Resolving Cypriniformes Relationships Using an Anchored Enrichment Approach Carla C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role. -
Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra. -
Edna Assay Development
Environmental DNA assays available for species detection via qPCR analysis at the U.S.D.A Forest Service National Genomics Center for Wildlife and Fish Conservation (NGC). Asterisks indicate the assay was designed at the NGC. This list was last updated in June 2021 and is subject to change. Please contact [email protected] with questions. Family Species Common name Ready for use? Mustelidae Martes americana, Martes caurina American and Pacific marten* Y Castoridae Castor canadensis American beaver Y Ranidae Lithobates catesbeianus American bullfrog Y Cinclidae Cinclus mexicanus American dipper* N Anguillidae Anguilla rostrata American eel Y Soricidae Sorex palustris American water shrew* N Salmonidae Oncorhynchus clarkii ssp Any cutthroat trout* N Petromyzontidae Lampetra spp. Any Lampetra* Y Salmonidae Salmonidae Any salmonid* Y Cottidae Cottidae Any sculpin* Y Salmonidae Thymallus arcticus Arctic grayling* Y Cyrenidae Corbicula fluminea Asian clam* N Salmonidae Salmo salar Atlantic Salmon Y Lymnaeidae Radix auricularia Big-eared radix* N Cyprinidae Mylopharyngodon piceus Black carp N Ictaluridae Ameiurus melas Black Bullhead* N Catostomidae Cycleptus elongatus Blue Sucker* N Cichlidae Oreochromis aureus Blue tilapia* N Catostomidae Catostomus discobolus Bluehead sucker* N Catostomidae Catostomus virescens Bluehead sucker* Y Felidae Lynx rufus Bobcat* Y Hylidae Pseudocris maculata Boreal chorus frog N Hydrocharitaceae Egeria densa Brazilian elodea N Salmonidae Salvelinus fontinalis Brook trout* Y Colubridae Boiga irregularis Brown tree snake* -
Occasional Papers of the Museum of Zoology the University of Michigan Annarbor, Miliiigan
OCCASIONAL PAPERS OF THE MUSEUM OF ZOOLOGY THE UNIVERSITY OF MICHIGAN ANNARBOR, MILIIIGAN FISHES OF THE ASIAN CYPRINID GENUS CHAGUNIUS mSTRACT.-Rainbotli, Walter Jolin, 1986. Fisher of tl~eAsian cyf~rinidfish gr7~u.tChagunius. Occ. I'ap. MILS.Zool. Univ. Michigan, 712.1-17, f1g.y. 1-3. 'I'he barbin genus Chagunim, previously monotypic, is redescribed and ex- panded to include three species. Examination of preserved material from the known range of the genus indicates that the original member of the genus, Clic~,yuniuscl~agunio (Ilamilton), is found only in the Gangetic plains of India, and two additional species are from Burma. Chagxniifi nicholsi Myers is known from the upper Irrawaddy basin of northern Burma, and Cl~agunimbail~yi, described herein, is found it1 the Salween basin of castern Burma and western l'l~ailand.l'he Burmese species resemble each other more than either resem- bles the Indian species, which has pronounccd cliffercnces in measurement proportions and several non-overlapping counts. These species have patterns of intestinal coiling which arc among the simplest found in barbins, and the type species has a single loop, the simplest pattern found in cyprinids. The genera most closely related to Chagunizrs are parapatric, with one genus in southeastern Asia and at least one other genus in peninsular India. Key words: Chagunius, Cyprinidae, burbin, class$cation, taxonomy, Burma, In- dia, 7'liailand. INTRODUCTION The genus Chapnius Smith has three species, all found in different drainages, one in the Irrawaddy, one in the Brahmaputra and Ganges along the Himalaya foothills, and the third known species in the Sal- *Department of Biology, University of California, 1.0s Arrgclcs, Califor~lia,90024 LJ.S.A. -
The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11. -
Chanodichthys Recurviceps (A Fish, No Common Name) Ecological Risk Screening Summary
Chanodichthys recurviceps (a fish, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, June 2012 Revised, November 2016 Web Version, 6/18/2018 Photo: H. T. Cheng. Licensed under CC BY-NC. Available: http://naturewatch.org.nz/taxa/187285-Culter-recurviceps. (November 2016). 1 Native Range and Status in the United States Native Range From Zhao and Cui (2011): “Known from Zhu Jiang River (Pearl River) in Guangdong and Guanxi Provinces, and Hainan Province in China.” Status in the United States This species has not been reported in the United States. 1 Means of Introductions in the United States This species has not been reported in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2016): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii Subclass Neopterygii Infraclass Teleostei Superorder Ostariophysi Order Cypriniformes Superfamily Cyprinoidea Family Cyprinidae Genus Culter Basilewsky, 1855 Species Culter recurviceps (Richardson, 1846)” From Eschmeyer et al. (2016): “recurviceps, Leuciscus Richardson [J.] 1846:295 [Report of the British Association for the Advancement of Science 15th meeting [1845] […]] Canton, China. No types known. Based solely on an illustration by Reeves (see Whitehead 1970:210, Pl. 17a […]). •Valid as Erythroculter recurviceps (Richardson 1846) -- (Lu in Pan et al. 1991:93 […]). •Questionably the same as Culter alburnus Basilewsky 1855 -- (Bogutskaya & Naseka 1996:24 […], Naseka 1998:75 […]). •Valid as Culter recurviceps (Richardson 1846) -- (Luo & Chen in Chen et al. 1998:188 […], Zhang et al. 2016:59 […]). •Valid as Chanodichthys recurviceps (Richardson 1846) -- (Kottelat 2013:87 […]). -
Puntius Snyderi ERSS
Puntius snyderi (a fish, no common name) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2013 Revised, February 2019 Web Version, 8/8/2019 1 Native Range and Status in the United States Native Range From Chang et al. (2006): “Puntius snyderi is a freshwater cyprinid fish discovered by Oshima when he collected the freshwater fishes in Taiwan in 1915-1917. It was mainly distributed in northern and central Taiwan [Oshima 1919] […].” From Chang et al. (2009): “A similar inference was also proposed for Puntius snyderi and P. semifasciolatus in which P. snyderi is a species endemic to Taiwan and P. semifasciolatus is distributed in both China and Taiwan (Chang et al. 2006). These 2 species were proposed to have differentiated in China. After P. snyderi and P. semifasciolatus dispersed to Taiwan, P. snyderi became extinct in China (Chang et al. 2006).” 1 Chen et al. (2013) list Puntius snyderi as previously present on Kinmen Island, Taiwan but that it is currently locally extinct there. Status in the United States No records of Puntius snyderi in the wild or in trade in the United States were found. Means of Introductions in the United States No records of Puntius snyderi in the wild in the United States were found. Remarks No additional remarks. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Fricke et al. (2019), Puntius snyderi (Oshima 1919) is the current valid and original name of this species. From Bailly (2017): “Biota > Animalia (Kingdom) > Chordata (Phylum) > Vertebrata (Subphylum) > Gnathostomata (Superclass) > […] Actinopterygii (Class) > Cypriniformes (Order) > Cyprinidae (Family) > Barbinae (Subfamily) > Puntius (Genus) > Puntius snyderi (Species)” Some sources refer to this species by a synonym, Barboides snyderi (Forese and Pauly 2019). -
Carp, Bighead (Hypophthalmichthys Nobilis)
Bighead Carp (Hypophthalmichthys nobilis) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, June 2018 Web Version, 8/16/2018 Photo: A. Benson, USGS. Public domain. Available: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=551. (June 2018). 1 Native Range and Status in the United States Native Range From Jennings (1988): “The bighead carp is endemic to eastern China, […] in the lowland rivers of the north China plain and South China, including the Huai (Huai Ho), Yangtze, Pearl, West (Si Kiang), Han Chiang and Min rivers (Herre 1934; Mori 1936; Chang 1966; Chunsheng et al. 1980).” Status in the United States From Nico et al. (2018): “This species has been recorded from within, or along the borders of, at least 18 states. There is evidence of reproducing populations in the middle and lower Mississippi and Missouri rivers and the species is apparently firmly established in the states of Illinois and Missouri (Burr et al. 1996; Pflieger 1997). Pflieger (1997) received first evidence of natural reproduction, capture of young 1 bighead carp, in Missouri in 1989. Burr and Warren (1993) reported on the taking of a postlarval fish in southern Illinois in 1992. Subsequently, Burr et al. (1996) noted that bighead carp appeared to be using the lower reaches of the Big Muddy, Cache, and Kaskaskia rivers in Illinois as spawning areas. Tucker et al. (1996) also found young-of-the-year in their 1992 and 1994 collections in the Mississippi River of Illinois and Missouri. Douglas et al. (1996) collected more than 1600 larvae of this genus from a backwater outlet of the Black River in Louisiana in 1994. -
Aremu SO, Et Al. Putting the Spotlight on Opisthorchiasis: the Dread of the Western Siberian Copyright© Aremu SO, Et Al
Public Health Open Access MEDWIN PUBLISHERS ISSN: 2578-5001 Committed to Create Value for researchers Putting the Spotlight on Opisthorchiasis: The Dread of the Western Siberian Region Aremu SO1,3*, Zephaniah HS2, Onifade EO3, Fatoke B1 and Bademosi O4 Review Article 1Faculty of General Medicine, Siberian State Medical University, Tomsk, Russian Federation Volume 4 Issue 1 2Department of Biochemistry, University of Nigeria, Nsukka, Enugu State, Nigeria Received Date: February 17, 2020 3Department of Biological Science, Federal University of Agriculture, Makurdi Benue State, Published Date: March 10, 2020 Nigeria DOI: 10.23880/phoa-16000151 4Department of Public Health, University College Dublin, Ireland *Corresponding author: Stephen Olaide Aremu, Faculty of General Medicine, Siberian State Medical University, Tomsk, Russian Federation, Email: [email protected] Abstract Introduction: Opisthorchiasis is no doubt one of the most neglected infectious disease inspite of its huge medical importance in some parts of the World. The past decade have seen a resurgence of interests in research relating to this public health issue, however there is still a lot to be done. Social Model: Not many models have been explored in Western Siberia to deal with the opisthorchiasis epidemic when compared to the different models that have been used for other regions affected by similar disease. Life Cycle: The complex life cycle of Opisthorchis felineus prevalent among the aboriginal population of the Western Siberian because of their habit of eating raw or undercooked fresh has humans and other feline species as definitive host and is really Diagnosis and Treatment: Diagnosis involve the use of stool microscopy, other methods such as mAb ELISA, LAMP and so on water fish (Cyprinidae) which are intermediate host of the parasite. -
Pathogen Susceptibility of Silver Carp (Hypophthalmichthys Molitrix) and Bighead Carp (Hypophthalmichthys Nobilis) in the Wabash River Watershed
Pathogen Susceptibility of Silver Carp (Hypophthalmichthys molitrix) and Bighead Carp (Hypophthalmichthys nobilis) in the Wabash River Watershed FINAL REPORT Kensey Thurner PhD Student Maria S Sepúlveda, Reuben Goforth, Cecon Mahapatra Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907 Jon Amberg, US Geological Service, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603 Eric Leis, US Fish and Widlife Service, La Crosse Fish Health Center, Onalaska, WI 54650 9/22/2014 Silver Carp (top) and Bighead Carp (bottom) caught in the Tippecanoe River, Photos by Alison Coulter Final Report 9/22/2014 - Page 2 Executive Summary The Pathogen Susceptibility of Silver Carp (Hypophthalmichthys molitrix) and Bighead Carp (Hypophthalmichthys nobilis) in the Wabash River Watershed project was undertaken to address the lack of available information regarding pathogens in the highly invasive Silver and Bighead Carps, collectively known as bigheaded carps. Very little is known about the prevalence and effects of parasites, bacteria and viruses on the health of invasive bigheaded carp populations in the United States or the effects of bigheaded carps on the disease risk profile for sympatric, native fish of the U.S. The main objectives of this project were to conduct a systematic survey of parasites, bacteria and viruses of Asian carps and a representative number of native Indiana fish species in the upper and middle Wabash and the lower Tippecanoe Rivers, Indiana; to determine the susceptibility of Asian carps to a representative number of natural pathogens using in vitro approaches; and to involve anglers in the development of a cost effective state-wide surveillance program for documentation of viral diseases of fish. -
Beta Diversity Patterns of Fish and Conservation Implications in The
A peer-reviewed open-access journal ZooKeys 817: 73–93 (2019)Beta diversity patterns of fish and conservation implications in... 73 doi: 10.3897/zookeys.817.29337 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Beta diversity patterns of fish and conservation implications in the Luoxiao Mountains, China Jiajun Qin1,*, Xiongjun Liu2,3,*, Yang Xu1, Xiaoping Wu1,2,3, Shan Ouyang1 1 School of Life Sciences, Nanchang University, Nanchang 330031, China 2 Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engi- neering, Nanchang University, Nanchang 330031, China 3 School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China Corresponding author: Shan Ouyang ([email protected]); Xiaoping Wu ([email protected]) Academic editor: M.E. Bichuette | Received 27 August 2018 | Accepted 20 December 2018 | Published 15 January 2019 http://zoobank.org/9691CDA3-F24B-4CE6-BBE9-88195385A2E3 Citation: Qin J, Liu X, Xu Y, Wu X, Ouyang S (2019) Beta diversity patterns of fish and conservation implications in the Luoxiao Mountains, China. ZooKeys 817: 73–93. https://doi.org/10.3897/zookeys.817.29337 Abstract The Luoxiao Mountains play an important role in maintaining and supplementing the fish diversity of the Yangtze River Basin, which is also a biodiversity hotspot in China. However, fish biodiversity has declined rapidly in this area as the result of human activities and the consequent environmental changes. Beta diversity was a key concept for understanding the ecosystem function and biodiversity conservation. Beta diversity patterns are evaluated and important information provided for protection and management of fish biodiversity in the Luoxiao Mountains. -
Morphological Variation in Acrossocheilus Hemispinus (Teleostei: Cyprinidae: Barbinae), with Comments on Its Taxonomic Status
Zootaxa 2684: 45–56 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Morphological variation in Acrossocheilus hemispinus (Teleostei: Cyprinidae: Barbinae), with comments on its taxonomic status LE-YANG YUAN1, 2 & E ZHANG1* 1 Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China 2Zhejiang Museum of Natural History, Hangzhou, 310014, China * Author for correspondence: Tel: +86 27 68780260; fax: +86 27 68780123; e-mail: [email protected] Abstract Differences in coloration and morphology between two subspecies of Acrossocheilus hemispinus were investigated based on museum-stored and freshly-caught specimens. There are marked differences in the coloration of either juveniles or adults, and in sexual dimorphism, between A. h. hemispinus and A. h. cinctus. Multivariate analysis of morphometric data too, shows the two taxa to be distinguishable from each other. Differences in body coloration and morphometric characters coincide with those of the mouthpart structure and the coiling pattern of the intestine in A. h. hemispinus and A. h. cinctus. Morphological distinction, coupled with different habitat and food preferences, supports the taxonomic elevation of the two hitherto subspecific populations of A. hemispinus to species. Key words: Acrossocheilus hemispinus, Acrossocheilus cinctus, subspecific populations, China, taxonomy Introduction The taxonomic distinctions in some species of the cyprinid genus Acrossocheilus are still confusing, despite recent clarification of the misidentifications of the species identified in this genus by Shan et al. (2000) (Kottelat, 1998, 2000; Zhang, 2005; Yuan et al., 2006). A case of such confusion is represented by the uncertain status of A.