Development of a Framework for Management of Aquatic Invasive Species of Concern for Yukon: Literature Review, Risk Assessment and Recommendations

Total Page:16

File Type:pdf, Size:1020Kb

Development of a Framework for Management of Aquatic Invasive Species of Concern for Yukon: Literature Review, Risk Assessment and Recommendations DEVELOPMENT OF A FRAMEWORK FOR MANAGEMENT OF AQUATIC INVASIVE SPECIES OF CONCERN FOR YUKON: LITERATURE REVIEW, RISK ASSESSMENT AND RECOMMENDATIONS Prepared by: Maria Leung and Al von Finster Prepared for: Fish and Wildlife Branch, Environment Yukon April 2016 DEVELOPMENT OF A FRAMEWORK FOR MANAGEMENT OF AQUATIC INVASIVE SPECIES OF CONCERN FOR YUKON: LITERATURE REVIEW, RISK ASSESSMENT AND RECOMMENDATIONS Yukon Department of Environment Fish and Wildlife Branch MRC-14-01 Maria Leung and Al von Finster prepared the report under contract to Environment Yukon. This report and its conclusions are not necessarily the opinion of Environment Yukon and this work does not constitute any commitment of Government of Yukon. © 2016 Yukon Department of Environment Copies available from: Yukon Department of Environment Fish and Wildlife Branch, V-5A Box 2703, Whitehorse, Yukon Y1A 2C6 Phone (867) 667-5721, Fax (867) 393-6263 Email: [email protected] Also available online at www.env.gov.yk.ca Suggested citation: LEUNG M. AND A. VON FINSTER. 2016. Development of a framework for management of aquatic invasive species of concern for Yukon: Literature review, risk assessment and recommendations. Prepared for Environment Yukon. Yukon Fish and Wildlife Branch Report MRC-14-01, Whitehorse, Yukon, Canada. Preface Aquatic Invasive Species (AIS) are non-native aquatic species that have a detrimental impact on environments that they invade. In Canada, millions of dollars are spent each year on control alone. From experiences across the country and around the world, experts have found that strategies aimed at preventing the spread of AIS are preferable to diverting financial resources to programs aimed at managing AIS after they have established. In Yukon, we have the opportunity to prevent the spread of additional AIS and to focus on prevention rather than management. Resources can be directed towards education, prevention, detection, and rapid response. To inform such programs and to tailor them for maximum effectiveness, it is important to understand the characteristics of the aquatic invasive species that pose the largest threat. In 2011, Environment Yukon hired contractors Maria Leung and Al von Finster to investigate those AIS that pose the greatest risk to Yukon’s environment and economy, based on objective criteria. They developed the following report and recommendations for the prevention, detection, and management of 16 AIS. Environment Yukon wishes to make this information widely available. Although this report is not necessarily the opinion of Environment Yukon and does not constitute any commitments by Environment Yukon, work is underway to implement several recommendations. Following the completion of this report, new evidence has suggested that didymo is native to southern Canada. Since it is unclear whether this species is invasive in Yukon, Environment Yukon has begun sampling for didymo, in an effort to learn more about its distribution and to collect genetic samples to learn the origin of this species. Work on didmyo in Yukon is ongoing. Framework for management of aquatic invasive species in Yukon iii page is intentionally blank Framework for management of aquatic invasive species in Yukon iv Table of Contents Preface .................................................................................................... iii Table of Contents ..................................................................................... v List of Tables .......................................................................................... vi Introduction ............................................................................................ 1 Risk Assessment of AIS to Yukon ............................................................. 1 Recommendations for the Prevention, Detection, and Management of AIS in Yukon .................................................................................................. 2 Didymo ........................................................................................................ 4 Zebra mussels ............................................................................................. 6 New Zealand mud snail ................................................................................ 8 Waterweed ................................................................................................... 9 Eurasian watermilfoil ................................................................................. 10 Whirling disease ........................................................................................ 12 Prevention of Introduction ..................................................................... 13 Conclusions and Next Steps ................................................................... 17 APPENDIX 1 Overview of AIS: Likelihood and Consequences of Yukon Invasion ........................................................................... 19 APPENDIX 2 Risk Assessment for Aquatic Invasive Species in Yukon. .. 66 References ............................................................................................. 69 Framework for management of aquatic invasive species in Yukon v List of Tables Table 1. The relative risk of 16 AIS to Yukon, based on relative scores assigned in 26 risk assessment criteria, grouped into 4 categories. .................................................................................... 3 Table 2. Summary of recommended education and public outreach initiatives and best practices guidelines for deterring the introduction of AIS, by identified target audiences. The letters reference the item on the “best practices” list and the numbers reference the item on the “public outreach and education” list. ... 14 Framework for management of aquatic invasive species in Yukon vi Risk Assessment of AIS to Introduction Yukon The increasing presence of Aquatic To determine the AIS of greatest Invasive Species (AIS) in Canada is concern in Yukon, a ranking scheme causing the displacement of native was developed by modifying relevant flora and fauna, damaging criteria from other invasive species infrastructure, and costing Canadians assessments (e.g., Alberta Alien millions of dollars annually to control. Species Risk Assessment Tool) and Policies to control AIS (which can be adding other pertinent criteria diverse species of algae, plants, and (Appendix 2). The scheme was kept fish) have largely been reactive rather simple to avoid over-extrapolation of than proactive, and focused on limited data on AIS, both potential species rather than vectors (Strayer and realized, within Yukon; and for 2009). Strategies aimed at preventing clarity about how the score and the spread of AIS are preferable to subsequent ranking were determined diverting financial resources to for each species. The drawback to this programs aimed at managing AIS simplicity is that some subjective after they have established. judgement remains due to lack of In Yukon, the number of known or explicit definitions of relative suspected AIS is small compared to terminology. For example, terms like the rest of Canada. That means the high, moderate, and low were seldom opportunity to prevent the spread of defined by numerical ranges as in additional AIS in Yukon still exists. more detailed and objective Up to now, there has been no plan in assessments (e.g., Jordan et al. place to prevent, detect, monitor, or 2010). To mitigate subjectivity, the 16 manage AIS in Yukon, and there has AIS were assessed simultaneously been no coordinated effort to increase such that subjective assessments public awareness of the implications were made relative to other species. of AIS introduction. The 26 criteria chosen to Knowledge about AIS in northern determine the relative risk of the 16 regions is generally quite minimal. AIS fit into 4 categories: 1) likelihood This report begins to address some of of introduction; 2) likelihood of the unknowns by first reviewing persistence; 3) ecological literature on 16 species that have consequences; and 4) economic and already established, or could social consequences. Only criteria establish, in Yukon (see Appendix 1); that had potential for distinguishing then ranking the relative risks of the 16 AIS were included. those select AIS; and finally, offering Questions within each category recommendations on the prevention were weighted evenly except for 2: and management of 6 AIS that are of question 3 places more emphasis on comparatively highest risk—both pathways in Yukon that are more ecologically and economically—to likely to facilitate spread of AIS; for Yukon. example, boats, fishing, and recreational equipment pose a much Framework for management of aquatic invasive species in Yukon 1 larger risk than the live-fish-food invertebrates travel with cultivated market; and question 10 is given less fish. The criteria in the “economic and weight because organisms capable of social impacts” section were cloning tend to be prolific, but are not particularly difficult to objectify. Some always more prolific than organisms of these also magnified a single issue. that must reproduce sexually. The For example, AIS causing unsightly numeric responses to each question dead fish affects questions 23, 24, or criterion were tallied so that each and 26. category received a score for each species. Recommendations for the At the next step, each of the 4 categories was also given equal weight Prevention, Detection, and by adjusting their scores out of 25. Management of AIS in Yukon
Recommended publications
  • The Northern Snakehead Channa Argus (Anabantomorpha: Channidae), a Non- Indigenous Fish Species in the Potomac River, U.S.A Author(S): Thomas M
    The Northern Snakehead Channa argus (Anabantomorpha: Channidae), a non- indigenous fish species in the Potomac River, U.S.A Author(s): Thomas M. Orrell and Lee Weigt Source: Proceedings of the Biological Society of Washington, 118(2):407-415. 2005. Published By: Biological Society of Washington DOI: http://dx.doi.org/10.2988/0006-324X(2005)118[407:TNSCAA]2.0.CO;2 URL: http://www.bioone.org/doi/full/10.2988/0006-324X%282005%29118%5B407%3ATNSCAA %5D2.0.CO%3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 118(2):407±415. 2005. The Northern Snakehead Channa argus (Anabantomorpha: Channidae), a non-indigenous ®sh species in the Potomac River, U.S.A. Thomas M. Orrell and Lee Weigt (TMO) Smithsonian Institution, P.O. Box 37012, National Museum of Natural History, Washington, D.C.
    [Show full text]
  • Snakeheadsnepal Pakistan − (Pisces,India Channidae) PACIFIC OCEAN a Biologicalmyanmar Synopsis Vietnam
    Mongolia North Korea Afghan- China South Japan istan Korea Iran SnakeheadsNepal Pakistan − (Pisces,India Channidae) PACIFIC OCEAN A BiologicalMyanmar Synopsis Vietnam and Risk Assessment Philippines Thailand Malaysia INDIAN OCEAN Indonesia Indonesia U.S. Department of the Interior U.S. Geological Survey Circular 1251 SNAKEHEADS (Pisces, Channidae)— A Biological Synopsis and Risk Assessment By Walter R. Courtenay, Jr., and James D. Williams U.S. Geological Survey Circular 1251 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director Use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. Copyrighted material reprinted with permission. 2004 For additional information write to: Walter R. Courtenay, Jr. Florida Integrated Science Center U.S. Geological Survey 7920 N.W. 71st Street Gainesville, Florida 32653 For additional copies please contact: U.S. Geological Survey Branch of Information Services Box 25286 Denver, Colorado 80225-0286 Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov Library of Congress Cataloging-in-Publication Data Walter R. Courtenay, Jr., and James D. Williams Snakeheads (Pisces, Channidae)—A Biological Synopsis and Risk Assessment / by Walter R. Courtenay, Jr., and James D. Williams p. cm. — (U.S. Geological Survey circular ; 1251) Includes bibliographical references. ISBN.0-607-93720 (alk. paper) 1. Snakeheads — Pisces, Channidae— Invasive Species 2. Biological Synopsis and Risk Assessment. Title. II. Series. QL653.N8D64 2004 597.8’09768’89—dc22 CONTENTS Abstract . 1 Introduction . 2 Literature Review and Background Information . 4 Taxonomy and Synonymy .
    [Show full text]
  • Inland Waters C-04 Poissons, Crustacés, Mollusques
    397 Fish, crustaceans, molluscs, etc Capture production by species items Asia - Inland waters C-04 Poissons, crustacés, mollusques, etc Captures par catégories d'espèces Asie - Eaux continentales (a) Peces, crustáceos, moluscos, etc Capturas por categorías de especies Asia - Aguas continentales English name Scientific name Species group Nom anglais Nom scientifique Groupe d'espèces 1996 1997 1998 1999 2000 2001 2002 Nombre inglés Nombre científico Grupo de especies t t t t t t t Freshwater bream Abramis brama 11 19 479 11 743 10 650 11 815 12 749 13 616 14 629 Freshwater breams nei Abramis spp 11 3 7 20 9 20 10 38 Common carp Cyprinus carpio 11 43 435 41 152 47 741 45 168 34 044 32 805 34 014 Tench Tinca tinca 11 2 0 0 0 690 778 983 Crucian carp Carassius carassius 11 8 273 6 877 6 213 5 686 5 528 5 226 4 602 Goldfish Carassius auratus 11 172 1 1 1 1 2 1 Roach Rutilus rutilus 11 235 537 502 733 1 084 1 365 1 498 Kutum Rutilus frisii 11 9 210 2 320 6 624 6 905 10 120 7 199 6 433 Roaches nei Rutilus spp 11 3 298 1 943 1 867 1 626 2 365 1 895 2 469 Rudd Scardinius erythrophthalmus 11 ... ... ... ... ... ... 485 Common dace Leuciscus leuciscus 11 215 250 300 176 104 91 73 Mud carp Cirrhinus molitorella 11 3 4 7 7 6 6 9 Grass carp(=White amur) Ctenopharyngodon idellus 11 4 296 4 631 5 213 4 703 2 621 725 1 462 Silver carp Hypophthalmichthys molitrix 11 18 324 16 958 12 055 14 819 9 415 4 270 4 451 Bighead carp Hypophthalmichthys nobilis 11 1 818 1 637 2 621 3 841 4 454 447 703 Kinneret bleak Acanthobrama terraesanctae 11 1 155 626 1 171 1
    [Show full text]
  • Didymo Summary
    An Assessment and Analysis of Benthic Macroinvertebrate Communities Associated with the Appearance of Didymosphenia geminata in the White River Below BullShoals Dam February 22, 2006 An Assessment and Analysis of Benthic Macroinvertebrate Communities Associated with the Appearance of Didymosphenia geminata in the White River Below Bull Shoals Dam A Summary Report of Findings Prepared and Submitted by Erica L. Shelby Water Use & Resource Specialist Arkansas Dept. of Environmental Quality Water Planning Division Final Draft February 24, 2006 1 An Assessment and Analysis of Benthic Macroinvertebrate Communities Associated with the Appearance of Didymosphenia geminata in the White River Below BullShoals Dam February 22, 2006 Table of Contents Executive Summary: ……………………………………………………………….. Purpose of Study: ......................................................................................................... Location of Study Area, Sampling Locations, and Physical Descriptions ................ Methods of Investigation: …………………………………………………………… Physical & Chemical Water Quality and Macroinvertebrates ................….. Physical & Chemical Water Quality Analysis ................................................................ Description of Macroinvertebrate Metrics ....................................................... Macroinvertebrate Results .................................................................................. Macroinvertebrate Analysis Summary………………………………………………… Discussion ...........................................................................................................................
    [Show full text]
  • (Pellets) on Survival Rate of Juvenile Snakehead Fish (Channa Striata) on Adaptation in Happa Experiments
    Effect of Artificial Feed Feeding Engineering (pellets) on Survival Rate of Juvenile snakehead fish (Channa striata) on Adaptation in Happa Experiments I Made Kawan 1*, Semara Edi 2, Dewa Sadguna 3 Universitas Warmadewa, Denpasar-Bali, Indonesia {[email protected] 1, [email protected] 2, [email protected] 3} Abstract. Effect of Artificial Feed Feeding Engineering (pellets) on Survival Rate of Juvenile snakehead fish (Channa striata) on Adaptation in Happa Experiments were carried out at the Laboratory of Aquatic Resources Development, Faculty of Agriculture, Warmadewa University, Denpasar. The purpose of this study was to determine the engineering of artificial feeding which could provide the highest juvenile survival rate for snakehead fish. Snakehead fish (Channa striata) is a type of freshwater fish that lives in public waters, including rivers, swamps and lakes. One of the methods for seed propagation is by applying hatchery technology using artificial feeding techniques (PF500 pellets) combined with natural feed for water fleas (Dapnia sp) and silk worms (Tubifex). It is hoped that the combination of feeding is expected to be able to determine the artificial feeding (pellet) engineering that provides adequate nutritional needs so as to provide the highest survival rate in juvenile growth of snakehead fish at the adaptation stage of passive food habits. The method used in the engineering research of giving pellets is an experimental method using a completely randomized design (CRD) which consists of 6 treatments and 3 replications. The treatments in this experiment consisted of: A. Giving 100% pellets; B. Providing a combination of pellets 75% with Dapnia sp 12.5% and Tubifex 12.5%; C.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • The Current State of Aquatic Invasive Species in Central New York
    The Current State of Aquatic Invasive Species in Central New York A report prepared by Kristy LaManche, Planner Central New York Regional Planning and Development Board March 2007 Funding for this report was provided by the New York State Department of Environmental Conservation through the Central New York Regional Planning and Development Board’s Baseline Funding contract. Inquiries about the data and information provided in this report should be directed to Kristy LaManche, (315) 422-8276 or [email protected]. Table of Contents Methods of Introduction and Overland Transport .......................................................................... 3 Economic Consequences of Aquatic Species Introductions........................................................... 6 Current Aquatic Invasive Plants of High Priority in Central New York ...................................... 12 Current Aquatic Invasive Animals of High Priority in Central New York .................................. 14 The 2007 Aquatic Invasive Species “Watch List” for Upstate New York................................... 18 The Current State of Aquatic Invasive Species in Central New York.......................................... 22 Conclusion .................................................................................................................................... 28 Appendix....................................................................................................................................... 29 Contact Information for Key Partners......................................................................................
    [Show full text]
  • Growth Performance, Length-Weight Relationship of Snakehead Fish Channa Striata (Bloch) Fed with Different Diets
    International Journal of Zoological Investigations Vol. 4, No. 1, 81- 87 (2018) _______________________________________________________________________________________ International Journal of Zoological Investigations Contents available at Journals Home Page: www.ijzi.net ISSN: 2454-3055 Growth Performance, Length-Weight Relationship of Snakehead Fish Channa striata (Bloch) Fed With Different Diets Sugumaran E.1*, Shabeena B.2 and Radhakrishnan M.V.3 1Department of Zoology, Anand Arts and Science College, Thiruvannamalai, Tamilnadu, India 2Hebron Matriculation school, Manchampoondi, Thiruvannamalai, Tamilnadu, India 3Department of Zoology, Chikkanna Government Arts College, Tiruppur, Tamilnadu, India *Corresponding Author Received: 7th june 2018 Accepted: 22nd June 2018 ______________________________________________________________________________________________________________ Abstract: A ninety day feeding trial was conducted to study the effect of different diets on the growth, specific growth rate of Murrel Channa striata. Triplicate groups of C. striata with average initial body weight of 11.02 g were fed with three isonitrogenous diets of 2% of wet body weight. Maximum weight gain was recorded with diet having 59.75% rice bran, 10.50% mustard cake, 12.25% groundnut cake, 10.25% soybean meal, 1.5% vitamin-mineral mixture and 0.5% salt with specific growth rate of 0.413. Keywords: Channa striata, Formulated diets, Growth, Length–Weight relationship ______________________________________________________________________________________________________________
    [Show full text]
  • Didymosphenia Geminata on Benthic Community Resource Use Natalie E
    Effects of the nuisance alga Didymosphenia geminata on benthic community resource use Natalie E. Knorp and Justin N. Murdock School of Environmental Studies and Department of Biology Tennessee Tech University, Cookeville, TN Introduction Results Results • Didymosphenia geminata is a diatom that has reached Stable Isotope Analysis 1 nuisance biomass levels in streams worldwide. It can form Macroinvertebrates mats that blanket stream bottoms (Fig. 1), which may reduce • In 2014, macroinvertebrates in the South Holston and Watauga 2 food availability to all parts of the stream food web. Rivers were switching from a variety of food resources at low D. • Stable isotopes are used in food web analyses to asses which geminata biomass sites to filamentous algae or macrophytes at food resources are being assimilated into consumer tissues. high biomass sites. Resource switching was not observed in the 13 Organism tissues are generally similar in their C values Clinch River where overall biomass was low (Fig. 2). 15 compared to their food resources, while N values tend to • Resource use patterns were harder to distinguish in 2015. Most 3 increase in a predictable pattern from food to consumers. macroinvertebrates were feeding on a variety of food resources. • Additional food web information can be gained from lipid (fatty • In both years, macroinvertebrate groups from both high and low acid) analysis. Consumers obtain fatty acids directly from their biomass sites were assimilating D. geminata cells and/or stalks. 4 food sources , so consumer Fish lipid composition should match • Both trout species mainly consumed amphipods and their food resources. turbellarians, but also D. geminata at all sites sampled.
    [Show full text]
  • Thesis Water Quality and Survivability Of
    THESIS WATER QUALITY AND SURVIVABILITY OF DIDYMOSPHENIA GEMINATA Submitted by Johannes Beeby Department of Ecosystem Science and Sustainability In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Fall 2012 Master’s Committee: Advisor: John D. Stednick Co-Advisor: Steven R. Fassnacht William H. Clements ABSTRACT WATER QUALITY AND SURVIVABILITY OF DIDYMOSPHENIA GEMINATA Didymosphenia geminata or Didymo has become a world-wide invasive aquatic species. During blooms, the algae can form thick mats covering entire reaches of stream bottom, which in turn creates negative aesthetic, ecologic, and economic impacts. Although Didymo is historically present in the United States, it is spreading quickly into areas that were previously free of it, and is even growing in waters that were thought not ideal habitat for Didymo. Previous research on how water quality affects Didymo growth and spreading appear to be influenced by streamflow rates and water pH levels. Other water quality parameters have not been fully tested on Didymo, which would contribute to a better understanding of what controls Didymo growth. The first goal of this study was to colonize Didymo in an artificial stream within a laboratory setting. The second goal was to evaluate the survivability of Didymo by exposing it to different water quality parameters. Artificial stream configurations with various light intensity and duration, water temperature and velocity, source water chemistry, and different growth media were used. In all attempts colonization of Didymo was unsuccessful as Didymo slowly deteriorated and became covered by other algae that were more successful in the artificial conditions.
    [Show full text]
  • Cottoidei: Cottidae) Necessitates Generic Realignment
    G C A T T A C G G C A T genes Article Genetic Evidence for a Mixed Composition of the Genus Myoxocephalus (Cottoidei: Cottidae) Necessitates Generic Realignment Evgeniy S. Balakirev 1,2,*, Alexandra Yu. Kravchenko 1,3 and Alexander A. Semenchenko 3 1 A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; [email protected] 2 School of Biomedicine, Far Eastern Federal University, Vladivostok 690950, Russia 3 Laboratory of Ecology and Evolutionary Biology of Aquatic Organisms, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia; [email protected] * Correspondence: [email protected] Received: 7 July 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: Sculpin fishes belonging to the family Cottidae represent a large and complex group, inhabiting a wide range of freshwater, brackish-water, and marine environments. Numerous studies based on analysis of their morphology and genetic makeup frequently provided controversial results. In the present work, we sequenced complete mitochondrial (mt) genomes and fragments of nuclear ribosomal DNA (rDNA) of the fourhorn sculpin Myoxocephalus quadricornis and some related cottids to increase the power of phylogenetic and taxonomic analyses of this complex fish group. A comparison of the My. quadricornis mt genomes obtained by us with other complete mt genomes available in GenBank has revealed a surprisingly low divergence (3.06 0.12%) with Megalocottus platycephalus ± and, at the same time, a significantly higher divergence (7.89 0.16%) with the species of the genus ± Myoxocephalus. Correspondingly, phylogenetic analyses have shown that My. quadricornis is clustered with Me.
    [Show full text]
  • Environmental DNA Genetic Monitoring of the Nuisance
    Diversity and Distributions, (Diversity Distrib.) (2017) 1–13 BIODIVERSITY Environmental DNA genetic monitoring RESEARCH of the nuisance freshwater diatom, Didymosphenia geminata, in eastern North American streams Stephen R. Keller1* , Robert H. Hilderbrand1, Matthew K. Shank2 and Marina Potapova3 1Department of Plant Biology, University of ABSTRACT Vermont, 63 Carrigan Dr., Burlington, VT Aim Establishing the distribution and diversity of populations in the early 05405, USA, 2Susequehanna River Basin stages of invasion when populations are at low abundance is a core challenge Commission, 4423 North Front Street, Harrisburg, PA 17110, USA, 3Academy of for conservation biologists. Recently, genetic monitoring for environmental Natural Sciences, Drexel University, 1900 DNA (eDNA) has become an effective approach for the early detection of inva- Benjamin Franklin Parkway, Philadelphia, ders, especially for microscopic organisms where visual detection is challenging. PA 19103, USA Didymosphenia geminata is a globally distributed freshwater diatom that shows a recent emergence of nuisance blooms, but whose native versus exotic status in different areas has been debated. We address the hypothesis that the distri- bution and genetic diversity of D. geminata in eastern North America is related to the recent introduction of non-native lineages, and contrast that with the alternative hypothesis that D. geminata is cryptically native to the region (i.e. at low abundance) and only forms nuisance blooms when triggered by a change in environment. Location The Mid-Atlantic region of North America. Methods We analysed 118 stream samples for D. geminata eDNA, validated our results for a subset of sites using direct visual enumeration by microscopy and used molecular cloning to sequence D.
    [Show full text]