Phylogenetic Relationships of Pseudorasbora, Pseudopungtungia,Andpungtungia (Teleostei; Cypriniformes; Gobioninae) Inferred from Multiple Nuclear Gene Sequences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Strategies for Conservation and Restoration of Freshwater Fish Species in Korea
KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 21 Supplement, 29-37, July 2009 Received : April 22, 2009 ISSN: 1225-8598 Revised : June 6, 2009 Accepted : June 20, 2009 Strategies for Conservation and Restoration of Freshwater Fish Species in Korea By Eon-Jong Kang*, In-Chul Bang1 and Hyun Yang2 Inland Aquaculture Research Center, National Fisheries Research and Development Institute, Busan 619-902, Korea 1Department of Marine Biotechnology, Soonchunhyang University, Asan 336-745, Korea 2Institute of Biodiversity Research, Jeonju 561-211, Korea ABSTRACT The tiny fragment of freshwater body is providing home for huge biodiversity and resour- ces for the existence of human. The competing demand for freshwater have been increased rapidly and it caused the declination of biodiversity in recent decades. Unlike the natural process of extinction in gradual progress, the current species extinction is accelerated by human activity. As a result many fish species are already extinct or alive only in captivity in the world and about fifty eight animal species are in endangered in Korea including eighteen freshwater species. Conservation of biodiversity is the pro- cess by which the prevention of loss or damage is attained, and is often associated with management of the natural environment. The practical action is classified into in-situ, or ex-situ depending on the location of the conservation effort. Recovery means the process by which the status of endangerment is improved to persist in the wild by re-introduction of species from ex-situ conservation population into nature or translocation of some population. However there are a lot of restrictions to complete it and successful results are known very rare in case. -
Genus Gobio (Pisces, Cyprinidae)
Cytologia 38: 731-736, 1973 A Comparative Study of the Karyotype in the Genus Gobio (Pisces, Cyprinidae) P. Raicu, Elena Taisescu and P. Banarescu Department of Genetics, University of Bucharest and Department of Animal Taxonomy and Evolution, Institute of Biology, Bucharest, Rumania Received July 27, 1972 The subfamily Gobioninae (Pisces, Cyprinidae) includes 84 species represented by 20 genera, a single one of which, Gobio has a Palaearctic range, occurring through the northern part of East Asia, Siberia, Europe and parts of West and Central Asia, while the remaining genera are restricted to East Asia (Banarescu and Nal bant 1972). The genus Gobio is represented in Europe, Anatolia and the Caucas by seven species, one of which, G. gobio, has a wide Palearctic distribution, a second one, G. albipinnatus, is distributed from the Danube to Volga river, while the five other species are restricted to a single or to a few drainages. Four species live in Rumania: G. gobio is rather ubiquitous, occurring in many biotopes though it is absent from the Danube R. itself; and G. uranoscopus, G. albipinnatus and G. kessleri, occur in a peculiar biotype, although they are quite frequent in some localities specially for the two last-named ones. Considering that only a few cytogenetical studies were carried on fishes, and that there are many unsolved problems in taxonomy of the family Cyprinidae and of the Gobioninae subfamily, we considered necessary to make a comparative study on the karyotype of the Gobio species occurring in Romania. This became possible by elaborating a laboratory method for demonstrating the chromosomes in fishes (Raicu and Taisescu 1972) which gave very good results. -
Family-Cyprinidae-Gobioninae-PDF
SUBFAMILY Gobioninae Bleeker, 1863 - gudgeons [=Gobiones, Gobiobotinae, Armatogobionina, Sarcochilichthyna, Pseudogobioninae] GENUS Abbottina Jordan & Fowler, 1903 - gudgeons, abbottinas [=Pseudogobiops] Species Abbottina binhi Nguyen, in Nguyen & Ngo, 2001 - Cao Bang abbottina Species Abbottina liaoningensis Qin, in Lui & Qin et al., 1987 - Yingkou abbottina Species Abbottina obtusirostris (Wu & Wang, 1931) - Chengtu abbottina Species Abbottina rivularis (Basilewsky, 1855) - North Chinese abbottina [=lalinensis, psegma, sinensis] GENUS Acanthogobio Herzenstein, 1892 - gudgeons Species Acanthogobio guentheri Herzenstein, 1892 - Sinin gudgeon GENUS Belligobio Jordan & Hubbs, 1925 - gudgeons [=Hemibarboides] Species Belligobio nummifer (Boulenger, 1901) - Ningpo gudgeon [=tientaiensis] Species Belligobio pengxianensis Luo et al., 1977 - Sichuan gudgeon GENUS Biwia Jordan & Fowler, 1903 - gudgeons, biwas Species Biwia springeri (Banarescu & Nalbant, 1973) - Springer's gudgeon Species Biwia tama Oshima, 1957 - tama gudgeon Species Biwia yodoensis Kawase & Hosoya, 2010 - Yodo gudgeon Species Biwia zezera (Ishikawa, 1895) - Biwa gudgeon GENUS Coreius Jordan & Starks, 1905 - gudgeons [=Coripareius] Species Coreius cetopsis (Kner, 1867) - cetopsis gudgeon Species Coreius guichenoti (Sauvage & Dabry de Thiersant, 1874) - largemouth bronze gudgeon [=platygnathus, zeni] Species Coreius heterodon (Bleeker, 1865) - bronze gudgeon [=rathbuni, styani] Species Coreius septentrionalis (Nichols, 1925) - Chinese bronze gudgeon [=longibarbus] GENUS Coreoleuciscus -
Resolving Cypriniformes Relationships Using an Anchored Enrichment Approach Carla C
Stout et al. BMC Evolutionary Biology (2016) 16:244 DOI 10.1186/s12862-016-0819-5 RESEARCH ARTICLE Open Access Resolving Cypriniformes relationships using an anchored enrichment approach Carla C. Stout1*†, Milton Tan1†, Alan R. Lemmon2, Emily Moriarty Lemmon3 and Jonathan W. Armbruster1 Abstract Background: Cypriniformes (minnows, carps, loaches, and suckers) is the largest group of freshwater fishes in the world (~4300 described species). Despite much attention, previous attempts to elucidate relationships using molecular and morphological characters have been incongruent. In this study we present the first phylogenomic analysis using anchored hybrid enrichment for 172 taxa to represent the order (plus three out-group taxa), which is the largest dataset for the order to date (219 loci, 315,288 bp, average locus length of 1011 bp). Results: Concatenation analysis establishes a robust tree with 97 % of nodes at 100 % bootstrap support. Species tree analysis was highly congruent with the concatenation analysis with only two major differences: monophyly of Cobitoidei and placement of Danionidae. Conclusions: Most major clades obtained in prior molecular studies were validated as monophyletic, and we provide robust resolution for the relationships among these clades for the first time. These relationships can be used as a framework for addressing a variety of evolutionary questions (e.g. phylogeography, polyploidization, diversification, trait evolution, comparative genomics) for which Cypriniformes is ideally suited. Keywords: Fish, High-throughput -
Phylogenetic Relationships of Eurasian and American Cyprinids Using Cytochrome B Sequences
Journal of Fish Biology (2002) 61, 929–944 doi:10.1006/jfbi.2002.2105, available online at http://www.idealibrary.com on Phylogenetic relationships of Eurasian and American cyprinids using cytochrome b sequences C. C*, N. M*, T. E. D†, A. G‡ M. M. C*§ *Centro de Biologia Ambiental, Departamento de Zoologia e Antropologia, Faculdade de Cieˆncia de Lisboa, Campo Grande, Bloco C2, 3 Piso. 1749-016 Lisboa, Portugal, †Department of Biology, Arizona State University, Tempe, Arizona 85287-1501, U.S.A. and ‡Laboratoire d’Hydrobiology, Universite´ de Provence, 1 Place Victor Hugo, 1331 Marseille, France (Received 30 January 2002, Accepted 6 August 2002) Neighbour-joining and parsimony analyses identified five lineages of cyprinids: (1) European leuciscins (including Notemigonus)+North American phoxinins (including Phoxinus phoxinus); (2) European gobionins+Pseudorasbora; (3) primarily Asian groups [cultrins+acheilognathins+ gobionins (excluding Abbotina)+xenocyprinins]; (4) Abbottina+Sinocyclocheilus+Acrossocheilus; (5) cyprinins [excluding Sinocyclocheilus and Acrossocheilus]+barbins+labeonins. Relationships among these lineages and the enigmatic taxa Rhodeus were not well-resolved. Tests of mono- phyly of subfamilies and previously proposed relationships were examined by constraining cytochrome b sequences data to fit previous hypotheses. The analysis of constrained trees indicated that sequence data were not consistent with most previously proposed relationships. Inconsistency was largely attributable to Asian taxa, such as Xenocypris and Xenocyprioides. Improved understanding of historical and taxonomic relationships in Cyprinidae will require further morphological and molecular studies on Asian cyprinids and taxa representative of the diversity found in Africa. 2002 The Fisheries Society of the British Isles. Published by Elsevier Science Ltd. All rights reserved. Key words: Cyprinidae; molecular phylogeny; cytochrome b; monophyly of subfamilies. -
Amur Fish: Wealth and Crisis
Amur Fish: Wealth and Crisis ББК 28.693.32 Н 74 Amur Fish: Wealth and Crisis ISBN 5-98137-006-8 Authors: German Novomodny, Petr Sharov, Sergei Zolotukhin Translators: Sibyl Diver, Petr Sharov Editors: Xanthippe Augerot, Dave Martin, Petr Sharov Maps: Petr Sharov Photographs: German Novomodny, Sergei Zolotukhin Cover photographs: Petr Sharov, Igor Uchuev Design: Aleksey Ognev, Vladislav Sereda Reviewed by: Nikolai Romanov, Anatoly Semenchenko Published in 2004 by WWF RFE, Vladivostok, Russia Printed by: Publishing house Apelsin Co. Ltd. Any full or partial reproduction of this publication must include the title and give credit to the above-mentioned publisher as the copyright holder. No photographs from this publication may be reproduced without prior authorization from WWF Russia or authors of the photographs. © WWF, 2004 All rights reserved Distributed for free, no selling allowed Contents Introduction....................................................................................................................................... 5 Amur Fish Diversity and Research History ............................................................................. 6 Species Listed In Red Data Book of Russia ......................................................................... 13 Yellowcheek ................................................................................................................................... 13 Black Carp (Amur) ...................................................................................................................... -
Gobiocypris Rarus) and Amplification in Closely Related Species in Gobioninae
Conserv Genet (2007) 8:1003–1007 DOI 10.1007/s10592-006-9222-x TECHNICAL NOTE Characterization of novel microsatellite loci in rare minnow (Gobiocypris rarus) and amplification in closely related species in Gobioninae Xiaolin Liao Æ Dan Wang Æ Xiaomu Yu Æ Weitao Li Æ Lei Cheng Æ Jianwei Wang Æ Jingou Tong Received: 20 April 2006 / Accepted: 18 September 2006 / Published online: 4 November 2006 Ó Springer Science+Business Media B.V. 2006 Abstract Rare minnow (Gobiocypris rarus)isan Sichuan, Southwest China. G. rarus belongs to sub- endangered small fish endemic to upper reach of the family Danioninae of Cyprinidae based on morpho- Yangtze River. From a (GT)n enriched genomic li- logical traits (Ye and Fu 1983), or subfamily brary, 32 microsatellites were isolated and character- Gobioninae based on recent molecular phylogenetics ized. Nineteen of these loci were polymorphic in a test (He et al. 2004). Because of its narrow distribution and population with alleles ranging from 2–7, and observed limited stocks, together with the use of pesticides, rare and expected heterozygosities from zero to 0.8438, and minnow populations have declined in recent decades 0.2679 to 0.8264, respectively. In the cross-species and it became an endangered species (Yue and Chen amplifications, 13 out of 19 polymorphic loci were 1998). Some hydroelectric projects have been con- found to be also polymorphic in at least one of the 7 structing in the Yangtze or its tributary rivers, such as closely related species of the subfamily Gobioninae. the Three Gorges Dam, Xiluodu Dam and Pubugou These polymorphic microsatellite loci should provide Dam etc., which will significantly raise the water level sufficient level of genetic diversity to evaluate the fine- of the upper Yangtze River and thus the habitats of the scale population structure in rare minnow and its clo- rare minnow would be affected directly or indirectly. -
Minnows and Molecules: Resolving the Broad and Fine-Scale Evolutionary Patterns of Cypriniformes
Minnows and molecules: resolving the broad and fine-scale evolutionary patterns of Cypriniformes by Carla Cristina Stout A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 7, 2017 Keywords: fish, phylogenomics, population genetics, Leuciscidae, sequence capture Approved by Jonathan W. Armbruster, Chair, Professor of Biological Sciences and Curator of Fishes Jason E. Bond, Professor and Department Chair of Biological Sciences Scott R. Santos, Professor of Biological Sciences Eric Peatman, Associate Professor of Fisheries, Aquaculture, and Aquatic Sciences Abstract Cypriniformes (minnows, carps, loaches, and suckers) is the largest group of freshwater fishes in the world. Despite much attention, previous attempts to elucidate relationships using molecular and morphological characters have been incongruent. The goal of this dissertation is to provide robust support for relationships at various taxonomic levels within Cypriniformes. For the entire order, an anchored hybrid enrichment approach was used to resolve relationships. This resulted in a phylogeny that is largely congruent with previous multilocus phylogenies, but has much stronger support. For members of Leuciscidae, the relationships established using anchored hybrid enrichment were used to estimate divergence times in an attempt to make inferences about their biogeographic history. The predominant lineage of the leuciscids in North America were determined to have entered North America through Beringia ~37 million years ago while the ancestor of the Golden Shiner (Notemigonus crysoleucas) entered ~20–6 million years ago, likely from Europe. Within Leuciscidae, the shiner clade represents genera with much historical taxonomic turbidity. Targeted sequence capture was used to establish relationships in order to inform taxonomic revisions for the clade. -
Stone Moroko (Pseudorasbora Parva) ERSS
Stone Moroko (Pseudorasbora parva) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, September 2014 Revised, November 2018 Web Version, 8/7/2019 Photo: Akos Harka. Licensed under Creative Commons BY. Available: https://www.fishbase.de/photos/UploadedBy.php?autoctr=12766&win=uploaded. (2014). 1 Native Range and Status in the United States Native Range From Panov (2006): “East Asian region including the basins of the rivers Amur, Yang-tze, Huang-ho, Japanese islands, western and southern parts of the Korean Peninsula and Taiwan.” According to NIES (2018), P. parva is native to the central and western parts of Japan. From Gozlan et al. (2002): “The topmouth gudgeon Pseudorasbora parva (Temminck & Schlegel) is a small cyprinid, originating from Japan, China, Korea and the River Amur catchment.” 1 From Froese and Pauly (2018a): “Asia: Amur to Zhujiang [Pearl River] drainages in Siberia, Korea and China [Kottelat and Freyhof 2007].” “[In China:] Occurs in eastern China, from Gansu eastward to Jiangsu and southward to Guangxi. Native to Amur basin and Lake Khanka [Bogutskaya and Naseka 1996]. Also found in Lianzi Lake [Xie et al. 2001], the Tarim River [Walker and Yang 1999], and the Hanjiang, Dongjiang, Xijiang and Nandujiang rivers [Yue 1998].” “[In Japan:] Occurs in Kawahara-oike Lake, Nagasaki [Azuma and Motomura 1998]. Also found in Futatsukawa Creek, Fukuoka Prefecture [Nagata and Nakata 1988].” “[In South Korea:] Recorded from the Han, Nakdong, Kum and Youngsan rivers [Jang et al. 2002].” “[In Mongolia:] Known from Lake Buir and Rivers Onon, Kherlen, Ulz, Khalkh and Orshuun [Kottelat 2006].” “[In Russia:] Occurs in the Amur basin and Lake Khanka, as well as in the Suifun and Tumannaya Rivers [Reshetnikov et al. -
Пескарей (Gobioninae, Cyprinidae)
ПАРАЗИТОЛОГИЯ, 43, 1, 2009 УДК 578.895. 122.1 ФАУНА МОНОГЕНЕЙ (MONOGENEA; PLATYHELMINTHES) ПЕСКАРЕЙ (GOBIONINAE, CYPRINIDAE). 2. ОСОБЕННОСТИ СОПРЯЖЕННОЙ ЭВОЛЮЦИИ © П. И. Герасев Зоологический институт РАН, Университетская наб., 1, С.-Петербург, 199034, E-mail: [email protected] Поступила 04.04.2007 Проанализированы особенности сопряженной эволюции паразитов и их хозяев (в частности, моногеней и рыб), которая подразделяется на параллельную коэво- люцию и гостальные переключения, приводящие к захвату новых систематически далеких, но экологически сходных хозяев. Рассмотрены современные взгляды на систематику и эволюцию пескарей. Проведен анализ сопряженной эволюции дакти- логирид, анцироцефалид и их хозяев. Дактилогирусы и пескари демонстрируют коэ- волюционные связи, а анцироцефалюсы — сочетание коэволюции и гостальных пе- реключений. Для дактилогирусов с разных «групп родов» пескарей показана разно- направленная эволюция, характеризующаяся формированием различных типов копулятивного органа, дополнительных пластинок диска и типов прикрепления на жабрах. Распределение морфологических групп моногеней на пескарях в основном подтверждает их разделение при использовании молекулярных данных на 4 «группы родов». В то же время в ряде случаев паразитологические данные в большей степе- ни согласуются с группировкой пескарей на основе их морфологических признаков. Особенности распределения моногеней по пескарям являются отражением совре- менных противоречивых взглядов на систематику и эволюцию этой группы рыб. Моногеней пескарей уже неоднократно -
Connecting Evolutionary Morphology to Genomics Using Ontologies: a Case Study from Cypriniformes Including Zebrafish PAULA M
JOURNAL OF EXPERIMENTAL ZOOLOGY (MOL DEV EVOL) 308B:655–668 (2007) Connecting Evolutionary Morphology to Genomics Using Ontologies: A Case Study From Cypriniformes Including Zebrafish PAULA M. MABEE1Ã, GLORIA ARRATIA2, MILES COBURN3, MELISSA HAENDEL4, ERIC J. HILTON5, JOHN G. LUNDBERG6, 7 8 9 RICHARD L. MAYDEN , NELSON RIOS , AND MONTE WESTERFIELD 1Department of Biology, University of South Dakota, Vermillion, South Dakota 2Biodiversity Research Center, The University of Kansas, Lawrence, Kansas 3Biology Department, John Carroll University, University Hts., Ohio 4Zebrafish Information Network, University of Oregon, Eugene, Oregon 5Geology Department, Field Museum of Natural History, Chicago, Illinois 6Department of Ichthyology, Academy of Natural Sciences, Philadelphia, Pennsylvania 7Department of Biology, Saint Louis University, St. Louis, Missouri 8Tulane Museum of Natural History, Belle Chasse, Los Angeles 9Zebrafish Information Network (ZFIN) and Institute of Neuroscience, University of Oregon, Eugene, Oregon ABSTRACT One focus of developmental biology is to understand how genes regulate development, and therefore examining the phenotypic effects of gene mutation is a major emphasis in studies of zebrafish and other model organisms. Genetic change underlies alterations in evolutionary characters, or phenotype, and morphological phylogenies inferred by comparison of these characters. We will utilize both existing and new ontologies to connect the evolutionary anatomy and image database that is being developed in the Cypriniformes Tree of Life project to the Zebrafish Information Network (HYPERLINK ‘‘file://localhost/Library/Local%20Settings/Temp/ zfin.org’’ zfin.org) database. Ontologies are controlled vocabularies that formally represent hierarchical relationships among defined biological concepts. If used to recode the free-form text descriptors of anatomical characters, evolutionary character data can become more easily computed, explored, and mined. -
Korean Red List of Threatened Species Korean Red List Second Edition of Threatened Species Second Edition Korean Red List of Threatened Species Second Edition
Korean Red List Government Publications Registration Number : 11-1480592-000718-01 of Threatened Species Korean Red List of Threatened Species Korean Red List Second Edition of Threatened Species Second Edition Korean Red List of Threatened Species Second Edition 2014 NIBR National Institute of Biological Resources Publisher : National Institute of Biological Resources Editor in President : Sang-Bae Kim Edited by : Min-Hwan Suh, Byoung-Yoon Lee, Seung Tae Kim, Chan-Ho Park, Hyun-Kyoung Oh, Hee-Young Kim, Joon-Ho Lee, Sue Yeon Lee Copyright @ National Institute of Biological Resources, 2014. All rights reserved, First published August 2014 Printed by Jisungsa Government Publications Registration Number : 11-1480592-000718-01 ISBN Number : 9788968111037 93400 Korean Red List of Threatened Species Second Edition 2014 Regional Red List Committee in Korea Co-chair of the Committee Dr. Suh, Young Bae, Seoul National University Dr. Kim, Yong Jin, National Institute of Biological Resources Members of the Committee Dr. Bae, Yeon Jae, Korea University Dr. Bang, In-Chul, Soonchunhyang University Dr. Chae, Byung Soo, National Park Research Institute Dr. Cho, Sam-Rae, Kongju National University Dr. Cho, Young Bok, National History Museum of Hannam University Dr. Choi, Kee-Ryong, University of Ulsan Dr. Choi, Kwang Sik, Jeju National University Dr. Choi, Sei-Woong, Mokpo National University Dr. Choi, Young Gun, Yeongwol Cave Eco-Museum Ms. Chung, Sun Hwa, Ministry of Environment Dr. Hahn, Sang-Hun, National Institute of Biological Resourses Dr. Han, Ho-Yeon, Yonsei University Dr. Kim, Hyung Seop, Gangneung-Wonju National University Dr. Kim, Jong-Bum, Korea-PacificAmphibians-Reptiles Institute Dr. Kim, Seung-Tae, Seoul National University Dr.