of Land and Natural Resources, State of Hawaii, as part of their Aquaculture Extension Project with University of Hawaii Sea Grant Extension, Service Contract Nos. 9325 and 9638. The views expressed herein are those of the authors and do not necessarily reflect the views of USDA or any of its sub-agencies. -
Morphological Variation in Acrossocheilus Hemispinus (Teleostei: Cyprinidae: Barbinae), with Comments on Its Taxonomic Status
Zootaxa 2684: 45–56 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Morphological variation in Acrossocheilus hemispinus (Teleostei: Cyprinidae: Barbinae), with comments on its taxonomic status LE-YANG YUAN1, 2 & E ZHANG1* 1 Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China 2Zhejiang Museum of Natural History, Hangzhou, 310014, China * Author for correspondence: Tel: +86 27 68780260; fax: +86 27 68780123; e-mail: [email protected] Abstract Differences in coloration and morphology between two subspecies of Acrossocheilus hemispinus were investigated based on museum-stored and freshly-caught specimens. There are marked differences in the coloration of either juveniles or adults, and in sexual dimorphism, between A. h. hemispinus and A. h. cinctus. Multivariate analysis of morphometric data too, shows the two taxa to be distinguishable from each other. Differences in body coloration and morphometric characters coincide with those of the mouthpart structure and the coiling pattern of the intestine in A. h. hemispinus and A. h. cinctus. Morphological distinction, coupled with different habitat and food preferences, supports the taxonomic elevation of the two hitherto subspecific populations of A. hemispinus to species. Key words: Acrossocheilus hemispinus, Acrossocheilus cinctus, subspecific populations, China, taxonomy Introduction The taxonomic distinctions in some species of the cyprinid genus Acrossocheilus are still confusing, despite recent clarification of the misidentifications of the species identified in this genus by Shan et al. (2000) (Kottelat, 1998, 2000; Zhang, 2005; Yuan et al., 2006). A case of such confusion is represented by the uncertain status of A. -
Ichthyofauna of the Kubo, Tochikura, and Ichinono
Biodiversity Data Journal 2: e1093 doi: 10.3897/BDJ.2.e1093 Taxonomic paper Ichthyofauna of the Kubo, Tochikura, and Ichinono river systems (Kitakami River drainage, northern Japan), with a comparison of predicted and surveyed species richness Yusuke Miyazaki†,‡, Masanori Nakae§†, Hiroshi Senou † Kanagawa Prefectural Museum of Natural History, Kanagawa, Japan ‡ The University of Tokyo, Tokyo, Japan § National Museum of Nature and Science, Ibaraki, Japan Corresponding author: Yusuke Miyazaki ([email protected]) Academic editor: Rupert Collins Received: 28 Mar 2014 | Accepted: 23 Oct 2014 | Published: 07 Nov 2014 Citation: Miyazaki Y, Nakae M, Senou H (2014) Ichthyofauna of the Kubo, Tochikura, and Ichinono river systems (Kitakami River drainage, northern Japan), with a comparison of predicted and surveyed species richness. Biodiversity Data Journal 2: e1093. doi: 10.3897/BDJ.2.e1093 Abstract The potential fish species pool of the Kubo, Tochikura, and Ichinono river systems (tributaries of the Iwai River, Kitakami River drainage), Iwate Prefecture, northern Japan, was compared with the observed ichthyofauna by using historical records and new field surveys. Based on the literature survey, the potential species pool comprised 24 species/ subspecies but only 20, including 7 non-native taxa, were recorded during the fieldwork. The absence during the survey of 11 species/subspecies from the potential species pool suggested either that sampling effort was insufficient, or that accurate determination of the potential species pool was hindered by lack of biogeographic data and ecological data related to the habitat use of the species. With respect to freshwater fish conservation in the area, Lethenteron reissneri, Carassius auratus buergeri, Pseudorasbora pumila, Tachysurus tokiensis, Oryzias latipes, and Cottus nozawae are regarded as priority species, and Cyprinus rubrofuscus, Pseudorasbora parva, and Micropterus salmoides as targets for removal. -
Family-Cyprinidae-Gobioninae-PDF
SUBFAMILY Gobioninae Bleeker, 1863 - gudgeons [=Gobiones, Gobiobotinae, Armatogobionina, Sarcochilichthyna, Pseudogobioninae] GENUS Abbottina Jordan & Fowler, 1903 - gudgeons, abbottinas [=Pseudogobiops] Species Abbottina binhi Nguyen, in Nguyen & Ngo, 2001 - Cao Bang abbottina Species Abbottina liaoningensis Qin, in Lui & Qin et al., 1987 - Yingkou abbottina Species Abbottina obtusirostris (Wu & Wang, 1931) - Chengtu abbottina Species Abbottina rivularis (Basilewsky, 1855) - North Chinese abbottina [=lalinensis, psegma, sinensis] GENUS Acanthogobio Herzenstein, 1892 - gudgeons Species Acanthogobio guentheri Herzenstein, 1892 - Sinin gudgeon GENUS Belligobio Jordan & Hubbs, 1925 - gudgeons [=Hemibarboides] Species Belligobio nummifer (Boulenger, 1901) - Ningpo gudgeon [=tientaiensis] Species Belligobio pengxianensis Luo et al., 1977 - Sichuan gudgeon GENUS Biwia Jordan & Fowler, 1903 - gudgeons, biwas Species Biwia springeri (Banarescu & Nalbant, 1973) - Springer's gudgeon Species Biwia tama Oshima, 1957 - tama gudgeon Species Biwia yodoensis Kawase & Hosoya, 2010 - Yodo gudgeon Species Biwia zezera (Ishikawa, 1895) - Biwa gudgeon GENUS Coreius Jordan & Starks, 1905 - gudgeons [=Coripareius] Species Coreius cetopsis (Kner, 1867) - cetopsis gudgeon Species Coreius guichenoti (Sauvage & Dabry de Thiersant, 1874) - largemouth bronze gudgeon [=platygnathus, zeni] Species Coreius heterodon (Bleeker, 1865) - bronze gudgeon [=rathbuni, styani] Species Coreius septentrionalis (Nichols, 1925) - Chinese bronze gudgeon [=longibarbus] GENUS Coreoleuciscus -
Occasional Papers of the Museum of Zoology University of Michigan Ann Arbor.Michigan
OCCASIONAL PAPERS OF THE MUSEUM OF ZOOLOGY UNIVERSITY OF MICHIGAN ANN ARBOR.MICHIGAN THE CYPRINID DERMOSPHENOTIC AND THE SUBFAMILY RASBORINAE The Cyprinidac, the largest family of fishes, do not lend themselves readily to subfamily classification (Sagemehl, 1891; Regan, 1911 ; Ramaswami, 195513). Nevertheless, it is desirable to divide the family in some way, if only to facilitate investiga- tion. Since Gunther's (1868) basic review of the cyprinids the emphasis in classification has shifted from divisions that are rcadily differentiable to groupings intended to be more nearly phylogenetic. In the course of this change a subfamily classifica- tion has gradually been evolved. Among the most notable contributions to the development of present subfamily concepts are those of Berg (1912), Nikolsky (1954), and Banarescu (e-g. 1968a). The present paper is an attempt to clarify the nature and relationships of one cyprinid subfamily-the Rasborinae. (The group was termed Danioinae by Banarescu, 1968a. Nomen- claturally, Rasborina and Danionina were first used as "family group" names by Giinther; to my knowledge the first authors to include both Rasbora and Danio in a single subfamily with a name bascd on one of these genera were Weber and de Beaufort, 1916, who used Rasborinae.) In many cyprinids, as in most characins, the infraorbital bones form an interconnected series of laminar plates around the lower border of the eye, from the lacrimal in front to the dermo- sphenotic postcrodorsally. This series bears the infraorbital sensory canal, which is usually continued into the cranium above the dcrmosphenotic. The infraorbital chain of laminar plates is generally anchored in position relative to the skull anteriorly and 2 Gosline OCC. -
Barbo Común – Luciobarbus Bocagei (Steindachner, 1864)
Salvador, A. (2017). Barbo común – Luciobarbus bocagei. En: Enciclopedia Virtual de los Vertebrados Españoles. Sanz, J. J., Elvira, B. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/ Barbo común – Luciobarbus bocagei (Steindachner, 1864) Alfredo Salvador Museo Nacional de Ciencias Naturales (CSIC) Versión 20-10-2017 Versiones anteriores: 20-12-2012 © I. Doadrio ENCICLOPEDIA VIRTUAL DE LOS VERTEBRADOS ESPAÑOLES Sociedad de Amigos del MNCN – MNCN - CSIC Salvador, A. (2017). Barbo común – Luciobarbus bocagei. En: Enciclopedia Virtual de los Vertebrados Españoles. Sanz, J. J., Elvira, B. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/ Sinónimos y combinaciones Barbua bocagei Steindachner, 1864; Barbus barbus bocagei – Lozano Rey, 1935; Barbus capito bocagei – Karaman, 1971; Barbus bocagei - Kottelat, 1997; Messinobarbus bocagei – Bianco, 1998; Luciobarbus bocagei - Kottelat y Freyhof, 2008. Origen y evolución L. bocagei pertenece a un grupo de especies relacionadas con especies del norte de África (Doadrio, 1990); estas afinidades parecen deberse al aislamiento de la Península Ibérica del resto de Europa desde el Oligoceno-Mioceno (Machordom et al., 1995). El aislamiento y evolución de las especies del género Luciobarbus habría tenido lugar durante la formación en el Plioceno-Pleistoceno de las cuencas hidrográficas actuales (Doadrio et al., 2002). L. bocagei y L. comizo se habrían diferenciado del resto de especies ibéricas del género en el Messiniense-Plioceno Inferior, hace unos 3,7-6,9 millones de años (Mesquita et al., 2007). Identificación Se diferencia de otros Luciobarbus por tener el último radio de la aleta dorsal con denticulaciones, que en los adultos ocupan menos de la mitad inferior; aleta dorsal de perfil recto o algo cóncavo; pedúnculo caudal estrecho (Doadrio et al., 2011). -
Alburnoides Taeniatus) Ecological Risk Screening Summary
Striped Bystranka (Alburnoides taeniatus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, March 2011 Revised, May 2018 Web Version, 6/22/2018 1 Native Range and Status in the United States Native Range From Froese and Pauly (2012): “Former USSR [Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan; also Afghanistan]: Amu-Darya, Zeravshan, Syr-Darya and Chu River.” Status in the United States This species has not been reported as introduced or established in the United States. No documentation was found of trade in this species in the United States. Means of Introductions in the United States This species has not been reported as introduced or established in the United States. 1 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2012): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Ostariophysi Order Cypriniformes Superfamily Cyprinoidea Family Cyprinidae Genus Alburnoides Species Alburnoides taeniatus (Kessler, 1874)” “Taxonomic current standing: Valid.” Size, Weight, and Age Range From Froese and Pauly (2012): “Max length : 9.0 cm TL male/unsexed; [Berg 1964]” Environment From Froese and Pauly (2012): “Benthopelagic; freshwater; pH range: 7.0 - 7.7; dH range: 20 - ?. […] 10°C - 20°C [Baensch and Riehl 1985]” (presumed to be aquarium temperature) Climate/Range From Froese and Pauly (2010): “Temperate; […]” Distribution Outside the United States Native From Froese and Pauly (2012): “Former USSR [Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan; also Afghanistan]: Amu-Darya, Zeravshan, Syr-Darya and Chu River.” 2 Introduced Froese and Pauly (2012) report that A. taeniatus is introduced and established in Kyrgyzstan. -
Feeding Habits of Tinfoil Barb, Barbonymus Schwenenfeldii in the Tasik River, South Labuhanbatu, North Sumatra, Indonesia by Eri Yusni
Feeding habits of Tinfoil barb, Barbonymus schwenenfeldii in the Tasik River, South Labuhanbatu, North Sumatra, Indonesia by Eri Yusni Submission date: 21-Apr-2021 10:07AM (UTC+0700) Submission ID: 1565275453 File name: Feeding_habits_of_Tinfoil_barb,_Barbonymus_schwenenfeldii_in.pdf (622.06K) Word count: 3752 Character count: 19292 1 10 12 18 14 1 24 7 7 1 25 16 11 4 2 14 15 6 13 22 8 13 2 20 3 21 19 9 23 5 16 17 Feeding habits of Tinfoil barb, Barbonymus schwenenfeldii in the Tasik River, South Labuhanbatu, North Sumatra, Indonesia ORIGINALITY REPORT 13% 9% 9% 6% SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS PRIMARY SOURCES 1 Submitted to Institut Pertanian Bogor Student Paper 1% 2 onlinelibrary.wiley.com Internet Source 1% 3 academicjournals.org Internet Source 1% Muhammad Azfar-Ismail, Mohd Salleh 4 % Kamarudin, Fadhil Syukri, Kamil Latif. "Larval 1 development of a new hybrid Malaysian mahseer (Barbonymus gonionotus ♀ × Tor tambroides ♂)", Aquaculture Reports, 2020 Publication 5 Submitted to Udayana University Student Paper 1% 6 www.scialert.net Internet Source 1% Mohammad Mustakim, Sutrisno Anggoro, 7 % Frida Purwanti, Haeruddin. " Food habits and 1 trophic level of in floodplain lake, Lake Semayang, East Kalimantan ", E3S Web of Conferences, 2020 Publication 8 link.springer.com Internet Source 1% A Muhtadi, R Leidonald, Desrita. "Habitat 9 % characteristics and water quality status in the 1 Batangtoru Watershed, North Sumatra Province, Indonesia", IOP Conference Series: Earth and Environmental Science, 2020 Publication 10 boptnlantai4msp.blogspot.com Internet Source 1% 11 ejournal-balitbang.kkp.go.id Internet Source 1% 12 www.coursehero.com Internet Source 1% Desrita, I S Tamba, A Muhtadi, J Ariyanti, R 13 % Leidonald.