Snakeheadsnepal Pakistan − (Pisces,India Channidae) PACIFIC OCEAN a Biologicalmyanmar Synopsis Vietnam

Total Page:16

File Type:pdf, Size:1020Kb

Snakeheadsnepal Pakistan − (Pisces,India Channidae) PACIFIC OCEAN a Biologicalmyanmar Synopsis Vietnam Mongolia North Korea Afghan- China South Japan istan Korea Iran SnakeheadsNepal Pakistan − (Pisces,India Channidae) PACIFIC OCEAN A BiologicalMyanmar Synopsis Vietnam and Risk Assessment Philippines Thailand Malaysia INDIAN OCEAN Indonesia Indonesia U.S. Department of the Interior U.S. Geological Survey Circular 1251 SNAKEHEADS (Pisces, Channidae)— A Biological Synopsis and Risk Assessment By Walter R. Courtenay, Jr., and James D. Williams U.S. Geological Survey Circular 1251 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director Use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. Copyrighted material reprinted with permission. 2004 For additional information write to: Walter R. Courtenay, Jr. Florida Integrated Science Center U.S. Geological Survey 7920 N.W. 71st Street Gainesville, Florida 32653 For additional copies please contact: U.S. Geological Survey Branch of Information Services Box 25286 Denver, Colorado 80225-0286 Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov Library of Congress Cataloging-in-Publication Data Walter R. Courtenay, Jr., and James D. Williams Snakeheads (Pisces, Channidae)—A Biological Synopsis and Risk Assessment / by Walter R. Courtenay, Jr., and James D. Williams p. cm. — (U.S. Geological Survey circular ; 1251) Includes bibliographical references. ISBN.0-607-93720 (alk. paper) 1. Snakeheads — Pisces, Channidae— Invasive Species 2. Biological Synopsis and Risk Assessment. Title. II. Series. QL653.N8D64 2004 597.8’09768’89—dc22 CONTENTS Abstract . 1 Introduction . 2 Literature Review and Background Information . 4 Taxonomy and Synonymy . 4 Common Names . 6 Description and Distinguishing Characteristics. 6 Native Distribution . 7 Biology and Natural History . 8 Associated Diseases and Parasites . 13 History in Fisheries and Aquaculture. 15 History of Introductions . 17 Eastern Hemisphere . 17 Western Hemisphere . 19 Uses. 24 Aquarium Trade. 24 Live-Food Fish Trade . 26 Biological Control . 28 U.S. Importations . 28 Regulations as of July 2002 . 31 Potential Range . 32 Risk Assessment Process. 33 Rating Elements of Risk Model. 34 Organism Risk Potential. 40 Species Accounts . 41 Channa amphibeus . 43 Channa argus . 45 Channa asiatica . 53 Channa aurantimaculata . 55 Channa bankanensis . 57 Channa baramensis . 59 Channa barca . 61 Channa bleheri . 63 Channa burmanica. 65 Channa cyanospilos . 67 Channa gachua . 69 Channa harcourtbutleri . 73 Channa lucius . 75 Channa maculata. 77 Channa marulioides. 81 Channa marulius . 83 Channa melanopterus . 89 Contents III Channa melasoma. 91 Channa micropeltes. 93 Channa nox . 99 Channa orientalis . 101 Channa panaw . 105 Channa pleurophthalma . 107 Channa punctata. 109 Channa stewartii. 113 Channa striata . 115 Parachanna africana . 121 Parachanna insignis . 123 Parachanna obscura . 125 Acknowledgments . 127 References. 129 FIGURES 1. Depiction of the Chinese snakehead, Channa asiatica, by Walt Disney Productions in 1959 . 3 2-6. Maps showing: 2. Native distribution of the family Channidae . 8 3. Introductions of snakeheads in the Eastern Hemisphere . 17 4. States where snakeheads have been collected from open waters, were cultured prior to August 2002, or are established . 20 5. States prohibiting possession of live snakeheads as of November 2002 . 32 6. Thermal range of snakeheads (Channidae) based largely on native range of distribution . 33 TABLES 1. Currently recognized species of the family Channidae . 5 2. Parasites of northern snakehead (Channa argus) . 14 3. Species of the family Channidae currently known to be cultured for food 16 and/or aquarium fish trade . 4. Snakeheads of interest to aquarists in the U.S. 25 5. U.S. importations of live snakeheads (Channidae, all species) during 29 1997-2002 . 6. Origin of snakehead shipments (Channidae, all species) during the 30 past 5 or more years. 7. States prohibiting snakeheads as of July 2002 . 31 IV Contents CONVERSION FACTORS, ACRONYMS, and ABBREVIATIONS Multiply By To obtain centimeter (cm) 0.3937 inch meter (m) 3.281 foot kilogram (kg) 2.2046 pound Degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: °F = 1.8 x (°C + 32) FAO Food and Agriculture Organization of the United Nations FFWCC Florida Fish and Wildlife Conservation Commission U.S. United States USGS U.S. Geological Survey ppm part per million S$ Singapore currency $ United States currency Unless otherwise stated in this report, measurement of fish refers to total length, defined as the measurement made from the tip of the snout to the posterior tip of the caudal or tail fin. Standard length refers to the measurement made from the tip of the snout to the base of the caudal fin. Contents V VI Contents SNAKEHEADS (Pisces, Channidae)— A Biological Synopsis and Risk Assessment By Walter R. Courtenay, Jr., and James D. Williams ABSTRACT Snakeheads (family Channidae) are airbreathing freshwater fishes containing two genera, Channa with 26 species native to Asia, Malaysia, and Indonesia; and Parachanna with 3 species native to tropical Africa. Some snakeheads are small, reaching about 17 centimeters, but most are much larger, the largest reported to be 1.8 meters in length. All are considered thrust predators with most being piscivorous as adults. A few of the smaller snakeheads and colorful juveniles of some larger ones have been available to hobbyists through the aquarium fish trade. Several species are highly valued as food fishes within parts of their native ranges, especially in Asia where they are an important part of capture fisheries and aquaculture. Because of these uses by humans, introductions far beyond native ranges have occurred. One Asian snakehead has been established in Oahu, Hawaii, since before 1900. Another species was discovered established in southeastern Florida in 2000, and a third in a pond in Maryland in 2002. Others have been captured from natural waters of the United States without evidence of reproduction and likely represent released aquarium fishes. That snakeheads at or near sexual maturity were being sold alive in ethnic food markets raised fears that they could be introduced into novel waters. These concerns led to this study on the biology of snakeheads. A risk assessment is included that examines environmental and related aspects of snakehead introductions. 1 INTRODUCTION Snakeheads (family Channidae) are airbreathing freshwater fishes containing two genera, Channa, native to Asia, Malaysia, and Indonesia, and Parachanna, endemic to tropical Africa. Taxonomy of these fishes is in flux, but leading authorities on snakehead systematics currently recognize 26 species of Channa and 3 of Parachanna. A few snakeheads are small, reaching about 17 centimeters; most, however, are much larger, the largest reported to be 1.8 meters in length. All are considered thrust predators with most being piscivorous as adults. Within.
Recommended publications
  • Review and Updated Checklist of Freshwater Fishes of Iran: Taxonomy, Distribution and Conservation Status
    Iran. J. Ichthyol. (March 2017), 4(Suppl. 1): 1–114 Received: October 18, 2016 © 2017 Iranian Society of Ichthyology Accepted: February 30, 2017 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.7508/iji.2017 http://www.ijichthyol.org Review and updated checklist of freshwater fishes of Iran: Taxonomy, distribution and conservation status Hamid Reza ESMAEILI1*, Hamidreza MEHRABAN1, Keivan ABBASI2, Yazdan KEIVANY3, Brian W. COAD4 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran 2Inland Waters Aquaculture Research Center. Iranian Fisheries Sciences Research Institute. Agricultural Research, Education and Extension Organization, Bandar Anzali, Iran 3Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan 84156-83111, Iran 4Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4 Canada *Email: [email protected] Abstract: This checklist aims to reviews and summarize the results of the systematic and zoogeographical research on the Iranian inland ichthyofauna that has been carried out for more than 200 years. Since the work of J.J. Heckel (1846-1849), the number of valid species has increased significantly and the systematic status of many of the species has changed, and reorganization and updating of the published information has become essential. Here we take the opportunity to provide a new and updated checklist of freshwater fishes of Iran based on literature and taxon occurrence data obtained from natural history and new fish collections. This article lists 288 species in 107 genera, 28 families, 22 orders and 3 classes reported from different Iranian basins. However, presence of 23 reported species in Iranian waters needs confirmation by specimens.
    [Show full text]
  • Diversity and Longitudinal Distribution of Freshwater Fish in Klawing River, Central Java, Indonesia
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 1, January 2018 E-ISSN: 2085-4722 Pages: 85-92 DOI: 10.13057/biodiv/d190114 Diversity and longitudinal distribution of freshwater fish in Klawing River, Central Java, Indonesia SUHESTRI SURYANINGSIH♥, SRI SUKMANINGRUM, SORTA BASAR IDA SIMANJUNTAK, KUSBIYANTO Faculty of Biology, Universitas Jenderal Soedirman. Jl. Dr. Soeparno No. 63, Purwokerto-Banyumas 53122, Central Java, Indonesia. Tel.: +62-281- 638794, Fax.: +62-281-631700, ♥email: [email protected] Manuscript received: 10 July 2017. Revision accepted: 2 December 2017. Abstract. Suryaningsih S, Sukmaningrum S, Simanjuntak SBI, Kusbiyanto. 2018. Diversity and longitudinal distribution of freshwater fish in Klawing River, Central Java, Indonesia. Biodiversitas 19: 85-92. The aims of this study were to evaluate the diversity and longitudinal distribution of fish in Klawing River, Purbalingga (Central Java). The survey was performed using a clustered random- sampling technique. The river was divided into upstream, midstream and downstream regions. Species diversity was measured as the number of species, and the longitudinal distribution was assessed by determining the fish species present in each of the three regions. Eighteen fish species of eleven families were identified in the Klawing River: Cyprinidae, Bagridae, Mastacembelidae, Anabantidae, Cichlidae, Channidae, Eleotrididae, Beleontinidae, Osphronemidae, Poecilidae, and Siluridae. Cyprinidae exhibited the highest number of species (six), followed by Bagridae and Cichlidae (two species each). The other families were represented by one species each. A single cluster analysis showed that the upstream population had a similarity of 78% and 50% with the midstream and downstream populations, respectively. Species and family diversities were higher in the midstream populations than in the upstream and downstream populations.
    [Show full text]
  • The Northern Snakehead Channa Argus (Anabantomorpha: Channidae), a Non- Indigenous Fish Species in the Potomac River, U.S.A Author(S): Thomas M
    The Northern Snakehead Channa argus (Anabantomorpha: Channidae), a non- indigenous fish species in the Potomac River, U.S.A Author(s): Thomas M. Orrell and Lee Weigt Source: Proceedings of the Biological Society of Washington, 118(2):407-415. 2005. Published By: Biological Society of Washington DOI: http://dx.doi.org/10.2988/0006-324X(2005)118[407:TNSCAA]2.0.CO;2 URL: http://www.bioone.org/doi/full/10.2988/0006-324X%282005%29118%5B407%3ATNSCAA %5D2.0.CO%3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 118(2):407±415. 2005. The Northern Snakehead Channa argus (Anabantomorpha: Channidae), a non-indigenous ®sh species in the Potomac River, U.S.A. Thomas M. Orrell and Lee Weigt (TMO) Smithsonian Institution, P.O. Box 37012, National Museum of Natural History, Washington, D.C.
    [Show full text]
  • Smujo International
    BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 3, March 2020 E-ISSN: 2085-4722 Pages: 1196-1200 DOI: 10.13057/biodiv/d210346 Short Communication: Proximate analysis, amino acid profile and albumin concentration of various weights of Giant Snakehead (Channa micropeltes) from Kapuas Hulu, West Kalimantan, Indonesia WAHYU WIRA PRATAMA1, HAPPY NURSYAM2, ANIK MARTINAH HARIATI3, R. ADHARYAN ISLAMY3,, VERYL HASAN4, 1Program of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Brawijaya. Jl. Veteran No.16, Malang 65145, East Java, Indonesia 2Department of Fishery Products Technology, Faculty of Fisheries and Marine Science, Universitas Brawijaya. Jl. Veteran No.16, Malang 65145, East Java, Indonesia 3Departement of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Brawijaya. Jl. Veteran No.16, Malang 65145, East Java, Indonesia. Tel.: +62-341-553-512, Fax.: +62-341-556-837, email: [email protected] 4Department of Fish Health Management and Aquaculture, Faculty of Fisheries and Marine Science, Universitas Airlangga. Kampus C Unair, Jl. Mulyosari, Surabaya 60113, East Java, Indonesia. Tel.: +62-31-315911541, Fax.: +62-31-5965741, email: [email protected] Manuscript received: 13 November 2019. Revision accepted: 23 February 2020. Abstract. Pratama WW, Nursyam H, Hariati AM, Islamy RA, Hasan V. 2020. Short Communication: Proximate analysis, amino acid profile and albumin concentration of various weights of Giant Snakehead (Channa micropeltes) from Kapuas Hulu, West Kalimantan, Indonesia. Biodiversitas 21: 1196-1200. Fish is an important foodstuff due to its nutritional value and high protein. One of popular fish as a foodstuff in tropical Asia is giant snakehead fish (Channa micropeltes). This study aims to examine the proximate composition, amino acid profile, and albumin concentration of giant snakeheads in various weights and to determine the best weight of giant snakeheads according to the proximate, amino acid, and albumin concentration.
    [Show full text]
  • Morphological and Genetic Variability of Malaysian Channa Spp Based on Morphometric and Rapd Techniques
    MORPHOLOGICAL AND GENETIC VARIABILITY OF MALAYSIAN CHANNA SPP BASED ON MORPHOMETRIC AND RAPD TECHNIQUES NORAINY BINTI MOHD HUSIN UNIVERSITI SAINS MALAYSIA 2007 MORPHOLOGICAL AND GENETIC VARIABILITY OF MALAYSIAN CHANNA SPP BASED ON MORPHOMETRIC AND RAPD TECHNIQUES by NORAINY BINTI MOHD HUSIN Thesis submitted in fulfillment of the requirements for the degree of Masters of Science FEBRUARY 2007 ACKNOWLEDGEMENTS Alhamdulillah, syukur ke hadrat illahi kerana dengan izin Nya saya dapat menyiapkan tesis ini. My sincere gratitude and appreciation to my supervisor Prof. Madya Dr. Siti Azizah Mohd Nor. She has helped me a lot in my research. Through her guidance, patience and encouragement, I have come this far. Thank you Dr. I also would like to say thank you to K. Za and Abg. Amir, who has taught and guide me at the beginning of my research. My gratitude also goes to other lab mates and friends Fatimah, Emi, Mila, Zam, Azad, Zahir, Abg Amir and Zarul. Thank you also to lab member of Lab 408 (Dr. Sofiman’s lab). To other friends who has enriched my life with their friendship and kindness. My profound gratitude and love to both of my parents for their unconditional love and support. Thank you also to my auntie and uncles for their encouragement. Last but not least to my husband and my beautiful children; Damia and Adam, I am blessed having you in my life. ii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ii TABLE OF CONTENTS iii LIST OF TABLES vi LIST OF FIGURES ix LIST OF PLATES xii LIST OF ABBREVIATIONS xiii LIST OF APPENDICES xiv LIST OF PUBLICATIONS
    [Show full text]
  • Distribution of an Endangered Fish Species, Chaca Chaca (Ham.- Buch.), in Arunachal Pradesh, India: a Biodiversity Hot Spot
    International Journal of Biology and Biological Sciences Vol. 3(3), pp. 023-030, April 2014 Available online at http://academeresearchjournals.org/journal/ijbbs ISSN 2327-3062 ©2014 Academe Research Journals Full Length Research Paper Distribution of an endangered fish species, Chaca chaca (Ham.- Buch.), in Arunachal Pradesh, India: A biodiversity hot spot Keshav Kr. Jha1*, Kumar Chetri1, Tapan Kr. Ghosh2 and Vibash Ch. Jha3 1Fish Germplasm Explorations Research Laboratory, Department of Zoology, Jawaharlal Nehru College, Pasighat Arunachal Pradesh -791 103, India. 2Ichthyology Research Laboratory, Department of Zoology, T. M. Bhagalpur University, Bhagalpur-812 007, Bihar India. 3National Atlas and Thematic Mapping Organisation, CGO Complex, 7th Floor, DF-Block, Bidhan Nagar, Kolkata-700 064 (W.B), India. Accepted 25 February, 2014 Chaca chaca (Ham.- Buch.) belongs to the family Chacidae. Chaca is the only genus in the family Chacidae and the only species reported from the Indian sub-continent. In India, this fish is available at restricted area. As per the report of NBFGR (2010) and IUCN (2013), a limited population and less number of individuals are found which is pushing this species towards extinction and the status of this fish is endangered. Lack of proper database on the distribution of C. chaca is a hurdle for the fish managers and fish conservators for its study. The present data of C. chaca collected from the various districts of Arunachal Pradesh help to formulate the management plan for in-situ or ex-situ conservation. Key words: Distribution, endangered, Chaca chaca, Arunachal Pradesh, biodiversity, hot spot. INTRODUCTION Locally known Heete duki (Heete = an elephant and duki (2006) reported that the family Chacidae and species C.
    [Show full text]
  • Tion of Wildlife and Plants
    SUBCHAPTER B—TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTA- TION OF WILDLIFE AND PLANTS PART 10—GENERAL PROVISIONS § 10.2 Scope of regulations. The various parts of this subchapter Subpart A—Introduction B are interrelated, and particular note Sec. should be taken that the parts must be 10.1 Purpose of regulations. construed with reference to each other. 10.2 Scope of regulations. 10.3 Other applicable laws. § 10.3 Other applicable laws. 10.4 When regulations apply. No statute or regulation of any State Subpart B—Definitions shall be construed to relieve a person from the restrictions, conditions, and 10.11 Scope of definitions. 10.12 Definitions. requirements contained in this sub- 10.13 List of Migratory Birds. chapter B. In addition, nothing in this subchapter B, nor any permit issued Subpart C—Addresses under this subchapter B, shall be con- 10.21 Director. strued to relieve a person from any 10.22 Law enforcement offices. other requirements imposed by a stat- ute or regulation of any State or of the AUTHORITY: 18 U.S.C. 42; 16 U.S.C. 703–712; 16 U.S.C. 668a–d; 19 U.S.C. 1202, 16 U.S.C. 1531– United States, including any applicable 1543; 16 U.S.C. 1361–1384, 1401–1407; 16 U.S.C. health, quarantine, agricultural, or 742a–742j-l; 16 U.S.C. 3371–3378. customs laws or regulations, or other SOURCE: 38 FR 22015, Aug. 15, 1973, unless Service enforced statutes or regula- otherwise noted. tions. Subpart A—Introduction § 10.4 When regulations apply.
    [Show full text]
  • A Review of the Freshwater Fish Fauna of West Bengal, India with Suggestions for Conservation of the Threatened and Endemic Species
    OCC SIO L PA ER NO. 263 Records of the Zoolog·cal Survey of India A review of the freshwater fish fauna of West Bengal, India w·th suggestions for · conservation of the threatened­ and endemic species R. P. BARMAN ZOOLOGICAL SURVEY OF IND A OCCASIONAL PAPER NO. 263 RECORDS OF THE ZOOLOGICAL SURVEY OF INDIA A review of the freshwater fish fauna of West Bengal, India with suggestions for conservation i o( the threatened and endemic species R.P.BARMAN Zoological Survey of India, F.P.S. Building, Kolkata-700 016 Edited by the Director, ZoolQ.§iaJl Survey of India, Kolkata ~ Jl'lfif Zoological Survey of India Kolkata CITATION Barman, R. P. 2007. A review of the freshwater fish fauna of West Bengal, India with suggestions for conservation of the threatened and endemic species. Rec. zool. Sllr~'. India, Oce. Paper No~, 263 : 1-48 (Published by the Director, Zoo I. Surv. India, Kolkata) Published: May, 2007 ISBN 978-81-8171-147-2 © Governl11enl of India, 2007 ALL RIGHTS RESERVED • No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. • This book is sold subject to the condition that it shall not, by way of trade, be lent. re-sold hired out or otherwise disposed of without the publisher's consent, in any form of binding or cover other than that in which it is published. • The correct price of this publication is the price printed on this page.
    [Show full text]
  • (Pellets) on Survival Rate of Juvenile Snakehead Fish (Channa Striata) on Adaptation in Happa Experiments
    Effect of Artificial Feed Feeding Engineering (pellets) on Survival Rate of Juvenile snakehead fish (Channa striata) on Adaptation in Happa Experiments I Made Kawan 1*, Semara Edi 2, Dewa Sadguna 3 Universitas Warmadewa, Denpasar-Bali, Indonesia {[email protected] 1, [email protected] 2, [email protected] 3} Abstract. Effect of Artificial Feed Feeding Engineering (pellets) on Survival Rate of Juvenile snakehead fish (Channa striata) on Adaptation in Happa Experiments were carried out at the Laboratory of Aquatic Resources Development, Faculty of Agriculture, Warmadewa University, Denpasar. The purpose of this study was to determine the engineering of artificial feeding which could provide the highest juvenile survival rate for snakehead fish. Snakehead fish (Channa striata) is a type of freshwater fish that lives in public waters, including rivers, swamps and lakes. One of the methods for seed propagation is by applying hatchery technology using artificial feeding techniques (PF500 pellets) combined with natural feed for water fleas (Dapnia sp) and silk worms (Tubifex). It is hoped that the combination of feeding is expected to be able to determine the artificial feeding (pellet) engineering that provides adequate nutritional needs so as to provide the highest survival rate in juvenile growth of snakehead fish at the adaptation stage of passive food habits. The method used in the engineering research of giving pellets is an experimental method using a completely randomized design (CRD) which consists of 6 treatments and 3 replications. The treatments in this experiment consisted of: A. Giving 100% pellets; B. Providing a combination of pellets 75% with Dapnia sp 12.5% and Tubifex 12.5%; C.
    [Show full text]
  • ICMB-VIII Abstract Book
    Program and Abstracts for the 8 th International Conference on Marine Bioinvasions (20-22 August 2013, Vancouver, Canada) Cover photography & design: Kimberley Seaward, NIWA Layout: Kimberley Seaward & Graeme Inglis, NIWA 8th International Conference on Marine Bioinvasions Vancouver 2013 8th International Conference on Marine Bioinvasions Dear Conference Participant On behalf of the Scientific Steering Committee (SSC) and our sponsors, we would like to welcome you to Vancouver for the 8th International Conference on Marine Bioinvasions. Vancouver is a culturally diverse metropolitan city serving as the western gateway to Canada. We hope you will spend some time to explore all this city has to offer. We are grateful for all of the efforts of the SSC and the local organizing committee as well as for the generous support of our sponsors: the Biodiversity Research Centre at the University of British Columbia for hosting the event; the Canadian Aquatic Invasive Species Network (CAISN), for providing additional funding by sponsoring one of the plenary presentations; The North Pacific Marine Science Organization (PICES), for providing travel awards to early career scientists; and the National Oceanographic and Atmospheric Administration (NOAA), for donating additional funds. Above all else, we are grateful for your participation and willingness to discuss your ideas, latest research results, and vision. Among the papers, posters, and plenary presentations that comprise the conference, we hope you will find many opportunities for discussion and
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Eu Non-Native Organism Risk Assessment Scheme
    EU NON-NATIVE SPECIES RISK ANALYSIS – RISK ASSESSMENT Channa spp. EU NON-NATIVE ORGANISM RISK ASSESSMENT SCHEME Name of organism: Channa spp. Author: Deputy Direction of Nature (Spanish Ministry of Agriculture and Fisheries, Food and Environment) Risk Assessment Area: Europe Draft version: December 2016 Peer reviewed by: David Almeida. GRECO, Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain ([email protected]) Date of finalisation: 23/01/2017 Peer reviewed by: Quim Pou Rovira. Coordinador tècnic del LIFE Potamo Fauna. Plaça dels estudis, 2. 17820- Banyoles ([email protected]) Final version: 31/01/2017 1 EU NON-NATIVE SPECIES RISK ANALYSIS – RISK ASSESSMENT Channa spp. EU CHAPPEAU QUESTION RESPONSE 1. In how many EU member states has this species been recorded? List An adult specimen of Channa micropeltes was captured on 22 November 2012 at Le them. Caldane (Colle di Val d’Elsa, Siena, Tuscany, Italy) (43°23′26.67′′N, 11°08′04.23′′E).This record of Channa micropeltes, the first in Europe (Piazzini et al. 2014), and it constitutes another case of introduction of an alien species. Globally, exotic fish are a major threat to native ichthyofauna due to their negative impact on local species (Crivelli 1995, Elvira 2001, Smith and Darwall 2006, Gozlan et al. 2010, Hermoso and Clavero 2011). Channa argus in Slovakia (Courtenay and Williams, 2004, Elvira, 2001) Channa argus in Czech Republic (Courtenay and Williams 2004, Elvira, 2001) 2. In how many EU member states has this species currently None established populations? List them. 3. In how many EU member states has this species shown signs of None invasiveness? List them.
    [Show full text]