Ahead of Print Online Version Khawia Abbottinae Sp. N

Total Page:16

File Type:pdf, Size:1020Kb

Ahead of Print Online Version Khawia Abbottinae Sp. N Ahead of print online version FOLIA PARASITOLOGICA 60 [2]: 141–148 2013 © Institute of Parasitology, Biology Centre ASCR ISSN 0015-5683 (print), ISSN 1803-6465 (online) http://folia.paru.cas.cz/ Khawia abbottinae sp. n. (Cestoda: Caryophyllidea) from the Chinese false gudgeon Abbottina rivularis (Cyprinidae: Gobioninae) in China: morphological and molecular data Bing Wen Xi1*, Mikuláš Oros2*, Gui Tang Wang3, Tomáš Scholz4 and Jun Xie1 1 Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; 2 Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia; 3 Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; 4 Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic; *These authors contributed equally to this work Abstract: Khawia abbottinae sp. n. is described from the Chinese false gudgeon, Abbottina rivularis (Basilewsky) (Cyprinidae: Gobioninae), from the Yangtze River basin in China. The new species can be distinguished from the congeneric species mainly by the arrangements of the testes, which form two longitudinal bands (other congeneric species have the testes irregularly scattered throughout the testicular region) and their number (at maximum 85 testes versus at least 160 in the other Khawia spp.), and the mor- phology of the scolex, which varies from cuneiform to widely bulbate scolex, being separated from the remaining body by a short neck and possessing a smooth, blunt or rounded anterior margin. Other typical features of K. abbottinae are its small size (total length less than 1.5 cm) and body shape, with the maximum width at its first third. The distinct status of the new species was confirmed by molecular data (ssrDNA and ITS1 sequences). Phylogenetic analyses revealed a close relationship of the new species with K. rossit- tensis (Szidat, 1937) and K. parva (Zmeev, 1936), parasites of crucian carp and goldfish (Carassius spp.), but both species markedly differ from K. abbottinae in their morphology. Until now, five valid species ofKhawia (K. abbottinae, K. japonensis, K. rossittensis, K. saurogobii and K. sinensis) have been reported from China. Keywords: Cestoda, Khawia, Abbottina, Cyprinidae, Yangtze River, 18S rDNA, ITS1 Caryophyllideans represent a unique group among Khawia Hsü, 1935 is a species-rich genus in the or- ‘true’ cestodes (Eucestoda) because they possess a non- der Caryophyllidea, including 17 nominal species para- strobilate and monozoic body, i.e. containing only a single sitizing cyprinid fishes in Europe, Asia, Africa and North set of male and female reproductive organs (Mackiewicz America. Scholz et al. (2011) have recently revised the 1994, Oros et al. 2008). They are supposed to represent genus, and revealed that only seven species are valid: the most basal order of the Eucestoda, which would imply Khawia sinensis Hsü, 1935 (type species); K. armeniaca tapeworm evolution from simple monozoic to polyzoic, (Cholodkovsky, 1915); K. baltica Szidat, 1941; K. japon- externally segmented (strobilate) forms (Olson et al. 2001, ensis (Yamaguti, 1934); K. parva (Zmeev, 1936); K. ros- Waeschenbach et al. 2012). Molecular analyses carried sittensis (Szidat, 1937); and K. saurogobii Xi, Oros, Wang, out on caryophyllideans have detected some interesting Wu, Gao et Nie, 2009. phenomena, such as paralogous structure of nuclear ribos- Species of Khawia exhibit strict (oioxenous or stenox- omal spacers and nuclear copies of mitochondrial genes enous) host specificity, infecting only one or few close- (Brabec et al. 2012), triploid character of some species ly related fish hosts, except K. armeniaca that exhibits (Špakulová et al. 2011), divergent intragenomic ribos- a wider spectrum of fish definitive hosts (several genera omal internal transcribed spacers (ITS1 and ITS2 rDNA) of barbels – Barbinae) and is widely distributed in Africa, along with multiple rDNA loci and dispersed nucleolar Asia and Europe (Scholz et al. 2011). organizer regions (NORs) (Kráľová-Hromadová et al. During the ichthyoparasitological survey in China, 2012). These findings make caryophyllideans an interest- caryophyllidean tapeworms were found in the Chinese ing model for studies of unusual molecular phenomena in false gudgeon, Abbottina rivularis (Basilewsky) (Cyprini- parasitic flatworms (Neodermata). dae, Gobioninae). Morphological characteristics comple- Address for correspondence: J. Xie, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China. Phone: +086 0510 85559939; Fax: +086 0510 85559939; E-mail: [email protected] 141 Ahead of print online version mented by molecular data (partial sequences of ssrDNA the above procedure, except for the annealing temperature hav- and ITS1) indicate that these tapeworms represent a new ing been reduced to 52 °C, and three clones of each species of species of Khawia. Therefore, this new species is de- Khawia available having been selected for sequencing. scribed in the present paper and its phylogenetic relation- The ssrDNA and ITS1 sequences were assembled and in- TM ships to other congeneric species are discussed. spected using SeqMan (DNASTAR, Inc.) and aligned with available sequences of caryophyllideans in GenBank using the program MEGA5.1 with default setting (Tamura et al. 2011). MATERIALS AND METHODS The ambiguously aligned positions were excluded from subse- Between April 2007 and April 2011 several tens of tape- quent phylogenetic analyses based on minimum evolution (ME), worms were found in the intestine of the Chinese false gudgeon maximum likelihood (ML) and Bayesian inference (BI) criteria. Abbottina rivularis from water bodies of the middle and lower The appropriate nucleotide substitution model was estimated reaches of the Yangtze River basin (Niushan Lake in Wuhan, in MEGA 5.0. The phylogenetic trees based on 18S rDNA were Yangtze River in Wuhan, Hubei Province, and Taihu Lake in analyzed by ME with Tamura-Nei + G model and ML with Wuxi, Jiangsu Province) in China (Table 1). Tapeworms found TN93+G+I model methods in MEGA 5.0. BI analyses were were rinsed in saline solution prior to fixation. Specimens used conducted in MrBayes ver. 3.1.2 (Ronquist and Huelsenbeck for morphological studies, including observations with scan- 2003), employing TN93+G+I model, running two independ- ning electron microscopy (SEM) and histology, were fixed with ent MCMCMC runs of four chains for one million generations hot (almost boiling) 4% formaldehyde solution (see Oros et al. and sampling tree topologies every 100 generations. Posterior 2010). After two weeks, formalin was replaced by 70–75% etha- probability values were used as support for the Bayesian topol- nol for storage before further processing. Specimens used for ogy. In the case of ITS1 of Khawia, the phylogenetic trees were molecular studies were fixed and stored in 100% ethanol. analyzed by ME using Tamura-Nei model, ML and BI using For light microscopical observations, specimens were HKY+I model. stained with iron hydrochloric carmine, destained in 70% acid ethanol, dehydrated in an alcohol series, cleared in clove oil RESULTS and mounted in Canada balsam as permanent preparations. Il- lustrations were made using a drawing attachment of a Leica Khawia abbottinae sp. n. Figs. 1, 2 DM 5000 B microscope with the use of Nomarski differential Description (based on 15 whole-mounted specimens, interference contrast. Measurements were taken using the Ts- five slides of cross-sections and five slides of sagit- view 7.1 program (Tucsen, China) and LAS V3.8Ink program tal and longitudinal sections, from Abbottina rivularis (Leica, Switzerland). Histological sections (cross, longitudinal from Taihu Lake in Wuxi and from the Yangtze River and sagittal sections) were made from hot formalin-fixed speci- in Wuhan): Caryophyllidea, Lytocestidae. Testes and mens using standard protocols (thickness of sections 10–12 μm), ovary medullary, vitelline follicles cortical. Body elon- stained with hematoxylin and eosin, and mounted in Canada balsam. Four specimens used for SEM observations were proc- gate to almost spindle-shaped, with relatively narrow essed as described by Oros et al. (2010). Measurements are in scolex and neck, maximum width at anterior third, then micrometres (μm) unless otherwise indicated. slightly narrowing continuously towards rounded poste- Genomic DNA of specimens from Taihu Lake (collec- rior end. Total length of body 6.8–13.0 mm, maximum tion numbers TaiL201104, TaiL200401) was extracted using width 0.8–2.0 mm (n = 9). Surface uniformly covered QIAamp DNA kit (QIAGEN). The small nuclear ribosomal with acicular filitriches. Inner longitudinal musculature RNA subunit (ssrDNA or 18S rDNA) was amplified by PCR well developed, formed by small bundles of muscle fibers. using primer pairs WormA and WormB (Littlewood and Olson Osmoregulatory canals about 6–8 pairs, external to vitel- 2001). Each PCR reaction consisted of 20 pmol of each primer, line follicles. 5 μl 10× Ex Taq buffer, 250 μM of each dNTP, 1 U of Takara Ex Scolex afossate, widely bulbate to almost cuneiform, TaqTM, 2 μl DNA template and nuclease-free water to 25 μl vol- 0.4–0.6 mm long and 0.7–1.5 mm wide, wider than neck, ume. Amplifications were performed on Eppendorf Mastercy- cler with an initial denaturation step of 95 °C for 3 min followed with smooth, blunt or rounded anterior margin. Neck dis- by
Recommended publications
  • Dynamic Genetic Diversity and Population Structure of Coreius Guichenoti
    ZooKeys 1055: 135–148 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1055.70117 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Dynamic genetic diversity and population structure of Coreius guichenoti Dongqi Liu1*, Feng Lan2*, Sicai Xie1, Yi Diao1, Yi Zheng1, Junhui Gong1 1 Sichuan Province Key Laboratory of Characteristic Biological Resources of Dry and Hot River Valley, Pan- zhihua University, Panzhihua, 617000, China 2 Upper Changjiang River Burean of Hydrological and Water Resources Survey, Chongqing, 400000, China Corresponding author: Feng Lan ([email protected]) Academic editor: M.E. Bichuette | Received 14 June 2021 | Accepted 27 July 2021 | Published 11 August 2021 http://zoobank.org/ADECA19A-B689-47AE-971B-42913F28F5CE Citation: Liu D, Lan F, Xie S, Diao Y, Zheng Y, Gong J (2021) Dynamic genetic diversity and population structure of Coreius guichenoti. ZooKeys 1055: 135–148. https://doi.org/10.3897/zookeys.1055.70117 Abstract To investigate the genetic effects on the population of Coreius guichenoti of dam constructions in the upper reaches of the Yangtze River, we analyzed the genetic diversity and population structure of 12 popula- tions collected in 2009 and 2019 using mitochondrial DNA (mtDNA) control regions. There was no significant difference in genetic diversity between 2009 and 2019P ( > 0.05), but the population structure tended to become stronger. Genetic differentiation (FST) among five populations (LX, BB, YB, SF and JA) collected in 2009 was not significant P( > 0.05). However, some populations collected in 2019 were significantly differentiated (P < 0.05), indicating that the population structure has undergone change.
    [Show full text]
  • Genus Gobio (Pisces, Cyprinidae)
    Cytologia 38: 731-736, 1973 A Comparative Study of the Karyotype in the Genus Gobio (Pisces, Cyprinidae) P. Raicu, Elena Taisescu and P. Banarescu Department of Genetics, University of Bucharest and Department of Animal Taxonomy and Evolution, Institute of Biology, Bucharest, Rumania Received July 27, 1972 The subfamily Gobioninae (Pisces, Cyprinidae) includes 84 species represented by 20 genera, a single one of which, Gobio has a Palaearctic range, occurring through the northern part of East Asia, Siberia, Europe and parts of West and Central Asia, while the remaining genera are restricted to East Asia (Banarescu and Nal bant 1972). The genus Gobio is represented in Europe, Anatolia and the Caucas by seven species, one of which, G. gobio, has a wide Palearctic distribution, a second one, G. albipinnatus, is distributed from the Danube to Volga river, while the five other species are restricted to a single or to a few drainages. Four species live in Rumania: G. gobio is rather ubiquitous, occurring in many biotopes though it is absent from the Danube R. itself; and G. uranoscopus, G. albipinnatus and G. kessleri, occur in a peculiar biotype, although they are quite frequent in some localities specially for the two last-named ones. Considering that only a few cytogenetical studies were carried on fishes, and that there are many unsolved problems in taxonomy of the family Cyprinidae and of the Gobioninae subfamily, we considered necessary to make a comparative study on the karyotype of the Gobio species occurring in Romania. This became possible by elaborating a laboratory method for demonstrating the chromosomes in fishes (Raicu and Taisescu 1972) which gave very good results.
    [Show full text]
  • Family-Cyprinidae-Gobioninae-PDF
    SUBFAMILY Gobioninae Bleeker, 1863 - gudgeons [=Gobiones, Gobiobotinae, Armatogobionina, Sarcochilichthyna, Pseudogobioninae] GENUS Abbottina Jordan & Fowler, 1903 - gudgeons, abbottinas [=Pseudogobiops] Species Abbottina binhi Nguyen, in Nguyen & Ngo, 2001 - Cao Bang abbottina Species Abbottina liaoningensis Qin, in Lui & Qin et al., 1987 - Yingkou abbottina Species Abbottina obtusirostris (Wu & Wang, 1931) - Chengtu abbottina Species Abbottina rivularis (Basilewsky, 1855) - North Chinese abbottina [=lalinensis, psegma, sinensis] GENUS Acanthogobio Herzenstein, 1892 - gudgeons Species Acanthogobio guentheri Herzenstein, 1892 - Sinin gudgeon GENUS Belligobio Jordan & Hubbs, 1925 - gudgeons [=Hemibarboides] Species Belligobio nummifer (Boulenger, 1901) - Ningpo gudgeon [=tientaiensis] Species Belligobio pengxianensis Luo et al., 1977 - Sichuan gudgeon GENUS Biwia Jordan & Fowler, 1903 - gudgeons, biwas Species Biwia springeri (Banarescu & Nalbant, 1973) - Springer's gudgeon Species Biwia tama Oshima, 1957 - tama gudgeon Species Biwia yodoensis Kawase & Hosoya, 2010 - Yodo gudgeon Species Biwia zezera (Ishikawa, 1895) - Biwa gudgeon GENUS Coreius Jordan & Starks, 1905 - gudgeons [=Coripareius] Species Coreius cetopsis (Kner, 1867) - cetopsis gudgeon Species Coreius guichenoti (Sauvage & Dabry de Thiersant, 1874) - largemouth bronze gudgeon [=platygnathus, zeni] Species Coreius heterodon (Bleeker, 1865) - bronze gudgeon [=rathbuni, styani] Species Coreius septentrionalis (Nichols, 1925) - Chinese bronze gudgeon [=longibarbus] GENUS Coreoleuciscus
    [Show full text]
  • Resolving Cypriniformes Relationships Using an Anchored Enrichment Approach Carla C
    Stout et al. BMC Evolutionary Biology (2016) 16:244 DOI 10.1186/s12862-016-0819-5 RESEARCH ARTICLE Open Access Resolving Cypriniformes relationships using an anchored enrichment approach Carla C. Stout1*†, Milton Tan1†, Alan R. Lemmon2, Emily Moriarty Lemmon3 and Jonathan W. Armbruster1 Abstract Background: Cypriniformes (minnows, carps, loaches, and suckers) is the largest group of freshwater fishes in the world (~4300 described species). Despite much attention, previous attempts to elucidate relationships using molecular and morphological characters have been incongruent. In this study we present the first phylogenomic analysis using anchored hybrid enrichment for 172 taxa to represent the order (plus three out-group taxa), which is the largest dataset for the order to date (219 loci, 315,288 bp, average locus length of 1011 bp). Results: Concatenation analysis establishes a robust tree with 97 % of nodes at 100 % bootstrap support. Species tree analysis was highly congruent with the concatenation analysis with only two major differences: monophyly of Cobitoidei and placement of Danionidae. Conclusions: Most major clades obtained in prior molecular studies were validated as monophyletic, and we provide robust resolution for the relationships among these clades for the first time. These relationships can be used as a framework for addressing a variety of evolutionary questions (e.g. phylogeography, polyploidization, diversification, trait evolution, comparative genomics) for which Cypriniformes is ideally suited. Keywords: Fish, High-throughput
    [Show full text]
  • An Assessment of Exotic Species in the Tonle Sap Biosphere Reserve
    AN ASSESSMENT OF EXOTIC SPECIES IN THE TONLE SAP BIOSPHERE RESERVE AND ASSOCIATED THREATS TO BIODIVERSITY A RESOURCE DOCUMENT FOR THE MANAGEMENT OF INVASIVE ALIEN SPECIES December 2006 Robert van Zalinge (compiler) This publication is a technical output of the UNDP/GEF-funded Tonle Sap Conservation Project Executive Summary Introduction This report is mainly a literature review. It attempts to put together all the available information from recent biological surveys, and environmental and resource use studies in the Tonle Sap Biosphere Reserve (TSBR) in order to assess the status of exotic species and report any information on their abundance, distribution and impact. For those exotic species found in the TSBR, it is examined whether they can be termed as being an invasive alien species (IAS). IAS are exotic species that pose a threat to native ecosystems, economies and/or human health. It is widely believed that IAS are the second most significant threat to biodiversity worldwide, following habitat destruction. In recognition of the threat posed by IAS the Convention on Biological Diversity puts forward the following strategy to all parties in Article 8h: “each contracting party shall as far as possible and as appropriate: prevent the introduction of, control, or eradicate those alien species which threaten ecosystems, habitats or species”. The National Assembly of Cambodia ratified the Convention on Biological Diversity in 1995. After reviewing the status of exotic species in the Tonle Sap from the literature, as well as the results from a survey based on questionnaires distributed among local communities, the main issues are discussed, possible strategies to combat the spread of alien species that are potentially invasive are examined, and recommendations are made to facilitate the implementation of a strategy towards reducing the impact of these species on the TSBR ecosystem.
    [Show full text]
  • Phylogenetic Relationships of Eurasian and American Cyprinids Using Cytochrome B Sequences
    Journal of Fish Biology (2002) 61, 929–944 doi:10.1006/jfbi.2002.2105, available online at http://www.idealibrary.com on Phylogenetic relationships of Eurasian and American cyprinids using cytochrome b sequences C. C*, N. M*, T. E. D†, A. G‡ M. M. C*§ *Centro de Biologia Ambiental, Departamento de Zoologia e Antropologia, Faculdade de Cieˆncia de Lisboa, Campo Grande, Bloco C2, 3 Piso. 1749-016 Lisboa, Portugal, †Department of Biology, Arizona State University, Tempe, Arizona 85287-1501, U.S.A. and ‡Laboratoire d’Hydrobiology, Universite´ de Provence, 1 Place Victor Hugo, 1331 Marseille, France (Received 30 January 2002, Accepted 6 August 2002) Neighbour-joining and parsimony analyses identified five lineages of cyprinids: (1) European leuciscins (including Notemigonus)+North American phoxinins (including Phoxinus phoxinus); (2) European gobionins+Pseudorasbora; (3) primarily Asian groups [cultrins+acheilognathins+ gobionins (excluding Abbotina)+xenocyprinins]; (4) Abbottina+Sinocyclocheilus+Acrossocheilus; (5) cyprinins [excluding Sinocyclocheilus and Acrossocheilus]+barbins+labeonins. Relationships among these lineages and the enigmatic taxa Rhodeus were not well-resolved. Tests of mono- phyly of subfamilies and previously proposed relationships were examined by constraining cytochrome b sequences data to fit previous hypotheses. The analysis of constrained trees indicated that sequence data were not consistent with most previously proposed relationships. Inconsistency was largely attributable to Asian taxa, such as Xenocypris and Xenocyprioides. Improved understanding of historical and taxonomic relationships in Cyprinidae will require further morphological and molecular studies on Asian cyprinids and taxa representative of the diversity found in Africa. 2002 The Fisheries Society of the British Isles. Published by Elsevier Science Ltd. All rights reserved. Key words: Cyprinidae; molecular phylogeny; cytochrome b; monophyly of subfamilies.
    [Show full text]
  • Phylogenetic Relationships of Pseudorasbora, Pseudopungtungia,Andpungtungia (Teleostei; Cypriniformes; Gobioninae) Inferred from Multiple Nuclear Gene Sequences
    Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 347242, 6 pages http://dx.doi.org/10.1155/2013/347242 Research Article Phylogenetic Relationships of Pseudorasbora, Pseudopungtungia,andPungtungia (Teleostei; Cypriniformes; Gobioninae) Inferred from Multiple Nuclear Gene Sequences Keun-Yong Kim,1 Myeong-Hun Ko,2 Huanzhang Liu,3 Qiongying Tang,3 Xianglin Chen,4 Jun-Ichi Miyazaki,5 and In-Chul Bang2 1 Department of Research and Development, NLP Co., Ltd., Busan 619-912, Republic of Korea 2 Department of Life Sciences & Biotechnology, Soonchunhyang University, Asan 336-745, Republic of Korea 3 Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China 4 School of Life Science, South China Normal University, Guangzhou 510631, China 5 Faculty of Education and Human Sciences, University of Yamanashi, Yamanashi 400-8510, Japan Correspondence should be addressed to In-Chul Bang; [email protected] Received 1 March 2013; Accepted 7 August 2013 Academic Editor: William Piel Copyright © 2013 Keun-Yong Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gobionine species belonging to the genera Pseudorasbora, Pseudopungtungia,andPungtungia (Teleostei; Cypriniformes; Cyprinidae) have been heavily studied because of problems on taxonomy, threats of extinction, invasion, and human health. Nucleotide sequences of three nuclear genes, that is, recombination activating protein gene 1 (rag1), recombination activating gene 2 (rag2), and early growth response 1 gene (egr1), from Pseudorasbora, Pseudopungtungia,andPungtungia species residing in China, Japan, and Korea, were analyzed to elucidate their intergeneric and interspecific phylogenetic relationships.
    [Show full text]
  • Clonorchis Sinensis and Clonorchiasis: Epidemiology, Pathogenesis, Omics, Prevention and Control Ze-Li Tang1,2, Yan Huang1,2 and Xin-Bing Yu1,2*
    Tang et al. Infectious Diseases of Poverty (2016) 5:71 DOI 10.1186/s40249-016-0166-1 SCOPINGREVIEW Open Access Current status and perspectives of Clonorchis sinensis and clonorchiasis: epidemiology, pathogenesis, omics, prevention and control Ze-Li Tang1,2, Yan Huang1,2 and Xin-Bing Yu1,2* Abstract Clonorchiasis, caused by Clonorchis sinensis (C. sinensis), is an important food-borne parasitic disease and one of the most common zoonoses. Currently, it is estimated that more than 200 million people are at risk of C. sinensis infection, and over 15 million are infected worldwide. C. sinensis infection is closely related to cholangiocarcinoma (CCA), fibrosis and other human hepatobiliary diseases; thus, clonorchiasis is a serious public health problem in endemic areas. This article reviews the current knowledge regarding the epidemiology, disease burden and treatment of clonorchiasis as well as summarizes the techniques for detecting C. sinensis infection in humans and intermediate hosts and vaccine development against clonorchiasis. Newer data regarding the pathogenesis of clonorchiasis and the genome, transcriptome and secretome of C. sinensis are collected, thus providing perspectives for future studies. These advances in research will aid the development of innovative strategies for the prevention and control of clonorchiasis. Keywords: Clonorchiasis, Clonorchis sinensis, Diagnosis, Pathogenesis, Omics, Prevention Multilingual abstracts snails); metacercaria (in freshwater fish); and adult (in Please see Additional file 1 for translations of the definitive hosts) (Fig. 1) [1, 2]. Parafossarulus manchour- abstract into the five official working languages of the icus (P. manchouricus) is considered the main first inter- United Nations. mediate host of C. sinensis in Korea, Russia, and Japan [3–6].
    [Show full text]
  • From Freshwater Fishes in Africa (Tomáš Scholz)
    0 Organizer: Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic Workshop venue: Instutute of Vertebrate Biology, Academy of Sciences CR Workshop date: 28 November 2018 Cover photo: Research on fish parasites throughout Africa: Fish collection in, Lake Turkana, Kenya; Fish examination in the Sudan; Teaching course on fish parasitology at the University of Khartoum, Sudan; Field laboratory in the Sudan Authors of cover photo: R. Blažek, A. de Chambrier and R. Kuchta All rights reserved. No part of this e-book may be reproduced or transmitted in any form or by any means without prior written permission of copyright administrator which can be contacted at Masaryk University Press, Žerotínovo náměstí 9, 601 77 Brno. © 2018 Masaryk University The stylistic revision of the publication has not been performed. The authors are fully responsible for the content correctness and layout of their contributions. ISBN 978-80-210-9079-8 ISBN 978-80-210-9083-5 (online: pdf) 1 Contents (We present only the first author in contents) ECIP Scientific Board ....................................................................................................................... 5 List of attendants ............................................................................................................................ 6 Programme ..................................................................................................................................... 7 Abstracts ........................................................................................................................................
    [Show full text]
  • The Genome 10K Project: a Way Forward
    The Genome 10K Project: A Way Forward Klaus-Peter Koepfli,1 Benedict Paten,2 the Genome 10K Community of Scientists,Ã and Stephen J. O’Brien1,3 1Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russian Federation; email: [email protected] 2Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064 3Oceanographic Center, Nova Southeastern University, Fort Lauderdale, Florida 33004 Annu. Rev. Anim. Biosci. 2015. 3:57–111 Keywords The Annual Review of Animal Biosciences is online mammal, amphibian, reptile, bird, fish, genome at animal.annualreviews.org This article’sdoi: Abstract 10.1146/annurev-animal-090414-014900 The Genome 10K Project was established in 2009 by a consortium of Copyright © 2015 by Annual Reviews. biologists and genome scientists determined to facilitate the sequencing All rights reserved and analysis of the complete genomes of10,000vertebratespecies.Since Access provided by Rockefeller University on 01/10/18. For personal use only. ÃContributing authors and affiliations are listed then the number of selected and initiated species has risen from ∼26 Annu. Rev. Anim. Biosci. 2015.3:57-111. Downloaded from www.annualreviews.org at the end of the article. An unabridged list of G10KCOS is available at the Genome 10K website: to 277 sequenced or ongoing with funding, an approximately tenfold http://genome10k.org. increase in five years. Here we summarize the advances and commit- ments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and futurevision of the landscape of Genome 10K.
    [Show full text]
  • Guide to Monogenoidea of Freshwater Fish of Palaeartic and Amur Regions
    GUIDE TO MONOGENOIDEA OF FRESHWATER FISH OF PALAEARTIC AND AMUR REGIONS O.N. PUGACHEV, P.I. GERASEV, A.V. GUSSEV, R. ERGENS, I. KHOTENOWSKY Scientific Editors P. GALLI O.N. PUGACHEV D. C. KRITSKY LEDIZIONI-LEDIPUBLISHING © Copyright 2009 Edizioni Ledizioni LediPublishing Via Alamanni 11 Milano http://www.ledipublishing.com e-mail: [email protected] First printed: January 2010 Cover by Ledizioni-Ledipublishing ISBN 978-88-95994-06-2 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted or utilized in any form or by any means, electonical, mechanical, photocopying or oth- erwise, without permission in writing from the publisher. Front cover: /Dactylogyrus extensus,/ three dimensional image by G. Strona and P. Galli. 3 Introduction; 6 Class Monogenoidea A.V. Gussev; 8 Subclass Polyonchoinea; 15 Order Dactylogyridea A.V. Gussev, P.I. Gerasev, O.N. Pugachev; 15 Suborder Dactylogyrinea: 13 Family Dactylogyridae; 17 Subfamily Dactylogyrinae; 13 Genus Dactylogyrus; 20 Genus Pellucidhaptor; 265 Genus Dogielius; 269 Genus Bivaginogyrus; 274 Genus Markewitschiana; 275 Genus Acolpenteron; 277 Genus Pseudacolpenteron; 280 Family Ancyrocephalidae; 280 Subfamily Ancyrocephalinae; 282 Genus Ancyrocephalus; 282 Subfamily Ancylodiscoidinae; 306 Genus Ancylodiscoides; 307 Genus Thaparocleidus; 308 Genus Pseudancylodiscoides; 331 Genus Bychowskyella; 332 Order Capsalidea A.V. Gussev; 338 Family Capsalidae; 338 Genus Nitzschia; 338 Order Tetraonchidea O.N. Pugachev; 340 Family Tetraonchidae; 341 Genus Tetraonchus; 341 Genus Salmonchus; 345 Family Bothitrematidae; 359 Genus Bothitrema; 359 Order Gyrodactylidea R. Ergens, O.N. Pugachev, P.I. Gerasev; 359 Family Gyrodactylidae; 361 Subfamily Gyrodactylinae; 361 Genus Gyrodactylus; 362 Genus Paragyrodactylus; 456 Genus Gyrodactyloides; 456 Genus Laminiscus; 457 Subclass Oligonchoinea A.V.
    [Show full text]
  • Infecting the Gills of Abbottina Rivularis Basilewaky: Morphological and Molecular Data
    第 42 卷 第 5 期 水 生 生 物 学 报 Vol. 42, No. 5 2018 年 9 月 ACTA HYDROBIOLOGICA SINICA Sep., 2018 doi: 10.7541/2018.117 SUPPLEMENTAL DESCRIPTION OF MYXOBOLUS HAICHENGENSIS CHEN, 1958 (MYXOZOA: MYXOSPOREA) INFECTING THE GILLS OF ABBOTTINA RIVULARIS BASILEWAKY: MORPHOLOGICAL AND MOLECULAR DATA LI Peng1, ZHAO Xin1, XI Bing-Wen1, 2 and XIE Jun2 (1. Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; 2. Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China) Abstract: Myxobolus haichengensis Chen, 1958 forms numerous small plasmodia on the gill filaments of wild cyprinid Abbottina rivularis Basilewaky. The species described originally was lacking important charac- ters, which made the accurate identification difficult. Here, we supplemented its characteristics with morpho- logical and molecular data. Plasmodia of M. haichengensis are oval. Mature spores are ellipsoidal-shaped in frontal view and fusiform-shaped in lateral view, measuring (10.8±0.7) μm (10.1—11.5 μm) long, (8.1± 0.5) μm (7.5—9.0 μm) wide, and (5.7±0.4) μm (5.2—9.0 μm) thick; two unequal polar capsule are pyriform with tapering anterior, large polar capsule averaging (4.7±0.5) μm (4.8—6.7 μm) long and (2.5±0.2) μm (3.2—4.3 μm) wide; small polar capsule averaging (4.4±0.2) μm (4.1—4.8 μm) long and (2.2±0.1) μm (2.0—2.5 μm) wide; polar filaments coil with four to five turns.
    [Show full text]