Fishes of Mongolia a Check-List of the fi Shes Known to Occur in Mongolia with Comments on Systematics and Nomenclature
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Chromosomal Study of the Lenoks, Brachymystax(Salmoniformes
Journal of Species Research 2(1):91-98, 2013 Chromosomal study of the lenoks, Brachymystax (Salmoniformes, Salmonidae) from the South of the Russian Far East I.V. Kartavtseva*, L.K. Ginatulina, G.A. Nemkova and S.V. Shedko Institute of Biology and Soil Science of the Far East Branch of the Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022 *Correspondent: [email protected], [email protected] An investigation of the karyotypes of two species of the genus Brachymystax (B. lenok and B. tumensis) has been done for the Russia Primorye rivers running to the East Sea basin, and others belonging to Amur basin. Based on the analysis of two species chromosome characteristics, combined with original and literary data, four cytotypes have been described. One of these cytotypes (Cytotype I: 2n=90, NF=110-118) was the most common. This common cytotype belongs to B. tumensis from the rivers of the East Sea basin and B. lenok from the rivers of the Amur basin, i.e. extends to the zones of allopatry. In the rivers of the Amur river basin, in the zone of the sympatric habitat of two species, each taxon has karyotypes with different chromosome numbers, B. tumensis (2n=92) and B. lenok (2n=90). Because of the ability to determine a number of the chromosome arms for these two species, additional cytotype have been identified for B. tum- ensis: Cytotype II with 2n=92, NF=110-124 in the rivers basins of the Yellow sea and Amur river and for B. lenok three cytotypes: Cytotype I: 2n=90, NF=110 in the Amur river basin; Cytotype III with 2n=90, NF=106-126 in the Amur river basin and Cytotypes IV with 2n=92, NF=102 in the Baikal lake. -
Evolutionary and Population Genetics of Siluroidei
Aquat. Living Resour., 1996, Vol. 9, Hors série, 81-92 Vlaams Instituut voor de Zee Flanders M arin s Institute Evolutionary and population genetics of Siluroidei Filip A. Volckaert (1) and Jean-François Agnèse (2) (1) Katholieke Universität Leuven, Laboratory of Ecology and Aquaculture, Zoological Institute, Naamsestraat 59, B-3000 Leuven, Belgium. 2 4 2 2 4 <2) ^‘eUtre ^ £c^ierc^ies Océanographiques, BP V I8, Abidjan, Ivory Coast. Accepted July 19, 1995. Volckaert F. A., J.-F. Agnèse. In: The biology and culture of catfishes. M. Legendre, J.-P. Proteau eds. Aquat. Living Resour., 1996, Vol. 9, H ors série, 81-92. A bstract The genetic characterization of catfishes by means of phenotypic markers, karyotyping, protein and DNA polymorphisms contributes to or forms an integral part of the disciplines of systematics, population genetics, quantitative genetics, biochemistry, molecular biology and aquaculture. Judged from the literature, the general approach to research is pragmatic; the Siluroidei do not include model species for fundamental genetic research. The Clariidae and the Ictaluridae represent the best studied families. The’ systematic status of a number of species and families has been either elucidated or confirmed by genetic approaches. Duplication of ancestral genes occurred in catfishes just as in other vertebrates. The genetic structure of and gene flow among natural populations have been documented in relatively few cases, while the evaluation of strains for aquaculture (especially Ictaluridae and Clariidae) is in progress. The mapping of genetic markers has started in Ictalurus. It appears that a more detailed knowledge of catfish populations is required from two perspectives. First, natural populations which are threatened by habitat loss and interfluvial or intercontinental transfers are poorly characterized at the genetic level. -
Teleostei: Cyprinidae: Acheilognathinae) from China
Zootaxa 3790 (1): 165–176 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3790.1.7 http://zoobank.org/urn:lsid:zoobank.org:pub:BD573A51-6656-4E86-87C2-2411443C38E5 Rhodeus albomarginatus, a new bitterling (Teleostei: Cyprinidae: Acheilognathinae) from China FAN LI1,3 & RYOICHI ARAI2 1Institute of Biodiversity Science, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai 200433, China. E-mail: [email protected] 2Department of Zoology, University Museum, University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo. 113-0033, Japan. E-mail: [email protected] 3Corresponding author Abstract Rhodeus albomarginatus, new species, is described from the Lvjiang River, a tributary flowing into Poyang Lake of Yang- tze River basin, in Anhui Province, China. It is distinguished from all congeneric species by unique combination of char- acters: branched dorsal-fin rays 10; branched anal-fin rays 10–11; longest simple rays of dorsal and anal fins strong and stiff, distally segmented; pelvic fin rays i 6; longitudinal scale series 34–36; transverse scale series 11; pored scales 4–7; vertebrae 33–34; colour pattern of adult males (iris black, belly reddish-orange, central part of caudal fin red, dorsal and anal fins of males edged with white margin). Key words: Cyprinidae, Rhodeus albomarginatus, new species, Yangtze River, China Introduction Bitterling belong to the subfamily Acheilognathinae in Cyprinidae and include three genera, Acheilognathus, Rhodeus and Tanakia. The genus Rhodeus can be distinguished from the other two genera by having an incomplete lateral line, no barbels, and wing-like yolk sac projections in larvae (Arai & Akai, 1988). -
Barbatula Leoparda (Actinopterygii, Nemacheilidae), a New Endemic Species of Stone Loach of French Catalonia
Scientific paper Barbatula leoparda (Actinopterygii, Nemacheilidae), a new endemic species of stone loach of French Catalonia by Camille GAULIARD (1), Agnès DETTAI (2), Henri PERSAT (1, 3), Philippe KEITH (1) & Gaël P.J. DENYS* (1, 4) Abstract. – This study described a new stone loach species in France, Barbatula leoparda, which is endemic to French Catalonia (Têt and Tech river drainages). Seven specimens were compared to 49 specimens of B. bar- batula (Linnaeus, 1758) and 71 specimens of B. quignardi (Băcescu-Meşter, 1967). This new species is char- acterized by the presence of blotches on the belly and the jugular area in individuals longer than 47 mm SL and by a greater interorbital distance (35.5 to 41.8% of the head length). We brought moreover the sequence of two mitochondrial markers (COI and 12S, respectively 652 and 950 bp) of the holotype, which are well distinct from all other species, for molecular identifications. This discovery is important for conservation. Résumé. – Barbatula leoparda (Actinopterigii, Nemacheilidae), une nouvelle espèce endémique de loche fran- che en Catalogne française. © SFI Submitted: 4 Jun. 2018 Cette étude décrit une nouvelle espèce de loche franche en France, Barbatula leoparda, qui est endémique Accepted: 23 Jan. 2019 Editor: G. Duhamel à la Catalogne française (bassins de la Têt et du Tech). Sept spécimens ont été comparés à 49 spécimens de B. barbatula (Linnaeus, 1758) et 71 spécimens de B. quignardi (Băcescu-Meşter, 1967). Cette nouvelle espèce est caractérisée par la présence de taches sur le ventre et dans la partie jugulaire pour les individus d’une taille supérieure à 47 mm LS et par une plus grande distance inter-orbitaire (35,5 to 41,8% de la longueur de la tête). -
A Handbook of Siberia and Arctic Russia : Volume 1 : General
Presented to the UNIVERSITY OF TORONTO LIBRARY by the ONTARIO LEGISLATIVE LIBRARY 1980 I. D. 1207 »k.<i. 57182 g A HANDBOOK OF**' SIBERIA AND ARCTIC RUSSIA Volume I GENERAL 57182 Compiled by the Geographical Section of the Naval Intelligence Division, Naval Staff, Admiralty LONDON : PUBLISHED BY HIS MAJESTY'S STATIONERY OFFICE. To be purchased through any Bookseller or directly from H.M. STATIONERY OFFICE at the following addresses : Imperial House, Kingswav, London, W.C. 2, and 28 1 Abingdon Street, London, S. W. ; 37 Peter Street, Manchester ; 1 St. Andrew's Crescent, Cardiff ; 23 Forth Street, Edinburgh ; or from E. PONSONBY, Ltd., 116 Grafton Street, Dublin. Price 7s. 6d. net Printed under the authority of His Majesty's Stationery Office By Frederick Hall at the University Press, Oxford. NOTE The region covered in this Handbook includes besides Liberia proper, that part of European Russia, excluding Finland, which drains to the Arctic Ocean, and the northern part of the Central Asian steppes. The administrative boundaries of Siberia against European Russia and the Steppe provinces have been ignored, except in certain statistical matter, because they follow arbitrary lines through some of the most densely populated parts of Asiatic Russia. The present volume deals with general matters. The two succeeding volumes deal in detail respectively with western Siberia, including Arctic Russia, and eastern Siberia. Recent information about Siberia, even before the outbreak of war, was difficult to obtain. Of the remoter parts little is known. The volumes are as complete as possible up to 1914 and a few changes since that date have been noted. -
BIO 313 ANIMAL ECOLOGY Corrected
NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 314 COURSE TITLE: ANIMAL ECOLOGY 1 BIO 314: ANIMAL ECOLOGY Team Writers: Dr O.A. Olajuyigbe Department of Biology Adeyemi Colledge of Education, P.M.B. 520, Ondo, Ondo State Nigeria. Miss F.C. Olakolu Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. Mrs H.O. Omogoriola Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. EDITOR: Mrs Ajetomobi School of Agricultural Sciences Lagos State Polytechnic Ikorodu, Lagos 2 BIO 313 COURSE GUIDE Introduction Animal Ecology (313) is a first semester course. It is a two credit unit elective course which all students offering Bachelor of Science (BSc) in Biology can take. Animal ecology is an important area of study for scientists. It is the study of animals and how they related to each other as well as their environment. It can also be defined as the scientific study of interactions that determine the distribution and abundance of organisms. Since this is a course in animal ecology, we will focus on animals, which we will define fairly generally as organisms that can move around during some stages of their life and that must feed on other organisms or their products. There are various forms of animal ecology. This includes: • Behavioral ecology, the study of the behavior of the animals with relation to their environment and others • Population ecology, the study of the effects on the population of these animals • Marine ecology is the scientific study of marine-life habitat, populations, and interactions among organisms and the surrounding environment including their abiotic (non-living physical and chemical factors that affect the ability of organisms to survive and reproduce) and biotic factors (living things or the materials that directly or indirectly affect an organism in its environment). -
Revalidation and Redescription of Brachymystax Tsinlingensis Li, 1966 (Salmoniformes: Salmonidae) from China
Zootaxa 3962 (1): 191–205 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3962.1.12 http://zoobank.org/urn:lsid:zoobank.org:pub:F7864FFE-F182-455E-B37A-8A253D8DB72D Revalidation and redescription of Brachymystax tsinlingensis Li, 1966 (Salmoniformes: Salmonidae) from China YING-CHUN XING1,2, BIN-BIN LV3, EN-QI YE2, EN-YUAN FAN1, SHI-YANG LI4, LI-XIN WANG4, CHUN- GUANG ZHANG2,* & YA-HUI ZHAO2,* 1Natural Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China. 2Institute of Zoology, Chinese Academy of Sciences, Beijing, China. 3Yellow River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xi’an, China. 4The College of Forestry of Beijing Forestry University, Beijing, China. *Corresponding authors: Yahui Zhao, [email protected]; Chunguang Zhang, [email protected] Abstract Brachymystax tsinlingensis Li, 1966 is revalidated and redescribed. It can be distinguished from all congeners by the fol- lowing combination of characteristics: no spots on operculum; gill rakers 15-20; lateral-line scales 98-116; pyloric caeca 60-71. Unique morphological characters and genetic divergence of this species are discussed. This species has a limited distribution in several streams of the middle part of the Qinling Mountains in China. Methods for management and pro- tection of B. tsinlingensis need to be re-evaluated. Key words: Brachymystax, revalidation, redescription, Salmonidae, China Introduction The genus Brachymystax Günther, 1866, belonging to Salmonidae, Salmoniformes, is distributed in eastern and northern Asia with three currently recognized valid species (Froese & Pauly, 2014): B. -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................ -
Development of a Framework for Management of Aquatic Invasive Species of Concern for Yukon: Literature Review, Risk Assessment and Recommendations
DEVELOPMENT OF A FRAMEWORK FOR MANAGEMENT OF AQUATIC INVASIVE SPECIES OF CONCERN FOR YUKON: LITERATURE REVIEW, RISK ASSESSMENT AND RECOMMENDATIONS Prepared by: Maria Leung and Al von Finster Prepared for: Fish and Wildlife Branch, Environment Yukon April 2016 DEVELOPMENT OF A FRAMEWORK FOR MANAGEMENT OF AQUATIC INVASIVE SPECIES OF CONCERN FOR YUKON: LITERATURE REVIEW, RISK ASSESSMENT AND RECOMMENDATIONS Yukon Department of Environment Fish and Wildlife Branch MRC-14-01 Maria Leung and Al von Finster prepared the report under contract to Environment Yukon. This report and its conclusions are not necessarily the opinion of Environment Yukon and this work does not constitute any commitment of Government of Yukon. © 2016 Yukon Department of Environment Copies available from: Yukon Department of Environment Fish and Wildlife Branch, V-5A Box 2703, Whitehorse, Yukon Y1A 2C6 Phone (867) 667-5721, Fax (867) 393-6263 Email: [email protected] Also available online at www.env.gov.yk.ca Suggested citation: LEUNG M. AND A. VON FINSTER. 2016. Development of a framework for management of aquatic invasive species of concern for Yukon: Literature review, risk assessment and recommendations. Prepared for Environment Yukon. Yukon Fish and Wildlife Branch Report MRC-14-01, Whitehorse, Yukon, Canada. Preface Aquatic Invasive Species (AIS) are non-native aquatic species that have a detrimental impact on environments that they invade. In Canada, millions of dollars are spent each year on control alone. From experiences across the country and around the world, experts have found that strategies aimed at preventing the spread of AIS are preferable to diverting financial resources to programs aimed at managing AIS after they have established. -
Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers
_____________Mun. Ent. Zool. Vol. 13, No. 2, June 2018__________ 702 STONE LOACHES FROM THE HEADWATERS OF THE BULGAN RIVER (MONGOLIAN ALTAI) (TELEOSTEI: CYPRINIFORMES: NEMACHEILIDAE: BARBATULA) Artem M. Prokofiev* * A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii prospect 33, Moscow 119071, RUSSIA* and I. D. Papanin Institute for Biology of Inland Water, Russian Academy of Sciences, Borok 152742, Yaroslavl, RUSSIA. E-mail: [email protected] [Prokofiev, A. M. 2018. Stone loaches from the headwaters of the Bulgan River (Mongolian Altai) (Teleostei: Cypriniformes: Nemacheilidae: Barbatula). Munis Entomology & Zoology, 13 (2): 702-717] ABSTRACT: Two sympatric species of loaches, Barbatula cf. altayensis Zhu, 1992 and B. karabanowi Prokofiev, 2018, occur in the upper reaches of the river Bulgan in Mongolia. They represent the only fish taxa found in the studied part of the river. Significant morphological differences between these species support their apparent belonging to the different phyletic lineages. Barbatula cf. altayensis is characterized by the following combination of characters: nostrils closely set; lips furrowed, upper lip with medial indentation weak to absent, lower lip with medial lobes barely separated, furrowed, lateral lobes absent; scale cover well developed; broad head with muscular cheeks; 44–45 vertebrae; 89–105 lateral-line pores; pigmentation pattern consisting of transverse bars or isolated well spaced blotches. A set of peculiar features (mouth structure and position of nares, characters of sexual dimorphism, strong ossification of the otic portion of the cephalic laterosensory system) supposes an isolated position of B. altayensis within the genus. The second species, B. karabanowi, belongs to the “blunt-snouted” complex of species related to B. -
The Institution of Russia's Sakhalin Policy
Journal of Asian History (2002) 36(1):1-31. ANDREW A. GENTES THE INSTITUTION OF RUSSIA’S SAKHALIN POLICY, FROM 1868 TO 18751 Introduction Cossack explorers discovered the sturgeon-shaped island just beyond the mouth of the Amur River during the seventeenth century. By the beginning of the eighteenth, Russia like the rest of Europe had come to call this island in the North Pacific “Sakhalin”, a name descended from the Manchu word for “black”. Prior to 1875, again in 1904, and ever since World War II the Japanese have considered Sakhalin to be theirs. They call it “Karafuto”. Almost 600 miles long and covering nearly 30000 square miles, Sakhalin is one of the largest islands in the world with temperatures and geologic conditions varying greatly according to region. Its northern half is characterized by taiga and tundra; its southern by rugged mountains and thick forests. The climate is bone-chillingly cold in winter, foggy and damp in summer. In January temperatures average –11° (Fahrenheit) in the north and 21° in the south; in August, 50° in the north and 66° in the south. Natural vegetation in the wind-swept and icy north is limited to grasses and scrub brush; in the slightly more temperate south, where the soil is clayey, there are deciduous, coniferous, and even bamboo forests, with peat bogs near the coast. Throughout the island all types of biting insects “make the warm humid months an ordeal ...”2 In the summer of 1875, after years of jockeying for position in the North Pacific, Russia and Japan signed the Treaty of St. -
Cottoidei: Cottidae) Necessitates Generic Realignment
G C A T T A C G G C A T genes Article Genetic Evidence for a Mixed Composition of the Genus Myoxocephalus (Cottoidei: Cottidae) Necessitates Generic Realignment Evgeniy S. Balakirev 1,2,*, Alexandra Yu. Kravchenko 1,3 and Alexander A. Semenchenko 3 1 A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; [email protected] 2 School of Biomedicine, Far Eastern Federal University, Vladivostok 690950, Russia 3 Laboratory of Ecology and Evolutionary Biology of Aquatic Organisms, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia; [email protected] * Correspondence: [email protected] Received: 7 July 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: Sculpin fishes belonging to the family Cottidae represent a large and complex group, inhabiting a wide range of freshwater, brackish-water, and marine environments. Numerous studies based on analysis of their morphology and genetic makeup frequently provided controversial results. In the present work, we sequenced complete mitochondrial (mt) genomes and fragments of nuclear ribosomal DNA (rDNA) of the fourhorn sculpin Myoxocephalus quadricornis and some related cottids to increase the power of phylogenetic and taxonomic analyses of this complex fish group. A comparison of the My. quadricornis mt genomes obtained by us with other complete mt genomes available in GenBank has revealed a surprisingly low divergence (3.06 0.12%) with Megalocottus platycephalus ± and, at the same time, a significantly higher divergence (7.89 0.16%) with the species of the genus ± Myoxocephalus. Correspondingly, phylogenetic analyses have shown that My. quadricornis is clustered with Me.