Genus Gobio (Pisces, Cyprinidae)

Total Page:16

File Type:pdf, Size:1020Kb

Genus Gobio (Pisces, Cyprinidae) Cytologia 38: 731-736, 1973 A Comparative Study of the Karyotype in the Genus Gobio (Pisces, Cyprinidae) P. Raicu, Elena Taisescu and P. Banarescu Department of Genetics, University of Bucharest and Department of Animal Taxonomy and Evolution, Institute of Biology, Bucharest, Rumania Received July 27, 1972 The subfamily Gobioninae (Pisces, Cyprinidae) includes 84 species represented by 20 genera, a single one of which, Gobio has a Palaearctic range, occurring through the northern part of East Asia, Siberia, Europe and parts of West and Central Asia, while the remaining genera are restricted to East Asia (Banarescu and Nal bant 1972). The genus Gobio is represented in Europe, Anatolia and the Caucas by seven species, one of which, G. gobio, has a wide Palearctic distribution, a second one, G. albipinnatus, is distributed from the Danube to Volga river, while the five other species are restricted to a single or to a few drainages. Four species live in Rumania: G. gobio is rather ubiquitous, occurring in many biotopes though it is absent from the Danube R. itself; and G. uranoscopus, G. albipinnatus and G. kessleri, occur in a peculiar biotype, although they are quite frequent in some localities specially for the two last-named ones. Considering that only a few cytogenetical studies were carried on fishes, and that there are many unsolved problems in taxonomy of the family Cyprinidae and of the Gobioninae subfamily, we considered necessary to make a comparative study on the karyotype of the Gobio species occurring in Romania. This became possible by elaborating a laboratory method for demonstrating the chromosomes in fishes (Raicu and Taisescu 1972) which gave very good results. Materials and methods The following species belonging to the genus Gobio (subfamily Gobioninae, family Cyprinidae, Pisces) provided material for this study: G. gobio (subgenus Gobio) from the Baneasa lake, Bucharest; G. kessleri banaticus (subgenus Romanogobio) from Timis river, Uliuc village; G. albipinnatus vladykovi (subgenus Romanogobio) from Timid river, Uliuc village; and G. urano scopus (subgenus Rheogobio) from Arges river, Buda village. The method of Raicu and Taisescu (1971) was used for this study. It con sisted of the following procedure: the kidney, spleen, gills and liver, were removed from animals 2 hours after colchicine injection and after minced, they were intro duced in a hypotonic solution of natrium citrate for 45 minutes at room temperature on an electromagnetic agitator. Then, the specimen were centrifuged for 15 minutes 732 P. Raicu, Elena Taisescu, and P. Banarescu Cytologia 38 at 1500 r.p.m. and the sediment was submitted to 3 to 5 succesive fixations with absolute ethanol-glacial acetic acid (3:1). Between two fixations the specimens were kept for half an-hour in the refrigerator. Smears were made on very clean and frozen slides from the last cellular suspension, after the flame drying method. The smears were coloured in 15% Giemsa solution for 20 minutes. Through the above method were obtained well-hypotonized cells, with well-coloured and wells-cattered chromosomes. Microphotos and 3 to 5 karyotypes were prepared for each species, except Gobio gobio in which were made 10 karyotypes and the idiogram. It was aimed to determine the following parameters: the absolute chromosomes length, the arms length and the ratio of the arms, as well as the relative length of the chromosomes, considering that the total length of the chro mosomal complement is equal with 1000. Results and discussion A comparative study of the karyotype in four species of the genus Gobio showed firstly the absence of the heterosomes and secondly a distinct karyotype for each species. Gobio gobio had 2n=50 chromosomes. There were 11 metacentric, 12 sub metacentric, one submetacentric and one acrocentric pairs. The identification of the autosomes was made on the basis of measurements and by establishing of the arms ratio (long/short), according to the nomenclature by Levan, Fredga and Sandberg (1964). Thus, the chromosomes in which the arms ratio is included between 1.0 and 1.7 are considered as metacentric (m), those with the arms ratio between 1.7 and 3.0 as submetacentrics (sm), those with the arms ratio between 3.0 and 7.0 as subtelocentrics (st) and those with an arms ratio exceeding 7.0 or in which an arm is missing, as acrocentrics (a). The analysis of the absolute length of the arms in the 25 pairs chromosomes showed that it varied within rather wide limits (2.07 to 5.07ƒÊ) and the relative length, between 26.7% and 65.4%. The total number of the chromosomal arms (NF) was 98 (Table 1). Gobio kessleri banaticus had 2n=50 and NF=98; among the autosomes there were 12 metacentric, 10 submetacentric, 2 subtelocentric and 1 acrocentric pairs. Gobio albipinnatus vladykovi had also 2n=50 and NF=98. The chromosomal complement consisted of 14 metacentric, 10 submetacentric and 1 acrocentric pairs. Gobio uranoscopus was found to be different from the three others both in the chromosome number (2n=52) and in the number of the chromosomes arms (NF=100). After a comparative analysis of the chromosome complement in the four species of the genus Gobio occurring in Rumania, we can remark firstly that the size of the chromosomes varies in very close limits, suggesting their common origin. Secondly, each species has a distinct karyotype, thus confirming also cytotaxonomi cally their specific independence. 1973 A Comparative Study of the Karyotype in the Genus Gobio (Pisces, Cyprinidae) 733 It was shown that the three species Gobio gobio, G. kessleri banaticus, G. albi pinnatus vladykovi, had the same number of chromosomes (2n=50) and of chromo some arms (NF=98). They differed by the distribution of the chromosomes in metacentrics, submetacentrics and subtelocentrics. All the three species have constantly only one pair of acrocentrics. This suggests that the evolution of the karyotype has occurred in the species as a result of duplication of some chromosomal segments or by translocation (Ohno 1970). Table 1. The measurement of the chromosomes in Gobio gobio The fourth species G. uranoscopus is much better individualized by the chro mosome number (2n=52) as well as by the chromosome arms (NF=100). It is otherwise the only species having 2 acrocentric pairs among them. This allows the establishment of the subgenus Rheogobio which includes 3 species, among which G. uranoscopus, was cytotaxonomicaly justified (Banarescu 1961). Thus it is possible to note that the genus Gobio includes 14 species covering 3 subgenera which occur in North and East Asia and in Europe and it is cytogenetically poly 734 P. Raicu, Elena Taisescu, and P. Banarescu Cytologia 38 Figs. 1-2. 1, karyotype of Gobio gobio. 2, karyotype of Gobio kessleri ssp. banaticus. 1973 A Comparative Study of the Karyotype in the Genus Gobio (Pisces , Cyprinidae) 735 Figs. 3-4. 3, karyotype of Gobio albipinnatus ssp. vladykovi. 4, karyotype of Gobio uranoscopus. Figs. 5. A metaphase plate (a) and idiogram of Gobio gobio (b). 736 P. Raicu, Elena Taisescu, and P. Banarescu Cytologia 38 morpic, the Rumanian species being well individualized with respect of the chro mosome complement in accordance to the taxonomical classification. On the other hand we must underline that the Gobio species belong quite pro bably to the diploid group of the family Cyprinidae in which some species of Barbus (Puntius), Tinca, Leuciscus etc. are also included. All these species have 2n=48 -52, as against the tetraploid species of the same family which have 2n=100-104 and in which same species of Barbus, Cyprinus, Carassius etc. are included (Ohno 1970). The comparison of the karyotype of these three species do not suggest any closer cytotaxonomic relationships between two of them. The Danube drainage subspecies, G. albipinnatus vladykovi, described for the first time by Vladykov (1931) as hybrid between G. kessleri and G. gobio. The comparative study of the karyotype do not suggest a hybrid origin. Summary A cytogenetical study of four species of the genus Gobio that live in Rumania results in that 3 species, G. gobio, G. kessleri banaticus and G. albipinnatus vladykovi have the same number of chromosomes (2n=50) and chromosomal arms (NF=98), in despite of their distinct chromosomal complement. The fourth species, G. uranoscopus is different in the number of chromosomes (2n=50) and chromosome arms (NF=100), thus justifying the establishment of the subgenus Rheogobio. References Banarescu, P. 1961. Weitere systematische Studien fiber die Gattung Gobio (Pisces, Cyprinidae), insbesonders in Donaubecken. Vestn. Cesko-Slov. Zool. Spolecn, Praha, 35 (4): 3/8 -346. - and Nalbant, T. 1972. Gobioninae (Pisces/Cyprindiae). Das Tierreich, Walter de Gruyter and Co., Berlin. Levan, A., Fredga K. and Sandberg, A. 1964. Nomenclature for centromeric position on chromo somes, Hereditas 52: 201-220. Ohno, S. 1970. Evolution by Gene Duplication. Springer Verlag. Raicu, P. and Taisescu, Elena. 1972. Metoda pentru studiul cromozomilor la pesti. In Vol. Genetica, Soc. St. Biologice. Buc. 7-12. Vladykov, V. 1931. Les poissons de ]a Russie souscarpathique (Tchecoslovaque). Mem. Soc. Zoologique France, 29: 1-375..
Recommended publications
  • “Whitefin” Gudgeon Romanogobio Cf. Belingi \(Teleostei: Cyprinidae\)
    Ann. Limnol. - Int. J. Lim. 49 (2013) 319–326 Available online at: Ó EDP Sciences, 2013 www.limnology-journal.org DOI: 10.1051/limn/2013062 Rapid range expansion of the “whitefin” gudgeon Romanogobio cf. belingi (Teleostei: Cyprinidae) in a lowland tributary of the Vistula River (Southeastern Poland) Michał Nowak1*, Artur Klaczak1, Paweł Szczerbik1, Jan Mendel2 and Włodzimierz Popek1 1 Department of Ichthyobiology and Fisheries, University of Agriculture in Krako´w, Spiczakowa 6, 30-198 Krako´w, Poland 2 Department of Fish Ecology, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Kveˇ tna´8, 603 65 Brno, Czech Republic Received 4 April 2013; Accepted 27 August 2013 Abstract – The “whitefin” gudgeon Romanogobio cf. belingi was recorded in the Nida River, a large lowland tributary of the upper Vistula (Southeastern Poland), for the first time in 2009. Since then, it has been caught during the periodical (three times per year) monitoring only sporadically. Conversely, in October and November 2012 R. cf. belingi was recorded frequently along an y60-km lowermost stretch of the Nida River. The abundance of this fish gradually increased downstream. This paper provides details of that phenomenon and discusses it in the context of the currently known distribution of this species. Key words: Faunistic / Gobioninae / ichthyofauna monitoring / population dynamics / rare species Introduction European gudgeons (genera: Gobio and Romanogobio) are among the most discussed groups of fishes. Their Rapid range expansions and colonizations are impor- diversity, taxonomy, identification and distributions tant ecological phenomena and in the case of biological are still under debate (e.g., Kottelat and Freyhof, 2007; invasions, have been extensively studied in recent years.
    [Show full text]
  • HE 1780-2016 Kvach-S-Final.Indd
    ©2016 Institute of Parasitology, SAS, Košice DOI 10.1515/helmin-2016-0018 HELMINTHOLOGIA, 53, 3: 257 – 261, 2016 First report of metacercariae of Cyathocotyle prussica parasitising a fi sh host in the Czech Republic, Central Europe Y. KVACH*, M. ONDRAČKOVÁ, P. JURAJDA Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic, *E-mail: [email protected] Article info Summary Received January 7, 2016 Examination of western tubenose goby (Proterorhinus semilunaris) from the River Dyje (Czech Re- Accepted April 13, 2016 public, Danube basin) for metazoan parasites revealed the presence of metacercariae of Cyathoc- otyle prussica Mühling, 1896 (Digenea: Cyathocotylidae) in both muscle tissue and the peritoneal cavity. This is the fi rst time that tubenose gobies have been reported as an intermediate host for C. prussica, and the fi rst time that C. prussica metacercariae have been registered parasitising fi sh hosts in the Czech Republic. Here, we describe the morphology of metacercariae and fi ve-day pre- adults, cultivated in vitro, and discuss the importance of recently established, non-native species as suitable hosts for this parasite. Keywords: Cyathocotyle prussica; Proterorhinus semilunaris; metacercariae; morphology; fi rst fi nding Introduction imental infections. For example, C. prussica metacercariae have been reported in adult frogs (Pelophylax esculenta (L., 1758)) from The digenean trematode Cyathocotyle prussica Mühling, 1896 (Di- southern Slovakia (Vojtková, 1962)
    [Show full text]
  • Family-Cyprinidae-Gobioninae-PDF
    SUBFAMILY Gobioninae Bleeker, 1863 - gudgeons [=Gobiones, Gobiobotinae, Armatogobionina, Sarcochilichthyna, Pseudogobioninae] GENUS Abbottina Jordan & Fowler, 1903 - gudgeons, abbottinas [=Pseudogobiops] Species Abbottina binhi Nguyen, in Nguyen & Ngo, 2001 - Cao Bang abbottina Species Abbottina liaoningensis Qin, in Lui & Qin et al., 1987 - Yingkou abbottina Species Abbottina obtusirostris (Wu & Wang, 1931) - Chengtu abbottina Species Abbottina rivularis (Basilewsky, 1855) - North Chinese abbottina [=lalinensis, psegma, sinensis] GENUS Acanthogobio Herzenstein, 1892 - gudgeons Species Acanthogobio guentheri Herzenstein, 1892 - Sinin gudgeon GENUS Belligobio Jordan & Hubbs, 1925 - gudgeons [=Hemibarboides] Species Belligobio nummifer (Boulenger, 1901) - Ningpo gudgeon [=tientaiensis] Species Belligobio pengxianensis Luo et al., 1977 - Sichuan gudgeon GENUS Biwia Jordan & Fowler, 1903 - gudgeons, biwas Species Biwia springeri (Banarescu & Nalbant, 1973) - Springer's gudgeon Species Biwia tama Oshima, 1957 - tama gudgeon Species Biwia yodoensis Kawase & Hosoya, 2010 - Yodo gudgeon Species Biwia zezera (Ishikawa, 1895) - Biwa gudgeon GENUS Coreius Jordan & Starks, 1905 - gudgeons [=Coripareius] Species Coreius cetopsis (Kner, 1867) - cetopsis gudgeon Species Coreius guichenoti (Sauvage & Dabry de Thiersant, 1874) - largemouth bronze gudgeon [=platygnathus, zeni] Species Coreius heterodon (Bleeker, 1865) - bronze gudgeon [=rathbuni, styani] Species Coreius septentrionalis (Nichols, 1925) - Chinese bronze gudgeon [=longibarbus] GENUS Coreoleuciscus
    [Show full text]
  • The Round Goby (Neogobius Melanostomus):A Review of European and North American Literature
    ILLINOI S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. CI u/l Natural History Survey cF Library (/4(I) ILLINOIS NATURAL HISTORY OT TSrX O IJX6V E• The Round Goby (Neogobius melanostomus):A Review of European and North American Literature with notes from the Round Goby Conference, Chicago, 1996 Center for Aquatic Ecology J. Ei!en Marsden, Patrice Charlebois', Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria Illinois Natural History Survey Lake Michigan Biological Station 400 17th Sti Zion, Illinois 6 Aquatic Ecology Technical Report 96/10 The Round Goby (Neogobius melanostomus): A Review of European and North American Literature with Notes from the Round Goby Conference, Chicago, 1996 J. Ellen Marsden, Patrice Charlebois1, Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria The Round Goby Conference, held on Feb. 21-22, 1996, was sponsored by the Illinois-Indiana Sea Grant Program, and organized by the
    [Show full text]
  • A Synopsis of the Biology and Life History of Ruffe
    J. Great Lakes Res. 24(2): 170-1 85 Internat. Assoc. Great Lakes Res., 1998 A Synopsis of the Biology and Life History of Ruffe Derek H. Ogle* Northland College Mathematics Department Ashland, Wisconsin 54806 ABSTRACT. The ruffe (Gymnocephalus cernuus), a Percid native to Europe and Asia, has recently been introduced in North America and new areas of Europe. A synopsis of the biology and life history of ruffe suggests a great deal of variability exists in these traits. Morphological characters vary across large geographical scales, within certain water bodies, and between sexes. Ruffe can tolerate a wide variety of conditions including fresh and brackish waters, lacustrine and lotic systems, depths of 0.25 to 85 m, montane and submontane areas, and oligotrophic to eutrophic waters. Age and size at maturity dif- fer according to temperature and levels of mortality. Ruffe spawn on a variety ofsubstrates, for extended periods of time. In some populations, individual ruffe may spawn more than once per year. Growth of ruffe is affected by sex, morphotype, water type, intraspecific density, and food supply. Ruffe feed on a wide variety of foods, although adult ruffe feed predominantly on chironomid larvae. Interactions (i.e., competition and predation) with other species appear to vary considerably between system. INDEX WORDS: Ruffe, review, taxonomy, reproduction, diet, parasite, predation. INTRODUCTION DISTRIBUTION This is a review of the existing literature on Ruffe are native to all of Europe except for along ruffe, providing a synopsis of its biology and life the Mediterranean Sea, western France, Spain, Por- history. A review of the existing literature is tugal, Norway, northern Finland, Ireland, and Scot- needed at this time because the ruffe, which is na- land (Collette and Banarescu 1977, Lelek 1987).
    [Show full text]
  • Teleostei: Cyprinidae)
    Zootaxa 3257: 56–65 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Description of a new species of genus Gobio from Turkey (Teleostei: Cyprinidae) DAVUT TURAN1,4, F. GÜLER EKMEKÇI2, VERA LUSKOVA3 & JAN MENDEL3 1Rize University, Faculty of Fisheries and Aquatic Sciences, 53100 Rize, Turkey. E-mail: [email protected] 2Department of Biology, Faculty of Sciences, Hacettepe University, Beytepe Campus, 06800 Ankara, Turkey. E-mail: [email protected] 3Department of Ichthyology, Institute of Vertebrate Biology ASCR, v.v.i., Květná 8, 603 65 Brno, Czech Republic. E-mail: [email protected], [email protected] 4Corresponding author. E-mail: [email protected] Abstract Gobio sakaryaensis, a new species from the Tozman and the Porsuk streams of the Sakarya River drainage (northwestern Anatolia, Black Sea basin), is described. The species is distinguished from other gudgeons by a combination of the fol- lowing characters: breast completely scaled, scales approximately extending to isthmus; head length 27.2–30.0 % SL; 39– 42 lateral line scales; 4–6 scales between anus and anal-fin origin; 6–8 scales between posterior extremity of pelvic-fin bases and anus. A key is provided for Gobio and Romanogobio species recorded from Turkey. Key words: Gobio sakaryaensis, gudgeon, Anatolia, taxonomy Introduction The genus Gobio has a wide distribution throughout Europe and northern Asia. Over the last decade there have been many attempts to clarify the taxonomy of this genus; several new species have been described and some for- mer subspecies are now recognized as distinct species (Vasil’eva et al.
    [Show full text]
  • Resolving Cypriniformes Relationships Using an Anchored Enrichment Approach Carla C
    Stout et al. BMC Evolutionary Biology (2016) 16:244 DOI 10.1186/s12862-016-0819-5 RESEARCH ARTICLE Open Access Resolving Cypriniformes relationships using an anchored enrichment approach Carla C. Stout1*†, Milton Tan1†, Alan R. Lemmon2, Emily Moriarty Lemmon3 and Jonathan W. Armbruster1 Abstract Background: Cypriniformes (minnows, carps, loaches, and suckers) is the largest group of freshwater fishes in the world (~4300 described species). Despite much attention, previous attempts to elucidate relationships using molecular and morphological characters have been incongruent. In this study we present the first phylogenomic analysis using anchored hybrid enrichment for 172 taxa to represent the order (plus three out-group taxa), which is the largest dataset for the order to date (219 loci, 315,288 bp, average locus length of 1011 bp). Results: Concatenation analysis establishes a robust tree with 97 % of nodes at 100 % bootstrap support. Species tree analysis was highly congruent with the concatenation analysis with only two major differences: monophyly of Cobitoidei and placement of Danionidae. Conclusions: Most major clades obtained in prior molecular studies were validated as monophyletic, and we provide robust resolution for the relationships among these clades for the first time. These relationships can be used as a framework for addressing a variety of evolutionary questions (e.g. phylogeography, polyploidization, diversification, trait evolution, comparative genomics) for which Cypriniformes is ideally suited. Keywords: Fish, High-throughput
    [Show full text]
  • The Role of Climate Changes in the Spread of Freshwater Fishes: Implications for Alien Cool and Warm-Water Species in a Mediterranean Basin
    water Article The Role of Climate Changes in the Spread of Freshwater Fishes: Implications for Alien Cool and Warm-Water Species in a Mediterranean Basin Antonella Carosi 1,* , Lucia Ghetti 2 and Massimo Lorenzoni 1 1 Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06100 Perugia, Italy; [email protected] 2 Forest, Economics and Mountain Territory Service, Umbria Region, 06100 Perugia, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-075-5855716 Abstract: In running waters, under climate change conditions, the combined effect of water warming and decreasing flow rates may encourage colonisation by invasive cool and warm-water fish species. The aim of the study was to analyze the potential climate change effects on the spread of four invasive alien fishes in the Tiber River basin, taking into account the effects of river fragmentation. Fish and environmental data collected in 91 sites over the years 1998–2018, were used to analyze temporal changes in their habitat requirements. A multivariate analysis was conducted, and the hypothesis of a range expansion towards the upstream reaches has been tested. For Barbus barbus, Gobio gobio, Padogobius bonelli and Pseudorasbora parva population abundances and body condition were analyzed. Detectability, occupancy, local extinction and colonization probabilities were estimated. We showed that B. barbus and P. bonelli have significantly extended their range toward upstream. P. parva did not Citation: Carosi, A.; Ghetti, L.; move toward higher altitudes significantly, suggesting that, at this stage, the species has probably Lorenzoni, M. The Role of Climate reached an equilibrium. River fragmentation, elevation, water temperature and average current Changes in the Spread of Freshwater speed seem to be major determinants in colonization processes, affecting the dispersal ability of Fishes: Implications for Alien Cool the species.
    [Show full text]
  • Phylogenetic Relationships of Eurasian and American Cyprinids Using Cytochrome B Sequences
    Journal of Fish Biology (2002) 61, 929–944 doi:10.1006/jfbi.2002.2105, available online at http://www.idealibrary.com on Phylogenetic relationships of Eurasian and American cyprinids using cytochrome b sequences C. C*, N. M*, T. E. D†, A. G‡ M. M. C*§ *Centro de Biologia Ambiental, Departamento de Zoologia e Antropologia, Faculdade de Cieˆncia de Lisboa, Campo Grande, Bloco C2, 3 Piso. 1749-016 Lisboa, Portugal, †Department of Biology, Arizona State University, Tempe, Arizona 85287-1501, U.S.A. and ‡Laboratoire d’Hydrobiology, Universite´ de Provence, 1 Place Victor Hugo, 1331 Marseille, France (Received 30 January 2002, Accepted 6 August 2002) Neighbour-joining and parsimony analyses identified five lineages of cyprinids: (1) European leuciscins (including Notemigonus)+North American phoxinins (including Phoxinus phoxinus); (2) European gobionins+Pseudorasbora; (3) primarily Asian groups [cultrins+acheilognathins+ gobionins (excluding Abbotina)+xenocyprinins]; (4) Abbottina+Sinocyclocheilus+Acrossocheilus; (5) cyprinins [excluding Sinocyclocheilus and Acrossocheilus]+barbins+labeonins. Relationships among these lineages and the enigmatic taxa Rhodeus were not well-resolved. Tests of mono- phyly of subfamilies and previously proposed relationships were examined by constraining cytochrome b sequences data to fit previous hypotheses. The analysis of constrained trees indicated that sequence data were not consistent with most previously proposed relationships. Inconsistency was largely attributable to Asian taxa, such as Xenocypris and Xenocyprioides. Improved understanding of historical and taxonomic relationships in Cyprinidae will require further morphological and molecular studies on Asian cyprinids and taxa representative of the diversity found in Africa. 2002 The Fisheries Society of the British Isles. Published by Elsevier Science Ltd. All rights reserved. Key words: Cyprinidae; molecular phylogeny; cytochrome b; monophyly of subfamilies.
    [Show full text]
  • Toward a Loss of Functional Diversity in Stream Fish Assemblages Under Climate Change
    Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 8907 To link to this article: DOI:10.1111/gcb.12056 http://dx.doi.org/10.1111/gcb.12056 To cite this version : Buisson, Laetitia and Grenouillet, Gaël and Villéger, Sébastien and Canal, Julie and Laffaille, Pascal Toward a loss of functional diversity in stream fish assemblages under climate change. (2013) Global Change Biology, vol. 19 (n° 2). pp. 387-400. ISSN 1354- 1013 Any correspondence concerning this service should be sent to the repository administrator: [email protected] doi: 10.1111/gcb.12056 Toward a loss of functional diversity in stream fish assemblages under climate change LAE¨ TITIA BUISSON*† ,GAE¨ L GRENOUILLET‡ § ,SE´ BASTIEN VILLE´ GER‡ § , JULIE CANAL*¶ andPASCAL LAFFAILLE*¶ *UMR 5245 EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), CNRS, Toulouse 31062, France, †INP, UPS, EcoLab, Universite´ de Toulouse, 118 Route de Narbonne, Toulouse 31062, France, ‡UMR 5174 EDB (Laboratoire E´ volution et Diversite´ Biologique), CNRS, Toulouse 31062, France, §UPS, EDB, Universite´ de Toulouse, 118 route de Narbonne, Toulouse 31062, France, ¶INP, UPS, EcoLab, ENSAT, Universite´ de Toulouse, Avenue de l’Agrobiopole, Castanet Tolosan 31326, France Abstract The assessment of climate change impacts on biodiversity has so far been biased toward the taxonomic identification of the species likely either to benefit from climate modifications or to experience overall declines. There have still been few studies intended to correlate the characteristics of species to their sensitivity to climate change, even though it is now recognized that functional trait-based approaches are promising tools for addressing challenges related to global changes.
    [Show full text]
  • Phylogenetic Relationships of Pseudorasbora, Pseudopungtungia,Andpungtungia (Teleostei; Cypriniformes; Gobioninae) Inferred from Multiple Nuclear Gene Sequences
    Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 347242, 6 pages http://dx.doi.org/10.1155/2013/347242 Research Article Phylogenetic Relationships of Pseudorasbora, Pseudopungtungia,andPungtungia (Teleostei; Cypriniformes; Gobioninae) Inferred from Multiple Nuclear Gene Sequences Keun-Yong Kim,1 Myeong-Hun Ko,2 Huanzhang Liu,3 Qiongying Tang,3 Xianglin Chen,4 Jun-Ichi Miyazaki,5 and In-Chul Bang2 1 Department of Research and Development, NLP Co., Ltd., Busan 619-912, Republic of Korea 2 Department of Life Sciences & Biotechnology, Soonchunhyang University, Asan 336-745, Republic of Korea 3 Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China 4 School of Life Science, South China Normal University, Guangzhou 510631, China 5 Faculty of Education and Human Sciences, University of Yamanashi, Yamanashi 400-8510, Japan Correspondence should be addressed to In-Chul Bang; [email protected] Received 1 March 2013; Accepted 7 August 2013 Academic Editor: William Piel Copyright © 2013 Keun-Yong Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gobionine species belonging to the genera Pseudorasbora, Pseudopungtungia,andPungtungia (Teleostei; Cypriniformes; Cyprinidae) have been heavily studied because of problems on taxonomy, threats of extinction, invasion, and human health. Nucleotide sequences of three nuclear genes, that is, recombination activating protein gene 1 (rag1), recombination activating gene 2 (rag2), and early growth response 1 gene (egr1), from Pseudorasbora, Pseudopungtungia,andPungtungia species residing in China, Japan, and Korea, were analyzed to elucidate their intergeneric and interspecific phylogenetic relationships.
    [Show full text]
  • Amur Fish: Wealth and Crisis
    Amur Fish: Wealth and Crisis ББК 28.693.32 Н 74 Amur Fish: Wealth and Crisis ISBN 5-98137-006-8 Authors: German Novomodny, Petr Sharov, Sergei Zolotukhin Translators: Sibyl Diver, Petr Sharov Editors: Xanthippe Augerot, Dave Martin, Petr Sharov Maps: Petr Sharov Photographs: German Novomodny, Sergei Zolotukhin Cover photographs: Petr Sharov, Igor Uchuev Design: Aleksey Ognev, Vladislav Sereda Reviewed by: Nikolai Romanov, Anatoly Semenchenko Published in 2004 by WWF RFE, Vladivostok, Russia Printed by: Publishing house Apelsin Co. Ltd. Any full or partial reproduction of this publication must include the title and give credit to the above-mentioned publisher as the copyright holder. No photographs from this publication may be reproduced without prior authorization from WWF Russia or authors of the photographs. © WWF, 2004 All rights reserved Distributed for free, no selling allowed Contents Introduction....................................................................................................................................... 5 Amur Fish Diversity and Research History ............................................................................. 6 Species Listed In Red Data Book of Russia ......................................................................... 13 Yellowcheek ................................................................................................................................... 13 Black Carp (Amur) ......................................................................................................................
    [Show full text]